ВЛИЯНИЕ ПРЕДВАРИТЕЛЬНОЙ ОБРАБОТКИ ОКСИДНЫХ ПЛАЗМОХИМИЧЕКИХ ПОРОШКОВ НА ПРОЦЕССЫ ИХ КОМПАКТИРОВАНИЯ И СПЕКАНИЯ.

Васильев И.П.

Научный руководитель: Суржиков А.П., д.ф.-м.н., профессор Томский политехнический университет, 634050, Россия, г. Томск, пр. Ленина, 30 E-mail: zarkvon@tpu.ru.

Известно, что ультрадисперсные порошки (УДП), полученные плазмохимическим способом, исходном состоянии отличаются прессуемостью, что связано с морфологическими особенностями синтезируемых оксидов[1]. При попадании раствора исходных компонентов в плазму, начинается интенсивное испарение растворителя с поверхности, приводящее к пересыщению внешнего слоя жидкости по отношению к растворенной в ней соли, что, в свою очередь, приводит к образовании на поверхности капель оболочек с жидкостью или парогазовой смесью внутри. Со временем происходит прорыв содержимого через образованные оболочки, благодаря чему после быстрого охлаждения образуется большое количество полых сфер и фрагментов полностью разрушенных оболочек. Отсюда становится ясным то, что необходима предварительная подготовка порошков перед компактированием.

В данной работе представлены результаты анализа влияния трех способов обработки порошков на эффективность их компактирования и уплотнения при последующем спекании. При исследовании использовались порошки двух составов: частично стабилизированного диоксида циркония и композиционной смеси, состоящей из 80 масс.% диоксида циркония и 20 масс.% оксида алюминия.

Суть первого способа заключается предварительном статическом прессовании порошков исходной смеси при повышенном давлении (порядка 900МПа) с последующим помолом в агатовой ступке [2]. Суть второго способа состоит в помоле исходных порошков в планетарной мельнице типа ПМ «Активатор -2SL» с мелющими шарами из диоксида циркония. Параметры помола: соотношение массы шаров к массе исходной смеси — 1.5, частота вращения 1500 об/мин, для нескольких значений времени помола в промежутке от 7,5 до 30 мин. Третий способ заключался в предварительном отжиге композиционного порошка при температуре 1300°C в течение одного часа с целью перевода аморфного Al₂O₃ в α-Al₂O₃ и последующем его помоле. Образцы готовились в виде таблеток диаметром 10мм и толщиной 2.3-2.7мм. Компактирование осуществлялось путем одноосного статического прессования при давлении Р=150МПа.

В таблице 1 представлены экспериментальные

данные, полученные при исследовании циркониевой керамики. Теоретическая плотность идеальной беспористой керамики для ZrO2 была рассчитана по формуле 1 и была равна $\rho_{\tau}=5.85 \Gamma/\text{cm}^3$.

В таблице 2 представлены экспериментальные данные, полученные при исследовании керамики, спеченной из смеси порошков оксида алюминия и диоксида циркония. Теоретическая плотность идеальной беспористой керамики для 80ZrO2-20Al2O3 была рассчитана по формуле 1 и была равна $\rho_{\rm T}=5,47{\rm \Gamma/cm}^3$.

$$\rho_{T} = (M_{1}/\rho_{1} + M_{2}/\rho_{2} + \dots + M_{n}/\rho_{n})^{-1}$$

где M — массовые доли компонентов смеси, ρ -табличные значения плотности компонентов смеси.

Анализ данных, приведенных в таблицах 1 и 2, показывает, что однозначная связь, между плотностью компакта и плотностью керамики отсутствует. Помол порошка в планетарной мельнице в течение промежутка времени более 7,5мин приводит к увеличению плотности прессовок, которое приблизительно равно 17% для порошка диоксида циркония и 5% для корунд q_{TO} циркониевой смеси. характерно, увеличении плотности прессовок, плотность спеченной из них керамики для чистого диоксида циркония уменьшается, а для корунд-циркониевой композиции практически не меняется.

Кинетика уплотнения образцов в процессе их нагрева исследовали C помощью высокочувствительного толкательного DIL 402 C фирмы NETZSCH дилатометра (Германия). Кинетические зависимости линейной усадки (L/L₀) образцов из чистого диоксида полученные циркония, c его помощью представлены на рисунке 1.

Из характера кривых уплотнения образцов, представленных ниже можно сделать вывод о том, увеличение времени предварительной обработки порошка ZrO2 в ПМ приводит к усадки. процесса Об нарушению свидетельствует расширение образца на стадии изотермической выдержки. Именно расширением образцов объясняется уменьшение плотности циркониевой керамики при увеличении времени обработки порошка в ПМ. Характерно, что увеличение времени предварительного помола для композиции КЦК, не приводит к расширению при тех же режимах нагрева.

Таблица 1. Влияние способа обработки исходных корунд-циркониевых УДП на плотность

компактированных в режиме статического прессования образцов и спеченной из них керамики.

Способ обработки порошка	Плотн. компакта ρ , $r/\ cm^3$	Плотн. керамики T_{cn} =1550°C1час, ρ_{κ} , г/см ³	Плотн. керамики T _{cn} =1600°C 1час, ρ_{κ} , г/см ³
Прессов. Р=920 МПа, помол	2,57	5,14	5,25
Помол t= 7.5 мин.	2,43	5,01	5,14
Помол t=15 мин.	2,69	5,03	5,09
Помол t=30 мин.	2,7	5,04	5,15
Помол t=15мин, терм. отжиг T=1300° C 1ч, пресс. P=920 МПа, помол	3,26	5,14	5,26

Таблица 2. Влияние способа обработки исходных ультрадисперсных порошков диоксида циркония на

плотность компактированных в режиме статического прессования образцов и спеченной из них керамики

Способ обработки порошка	Плотн компакта ρ , $r/\ cm^3$	Плотн. керамики T_{cn} =1550°C1час. $\rho_{\kappa, \Gamma}$ /см ³	Плотн. керамики T_{cn} =1600°C1час. ρ_{κ} , г/см ³
Пресс. Р=920МПапомол	2,65	5,6	5,67
Помол в ПМ t=7,5мин.	2,64	5,47	5,5
Помол в ПМ t=15мин.	3,1	5,51	5,52
Помол в ПМ t=30мин.	3,12	5,21	5,12

Проведенные нами исследования показали, что помол УДП плазмохимических порошков в ПМ по сравнению с первым способом подготовки, приводит к уменьшению плотности готовой керамики, что справедливо как для ЦК, так и для КЦК. То есть сухой помол порошков в планетарной мельнице не может обеспечить получение композиционной керамики максимальной плотностью. Самыми удачными, с точки зрения плотности, И практически одинаковыми, с точки зрения практических результатов, оказались первый и третий способы подготовки исходных порошков.

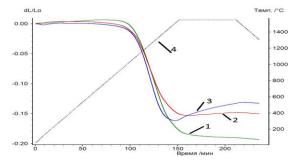


Рисунок 1 — Влияние времени обработки в планетарной мельнице порошков диоксида циркония на кинетику спекания циркониевой

керамики. 1,2,3 — время обработки 7,5, 15, 30 минут, соответственно; 4 — температурный режим спекания.

Исходя из вышесказанного, для улучшения технологических свойств плазмохимических порошков наиболее оптимальным является подготовка порошков путем предварительного прессования порошка при повышенном давлении с последующим помолом агатовой ступке.

Список использованной литературы.

- 1. Ларин В. К., Кондаков В.М., Малый В.А. и др. Плазмохимический способ получения ультрадисперсных порошков оксидов металлов и перспективные направления их применения //Изв. Вузов. Цветная металлургия. 2003. №5. С. 59—64.
- 2. Слосман А.И., Апаров.Н.Н. Апарова Л.С., Матренин. С.В. Влияние предварительной обработки на технологические свойства плазмохимических порошков // Огнеупоры. 1994.-N2.-C.4-7.

Работа выполнена в рамках НИР по Госзаданию "Наука"