
XX International conference for students and young scientists «MODERN TECHNIQUE AND TECHNOLOGIES»
Section 7: Informatics And Control In Engeneering Systems

BACK-END DEVELOPMENT OF THE APPLICATION
“LEARN LANGUAGE BY SONGS”

Sannikov M.A., Leontev P.N.
Scientific supervisor: Zvigintsev I.L., teaching assistant

Language supervisor: Pichugova I.L., senior teacher
Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, 634050, Russia

E-mail: max777alex@gmail.com

Mobile application development is very popular
today. There are a lot of different mobile devices
around the world, which work on various operating
systems. Therefore, problems arise when you are
trying to design an application under many platforms.
The one is the application overloading causing some
bad influence on performance and response time. The
second problem is that there is some functionality,
which is completely the same on different platforms,
and it is really difficult to maintain such code. One
way to solve these problems is to choose the other
application architecture, for example, client-server.
Such architecture has been chosen for our application
Learn Language By Songs (LLBS), which is designed
for two most popular platforms: Android and iOS.

The application installed on a user mobile device
is called front-end. It contains the main functionality
which allows interacting with the user. The server
application (back-end) is responsible for the most

“heavy” functions and provides simultaneous high-
performance processing of the client devices requests.
In the application LLBS the backend is developed
using PHP-framework Symfony 2 and MySQL
relational database management system. It provides
the Application Programming Interface (API), which
consists of the following functions:

• song lyrics search by its attributes (name,
artist);

• user authorization and registration;
• getting the scores about listened songs.
Symfony PHP Web Development Framework is

chosen for backend API because it is one of the most
developing frameworks and it helps to think about the
functionality of application instead of details of

implementation. The main structure of request
handling is shown in Fig. 1. Symphony aims to speed
up the creation and maintenance of web applications
and to replace repetitive coding tasks. It has the
following structure: incoming requests are interpreted
by the routing and passed to controller functions that
return Response objects. Each "page" of the site is
defined in a routing configuration file that maps
different URLs to different PHP functions. The job of
each PHP function, called a controller, is to use
information from the request along with many other
tools Symfony makes available – to create and return
a Response object. In other words, the controller
contains the code that turns HTTP request into HTTP
response.

There are two server-side MySQL databases. The
first database is responsible for storing information
about user registrations. The second is a caching
storage for song lyrics. The song lyric is the result of

parsing the pages on popular sites with such
information, for instance, azlyrics.com. Moreover,
exceptional cases handling is designed for artist or
song name in order to get rid of some errors. For
example, if we take the string “The Beatles” and the
application tries to get the song lyrics, it will fail
because many sites use the pattern “artist/song_name”
where the first one often does not contain the prefix
“the”.

The server-side caching is necessary for reducing
the load on the network and the sites with the required
information about the song. The handling of incoming
request begins with cache scanning. If the cache does
not contain any corresponding information, then the
song lyrics search will run. However, the server

Fig. 1. Symfony 2 application structure

307

XX International conference for students and young scientists «MODERN TECHNIQUE AND TECHNOLOGIES»
Section 7: Informatics And Control In Engeneering Systems

performance will decrease when the cache size is
about a hundred of gigabytes. But the effective
maximum table size for MySQL databases is usually

determined by operating system constraints on file
sizes, not by MySQL internal limits [1]. To solve this
problem we are storing request counters for every
song in the second MySQL database. It is always used
in the server procedure of reducing the data which are
not relevant at the given moment (shrinking).
Shrinking can be performed both manually and
automatically (for instance, if the cache size is more
than predefined constant). In addition, front-end app
also uses caching. The main reason is to decrease
response time for all actions performed by the user.
Client has SQLite database which stores only song’s
lyrics which are on user device. When user launches
the application, background scanning of the file
system will be run to update the list of available
songs. If one of the songs is not found, all the
information about it will be deleted from the cache.
The full scheme of such interaction is shown in Fig. 2.

As a conclusion we can say that back-end
development is more complex task than front-end
because of many server implementation features and
advanced tasks such as caching, HTTP-requests
processing or server protection from the overloading.

References

1. MySQL Documentation [Electronic resource]
Access mode:
http://dev.mysql.com/doc/refman/5.0/en/table-
size-limit.html

2. Android for developers [Electronic resource],
Access mode:

https://developer.android.com - free.
3. Client-server model [Electronic resource]. Access

mode: http://en.wikipedia.org/wiki/Client%E2%8

0%93server_model – free.
4. High Performance PHP framework for web-

development – Symphony [Electronic resource].
Access mode: http://symfony.com/ - free

5. Application Programming Interface [Electronic
resource]. Access mode:
http://en.wikipedia.org/wiki/Application_progra
mming_interface - free.

6. Mobile Development overview [Electronic
resource]. Access mode:
http://www.clarity-
ventures.com/articles/article/676/mobile-
development-overview-statistics-on-mobile-
development-mobile-development - free.

Fig. 2. Application sheme

308

https://developer.android.com/
http://en.wikipedia.org/wiki/Client%E2%80%93server_model
http://en.wikipedia.org/wiki/Client%E2%80%93server_model
http://symfony.com/
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://www.clarity-ventures.com/articles/article/676/mobile-development-overview-statistics-on-mobile-development-mobile-development
http://www.clarity-ventures.com/articles/article/676/mobile-development-overview-statistics-on-mobile-development-mobile-development
http://www.clarity-ventures.com/articles/article/676/mobile-development-overview-statistics-on-mobile-development-mobile-development
http://www.clarity-ventures.com/articles/article/676/mobile-development-overview-statistics-on-mobile-development-mobile-development

