
XX International conference for students and young scientists «MODERN TECHNIQUE AND TECHNOLOGIES»
Section 7: Informatics And Control In Engeneering Systems

JUMP POINT SEARCH ALGORITHM PERFORMANCE ANALYSIS
Дусеев В.Р., Рудь М.Н., Мальчуков А.Н.

Научный руководитель: Мальчуков А.Н., к.т.н. доцент
Томский политехнический университет, 634050, Россия, г. Томск, пр. Ленина, 30

E-mail: vagiz.d@gmail.com

Jump Point Search (JPS) [1] is a unique online

symmetry-breaking algorithm, which speeds up path
finding on uniform-cost grid maps by “jumping over”
many locations that would otherwise need to be
explicitly considered. JPS is faster and more powerful
than RSR: it can consistently speed up A* search by
over an order of magnitude and more. Unlike other
similar algorithms JPS requires no preprocessing and
has no memory overheads. Further, it is easily
combined with most existing speedup techniques —
including abstraction and memory heuristics.

The Algorithm
This section and the next describe the mechanical

details and algorithmic properties of Jump Point
Search. A set of figures is provided in order to explain
the algorithm`s behavior.

JPS [1] can be described in terms of two simple
pruning rules which are applied recursively during
search: one rule is specific to straight steps, the other
for diagonal steps. The key intuition in both cases is
to prune the set of immediate neighbours around a
node by trying to prove that an optimal path
(symmetric or otherwise) exists from the parent of the
current node to each neighbour and that path does not
involve visiting the current node. Figure 1 outlines the
basic idea.

Figure 1. Neighbour Pruning

Node x is currently being expanded. The arrow

indicates the direction of travel from its parent, either
straight or diagonal. In both cases we can immediately
prune all grey neighbours as these can be reached
optimally from the parent of x without ever going
through node x.

We will refer to the set of nodes that remain after
pruning as the natural neighbours of the current node.
These are marked white in Figure 1. Ideally, we only
ever want to consider the set of natural neighbours
during expansion. However, in some cases, the
presence of obstacles may mean that we need to also
consider a small set of up to k additional nodes (0 ≤ k
≤ 2). We say that these nodes are forced neighbours of
the current node. Figure 2 gives an overview of this
idea.

Figure 2. Forced Neighbours

Node x is currently being expanded. The arrow

indicates the direction of travel from its parent, either
straight or diagonal. Notice that when x is adjacent to
an obstacle the highlighted neighbours cannot be
pruned; any alternative optimal path, from the parent
of x to each of these nodes, is blocked [2].

We apply these pruning rules during search as
follows: instead of generating each natural and forced
neighbour we instead recursively prune the set of
neighbours around each such node. Intuitively, the
objective is to eliminate symmetries by recursively
“jumping over” all nodes which can be reached
optimally by a path that does not visit the current
node. We stop the recursion when we hit an obstacle
or when we find a so-called jump point successor.
Jump points are interesting because they have
neighbours that cannot be reached by an alternative
symmetric path: the optimal path must go through the
current node.

A

B

Figure 3. (A) jumping straight; (B) jumping

diagonally
The details of the recursive pruning algorithm are

reasonably straightforward: to ensure optimality we
need only assign an ordering to how we process
natural neighbours (straight steps before diagonal). I
will not attempt to outline it further here; the full
details are in the paper and my aim is only to provide

289

XX International conference for students and young scientists «MODERN TECHNIQUE AND TECHNOLOGIES»
Section 7: Informatics And Control In Engeneering Systems

a flavour for the work. Figures 3 gives two examples
of the pruning algorithm in action. In the first case we
identify a jump point by recursing straight; in the
second case we identify a jump point by recursing
diagonally.

Node x is currently being expanded. p(x) is its
parent.

(A) We recursively apply the straight pruning rule
and identify y as a jump point successor of x. This
node is interesting because it has a neighbour z that
cannot be reached optimally except by a path that
visits x then y. The intermediate nodes are never
explicitly generated or even evaluated.

(B) We recursively apply the diagonal pruning
rule and identify y as a jump point successor of x.
Notice that before each diagonal step we first recurse
straight (dashed lines). Only if both straight
recursions fail to identify a jump point do we step
diagonally again. Node w, which is simply a forced
neighbour of x, is generated as normal.

Properties and Performance
Jump Point Search is nice for a number of reasons:

• It is optimal.
• It involves no pre-processing.
• It requires no extra-memory overheads.
• It can consistently speed up A* search by over

10 times; making it not only competitive with,
but often better than, approximate techniques
such as HPA* [3].

Properties 1-3 are interesting theoretical results,
and rather surprising, but I will not address them
further here. My main objective in this article is
simply provide a flavour for the work; for a full
discussion, including proofs, please see the original
paper [1]. Property 4 is perhaps of broadest practical
interest so I will give a short summary of our findings
below.

We evaluated JPS on four map sets taken from
Nathan Sturtevant’s freely available pathfinding
library, Hierarchical Open Graph. Two of the
benchmarks are realistic, originating from popular
BioWare video games Baldur’s Gate II: Shadows of
Amn and Dragon Age: Origins. The other two
Adaptive Depth and Rooms are synthetic though the
former could be described as semi-realistic. In each
case we measured the relative speedup of A* + JPS
vs. A* alone.

Briefly: JPS can speed up A* by a factor of
between 3-15 times (Adaptive Depth), 2-30 times
(Baldur’s Gate), 3-26 times (Dragon Age) and 3-16
times (Rooms). In each case the lower figure
represents average performance for short pathfinding
problems and the higher figure for long pathfinding
problems (i.e. the longer the optimal path to be found,
the more benefit is derived from applying JPS).

What makes these results even more compelling is
that in 3 of the 4 benchmarks A* + JPS was able to
consistently outperform the well known HPA*
algorithm [3]. This is remarkable as A* + JPS is
always performing optimal search while HPA* is only

performing approximate search. On the remaining
benchmark, Dragon Age, we found there was very
little to differentiate the performance of the two
algorithms.

Caveat emptor: It is important to highlight at this
stage that A* + JPS only achieves these kids of
speedups because each benchmark problem set
contains a large number of symmetric path segments
(usually manifested in the form of large open areas on
the map). In such cases JPS can exploit the symmetry
and ignore large parts of the search space. This means
A* both generates and expands a much smaller
number of nodes and consequently reaches the goal
much sooner. When there is very little symmetry to
exploit however we expect that our gains will be more
modest.

Final Thoughts
The explicit identification and elimination of

symmetries in pathfinding domains is an idea that
until now has received little attention in the academic
literature. Approaches for dealing with symmetry,
such as Jump Point Search, provide us with powerful
new tools for reducing the size of explicit regular
search spaces. By eliminating symmetry we speed up
not just A* but entire classes of similar pathfinding
algorithms. Also, consider: JPS is entirely orthogonal
to almost every other speedup technique applicable to
grid maps. Thus, there is no reason why we couldn’t
combine it, or other similar methods, with hierarchical
pathfinding approaches, memory heuristics or even
other optimality-preserving state-space reduction
techniques. That means the results presented thus far
are only the tip of the iceberg in terms of performant
grid-based pathfinding methods.

Another exciting aspect of this work is the
possibilities it opens for further research. For
example: could we pre-process the map and go even
faster? Or: are there analogous jumping rules that one
could develop for weighted grids? What about other
domains? Could we apply the lessons learned thus far
to help solve other interesting search problems? The
answers to the first two questions already appear to be
positive; the third is something we want to explore in
the near future.

References

1. D. Harabor and A. Grastien. Online Graph
Pruning for Pathfinding on Grid Maps. In National
Conference on Artificial Intelligence (AAAI),
2011.

2. D. Harabor, A. Botea, and P. Kilby. Path
Symmetries in Uniform-cost Grid Maps. In
Symposium on Abstraction Reformulation and
Approximation (SARA), 2011.

3. A. Botea, M. Müller, and J. Schaeffer. Near
Optimal Hierarchical Path-finding. In Journal of
Game Development (Issue 1, Volume 1), 2004.

290

