ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ИНТЕГРАЛЬНЫХ ХАРАКТЕРИСТИК ТЕПЛОПЕРЕНОСА В ТИПИЧНЫХ ТЕРМОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЯХ

Атрошенко Ю.К.

Научные руководители: Стрижак П.А., д.ф.-м.н., профессор; Озерова И.П., к.т.н., доцент Томский политехнический университет, 634050, Россия, г. Томск, пр. Ленина, 30 E-mail: julie55@tpu.ru

Температура один ИЗ важнейших контролируемых параметров технологических процессов во многих отраслях промышленности, при чем известно, что не менее 60 % всех температурных измерений выполняется помощью термоэлектрических преобразователей (ТЭП). Поэтому важной задачей является обеспечение точности измерения температуры термоэлектрическими термометрами. Погрешность измерения определяется большим количеством факторов, числе В TOM продолжительностью проведения измерений. [1]

Необходимую продолжительность выполнения измерения в пределах допускаемой погрешности возможно определить для каждого типа термопреобразователя с помощью прогностической модели.

В рамках построения модели рассматривается задача теплопроводности для области, представляющей существенно неоднородную систему, включающую спай термопары, защитный чехол и область между ними, заполняемую порошком оксида алюминия Al_2O_3 (рис. 1).

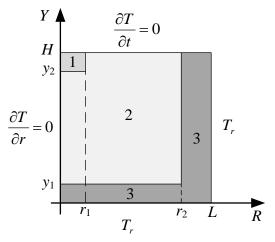


Рис. 1. Схема области решения задачи: 1 — спай термопары; 2 — порошок окиси алюминия; 3 — защитный чехол; H — высота участка чувствительного элемента ТЭП по оси Y, L — радиус чувствительного элемента ТЭП по оси R

Нестационарный процесс переноса тепла за счет теплопроводности для спая, пространства, заполненного порошком, и защитного чехла описывается дифференциальными уравнениями [2]:

$$c_{i} \cdot \rho_{i} \cdot \frac{\partial T_{i}}{\partial t} = \lambda_{i} \left(\frac{\partial^{2} T_{i}}{\partial r^{2}} + \frac{1}{r} \cdot \frac{\partial T_{i}}{\partial r} + \frac{\partial^{2} T_{i}}{\partial y^{2}} \right);$$

$$t > 0$$
, $0 < r < L$, $0 < y < H$.

где ρ_i — плотность материала, c_i — удельная теплоемкость материала, λ_i — коэффициент теплопроводности материала, i — индекс матриала.

Математическая модель включает следующие краевые условия:

$$t = 0; \ T = T_0;$$

$$r = 0; \ \frac{\partial T}{\partial r} = 0; \ r = L; \ T = T_r;$$

$$y = 0; \ T = T_r; \ y = H; \ \frac{\partial T}{\partial t} = 0.$$

Для решения дифференциального уравнения в частных производных используется метод конечных разностей на основе четырехточечной неявной разностной схемы. Область решения задачи разбита на равномерную конечноразностную сетку 200×200 узлов с шагом по координате r: $h_r = 2.51 \cdot 10^{-2}$ мм, по координате y: $h_v = 4.02 \cdot 10^{-2}$ мм, шаг по времени t = 0.001 с.

Решение поставленной задачи производится с учетом теплофизических характеристик, приведенных в таблице 1.

Таблица 1. Теплофизические характеристики материалов ТЭП [1, 3, 4]

№ материала	Наименование материала	Коэффициент тепло- проводности д, т/(м·К)	Удельная теплоемкость с, Дж/(кг·К)	Плотность $ ho$, кг/м 3
1	Спай термопары типа S (ПП)	50,4	139	20710
1	Спай термопары типа $L(XK)$	24,75	713	8920
1	Спай термопары типа $K(XA)$	33,1	768	8825
2	Порошок Al ₂ O ₃	6,57	850	1520
3	Защитный чехол Сталь 12Х18Н10Т	15	462	7900

При численном моделировании приняты значения геометрических параметров: H = 8 мм, L = 5 мм, размер спая термопары $1 \times 1,6$ мм.

Целью исследований было сравнение времени прогрева спая до значений в пределах допускаемой погрешности для различных типов термопар.

Допускаемые погрешности измерения температуры для исследуемых термоэлектрических преобразователей приведены в таблице 2.

Таблица 2. Значения допускаемой погрешности измерения температуры ТЭП [5]

Тип ТЭП	Предел допускаемого отклонения от НСХ, К
S (ПП) (2 кл. доп.)	\pm 1,5 в диапазоне температур от 273 до 873 К включ.
<i>K</i> (XA) (1 кл. доп.)	\pm 1,5 в диапазоне температур от 233 до 648 К включ.; \pm 0,004· T – 273 в диапазоне температур св. 648 до 1273 К включ.
<i>L</i> (ХК) (2 кл. доп.)	\pm 2,5 в диапазоне температур от 233 до 573 К включ.; \pm 0,0075· T – 273 в диапазоне температур св. 573 до 1073 К включ.

Искомые зависимости получены для режимов работы термопар, в которых температура измеряемой среды изменяется от 323 до 873 K, результаты приведены в таблице 3.

Таблица 3. Зависимость времени прогрева спая термопары от температуры измеряемой среды

термопары от температуры измериемой среды				
Т, К	K (XA)	L (XK)	ПΠ (S)	
1,10	(1 кл. доп.)	(2 кл. доп.)	(2 кл. доп.)	
323	2,708	2,334	2,360	
373	3,384	3,005	2,961	
423	3,718	3,335	3,259	
473	3,942	3,556	3,457	
523	4,110	3,723	3,607	
573	4,245	3,856	3,728	
623	4,358	3,935	3,828	
673	4,410	3,940	3,914	
723	4,414	3,944	3,990	
773	4,417	3,947	4,057	
823	4,420	3,949	4,117	
873	4,422	3,951	4,172	

Таким образом, зависимость между временем прогрева для исследуемых термопреобразователей носит нелинейный характер и стремится к постоянному значению в области температур, превышающих диапазон, в котором допускаемое отклонение от НСХ носит постоянный характер.

На рис. 2 показано распределение температуры в чувствительном элементе термоэлектрического преобразователя типа K (XA) при нагреве до температуры 600 K и после окончания процесса нагревания.

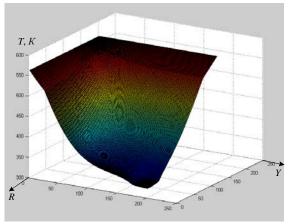


Рис. 2. Распределение температуры в чувствительном элементе ТЭП

Анализ рис. 2 показывает, что в первоначальный момент времени происходит интенсивное нагревание защитного чехла за счет поддержания постоянной температуры на границах y=0 и r=L (рис. 1).

Описанная прогностическая модель разработана для обыкновенных ТЭП, спай термопары которых не изолирован керамическим наконечником.

При помощи модели проведены исследования длительности нагревания термопреобразователей различных типов и классов точности. Среди трех исследуемых типов термопар наибольшее время для нагревания до температуры, лежащей в области допускаемого отклонения от HCX, требуется для термопары типа K (XA), для термопар S (ПП) и L (XK) время достижения указанной температуры ниже, при этом допускаемые отклонения от HCX для всех исследуемых термопар различны.

Работа выполнена при финансовой поддержке госзадания «Наука» (проект № 2.1321.2014).

Список литературы

- 1. Рогельберг И.Л. Сплавы для термопар: справочное издание / Рогельберг И.Л., Бейлин В.М. М.: Металлургия, 1983. 360 с.
- 2. Исаченко В.П. Теплопередача: учебник для вузов / Исаченко В.П., Осипова В.А., Сукомел А.С. 5-е изд., стер. Москва: АРИС, 2014. 417 с.
- 3. Чиркин В.С. Теплофизические свойства материалов: справочное руководство. М.: Государственно издательство физикоматематической литературы, 1959. 357 с.
- 4. Бабичев А.П. Физические величины: справочник / Бабичев А.П. и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- 5. ГОСТ 6616-94. Преобразователи термоэлектрические. Общие технические условия. Введ. 1999–01–01. М.: Изд-во стандартов, 1998. 15 с.: ил.