АЛГОРИТМ НАСТРОЙКИ НЕЧЕТКОГО РЕГУЛЯТОРА ДЛЯ СИСТЕМЫ УПРАВЛЕНИЯ ЭЛЕКТРОПРИВОДОМ ПЫЛЕПИТАТЕЛЯ ТЭЦ

Доронкин Д.Ю., Буркатовская Ю.Б.

Научный руководитель: Буркатовская Ю.Б., к.ф-м.н., доцент Томский политехнический университет, 634050, Россия, г. Томск, пр. Ленина, 30 E-mail: paranamix2@mail.ru

Введение

В современной промышленности большое внимание уделяется таким аспектам отрасли, как энергоресурсов, безопасность производства и экология. В связи с этим при решении современных задач автоматизации предпочтение отдается передовым, технологичным высокоинтеллектуальным И системам. Данные системы способны не только поддерживать технологический процесс нормальном состоянии, но и реагировать на экстремальные ситуации, предотвращая тем самым аварии и отклонения регулируемых параметров от нормы.

Автоматизация процесса получения тепловой энергии занимает значительное место среди мероприятий по экономии топлива в системах теплоснабжения. Актуальной задачей является разработка автоматов и систем автоматического управления такого важного технологического объекта, как паровой котел [1].

В данной работе будет рассмотрен один из возможных способов оптимизации процесса подачи угольного топлива в топочную камеру котла – применение нечеткого регулятора (НР) как основного звена системы управления технологическим процессом. Целью данной работы является внедрение нечеткого регулятора в систему автоматического управления (САУ) электроприводом пылепитателя и разработка алгоритма его настройки.

Описание моделируемой САУ

Упомянутая ранее динамическая САУ представляет собой многокаскадную систему регулируемого стабилизации выходного параметра, состоящую из преобразователя частоты (ПЧ), асинхронного двигателя (АД), внутреннего контура с обратной связью по скорости, внешнего контура с обратной связью по температуре. Структурная схема системы представлена на рисунке 1.

Рис. 1. Структурная схема САУ

Задающим сигналом является входное напряжение на обмотке АД, регулируемым параметром – угловая скорость вращения АД.

Математическое описание моделируемой САУ Для проведения этапа моделирования необходимо математически описать моделируемую систему. Данный этап можно разбить на следующие подзадачи [2]:

- определение передаточных функций отдельных элементов и замкнутой системы;
- расчет коэффициентов и постоянных времени для передаточных функций;
 - синтез функциональной схемы САУ.

При моделировании системы не будем учитывать внешний контур. Таким образом, мы сможем перейти от многокаскадной системы к системе с одним контуром регулирования, что упростит моделирование на начальном этапе.

Исход из математического описания ПЧ, его передаточная функция:

$$W_{\Pi Y}(p) = \frac{\omega_0}{U_{\mathcal{V}}} = k_n$$

где ω_0 — синхронная угловая скорость двигателя; $k\pi$ — коэффициент передачи ПЧ;

Uy – напряжение управления;

Передаточная функция асинхронного двигателя состоит из электромагнитной и механической составляющих [3]:

$$W_{A\mathcal{I}\mathcal{I}}(p) = \frac{\beta_e}{1 + T_{\mathfrak{I}}p}$$
 $W_{A\mathcal{I}\mathcal{M}}(p) = \frac{1}{1 + T_{\mathfrak{M}}p}$

где β_e – модуль жесткости естественной характеристики АД;

Т_э – электромагнитная постоянная времени;

Т_м – электромеханическая постоянная времени;

Передаточная функция преобразователя скорости в обратной ветви имеет вид безынерционного звена:

$$W_{OCW}(p) = k_{ocW}$$

Передаточная функция прямой ветви системы имеет вид:

$$W_{\Pi B} = W_{\Pi Y} * W_{A \Pi \ni}$$

Передаточная функция замкнутой по контуру скорости системы имеет вид:

$$W = \frac{W_{\Pi B}}{1 + W_{\Pi B} * W_{OCW}} = \frac{W_{\Pi Y} * W_{AJJ}}{1 + W_{\Pi Y} * W_{AJJ} * W_{OCW}}$$

Механическую составляющую передаточной функции АД представим как возмущающее воздействие, т.к. необходимо поддерживать постоянное значение выходной величины в независимости от величины нагрузки. На рисунке 2 представлена функциональная схема САУ.

Схема собрана в ППП Matlab.

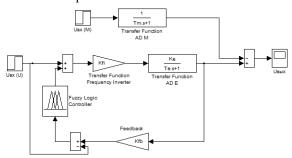


Рис. 2. Схема динамической САУ с нечетким регулятором

Настройка нечеткого регулятора

Выполнить настройки HP в ППП Matlab можно вызвав редактор настроек командой fuzzy в главном окне программы. В редакторе настроек необходимо [4]:

- 1. Указать лингвистические переменные, в данном случае сигнал рассогласования на входе нечеткого контроллера ϵ и выходное управляющее напряжение $U_{\rm v}$.
- 2. Указать диапазоны определения значений переменных. Диапазон выставляется таким образом, чтобы охватывал все возможные значения для переменной.
- 3. Определить терм множества для лингвистических переменных. Для ϵ используем множество из трех термов $T\epsilon$ ={отрицательная (NegE), , «нулевая (Ne)» «положительная (PosE)»}, для U_y множество из трех термов U_y ={«положительное (PosU)», «нулевое (Nu)», «отрицательное (NegU)»}.
- 4. Выбрать функции принадлежности для термов. Функции принадлежности зададим виде кусочно-линейных функций. Для крайних термов в виде Z и S образных функции принадлежности, а для средних значений в виде треугольной формы.

Рис. 3. Окно редактора функций принадлежности

Функции принадлежности располагаются таким образом, чтобы они перекрывали друг друга. Чем больше перекрытие, тем выше степень принадлежности смежных функций принадлежности, и тем большей мерой элементы

универсального множества соответствуют свойствам нечеткого множества.

5. Создать базу правил нечеткого вывода: ПРАВИЛО 1: ЕСЛИ «отрицательная ошибка» ТО «отрицательное управляющее воздействие»;

ПРАВИЛО 2: ЕСЛИ «нулевая ошибка» ТО «нулевое управляющее воздействие»;

ПРАВИЛО 3: ЕСЛИ «положительная ошибка» ТО «положительное управляющее воздействие».

Рис. 4. Вид редактор правил нечеткого вывода

Заключение

Разработанный алгоритм настройки позволяет по шагам определить переменные входа выхода, диапазон значений, функции принадлежности их термов, а также определить базу правил, в соответствии с которой будут реализованы принципы регулирования САУ. Использование нечеткой логики позволяет в независимости от характера возмущающего воздействия и значений параметров звеньев САУ выходное стабилизировать значение поддерживаемом диапазоне регулирования.

При моделировании многокаскадной САУ сложность законов автоматического регулирования многократно растет. В связи с этим применение нечеткой логики будет рациональным решением, т.к. принципы его настройки позволяют модифицировать управление САУ в независимости от степени сложности ее построения.

Применение HP позволяет отойти от традиционных законов коррекции CAУ, таких, как применение корректирующих звеньев и ПИД-регуляторов.

Список использованной литературы

- 1. Теория автоматического управления в примерах и задачах А.А. Клавдиев, СПб: СЗТУ, 2005 74 с.
- 2. Руководство по проектированию систем автоматического управления В.А. Бесекерский, М.: Высш. Школа, 1983 296 с.
- 3. Теория систем автоматического регулирования В.А. Бесекерский, Е.П. Попов, Изд.: Наука, 1972 768 с.
- 4. MATLAB 7 И. Ануфриев, СПб:БХВ-Петербург, 2005 1104 с.