АНАЛИЗ ВЛИЯНИЯ УВЛАЖНЕНИЯ ИЗОЛЯЦИИ И ИСПАРЕНИЯ ВЛАГИ С ПОВЕРХНОСТИ ТРУБЫ НА ТЕПЛОВЫЕ ПОТЕРИ ТЕПЛОПРОВОДОВ

Губина Е.В., Кривицкая О.Н.

Научный руководитель: Половников В.Ю., к.т.н. Томский политехнический университет, Россия, г. Томск,пр. Ленина 30 polov@tpu.ru

Уровень тепловых потерь в тепловых сетях РФ оценивается в 30 % полезного теплопотребления абонентов [1]. Отдельный интерес представляет анализ тепловых потерь теплопроводов в условиях увлажнения изоляции [2]. При этом в [2] не учитывается влияние фазовых переходов в структуре слоя теплоизоляции на интенсификацию тепловых потерь.

Целью данной работы является численный анализ тепловых потерь теплопроводов в условиях увлажнения тепловой изоляции с учетом испарения влаги на границе раздела «стенка трубы – слой изоляции».

Рассматривается задача теплопроводности в системе «стенка трубы – слой увлажненной теплоизоляции». На границе раздела «стенка трубы – слой увлажненной изоляции» учтен процесс испарения. На рис. 1 показана область решения рассматриваемой задачи.

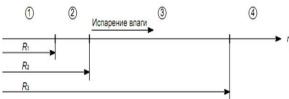


Рис. 1. Схематическое изображение области решения: 1 — теплоноситель; 2 — стенка трубы; 2 — слой увлажненной изоляции; 4 — окружающая среда.

Математическая модель

Математическая постановка задачи имеет вид:

$$\frac{\partial T_{rp}}{\partial \tau} = a_{rp} \left(\frac{\partial^2 T_{rp}}{\partial r^2} + \frac{1}{r} \frac{\partial T_{rp}}{\partial r} \right), \quad R_1 \le r < R_2; \quad (1)$$

$$\frac{\partial T_{_{\text{\tiny M}}}}{\partial \tau} = a_{_{9\varphi}} \bigg(\frac{\partial^2 T_{_{\text{\tiny M}}}}{\partial r^2} + \frac{1}{r} \frac{\partial T_{_{\text{\tiny M}}}}{\partial r} \bigg), \quad R_2 \le r \le R_3. \tag{2}$$

$$\tau = 0, R_1 \le r \le R_3, T_{rp} = T_{rr} = T_0 = \text{const.}$$
 (3)

$$\tau > 0, r = R_1, T_{\tau p} = T_1 = \text{const};$$
 (4)

$$\tau \! > \! 0, r \! = \! R_{2}, -\lambda_{\scriptscriptstyle Tp} \frac{\partial T_{\scriptscriptstyle Tp}}{\partial r} \! = \! -\lambda_{\scriptscriptstyle 9\varphi} \frac{\partial T_{\scriptscriptstyle M}}{\partial r} \! - \! QW; \qquad \ (5)$$

$$\tau \! > \! 0, r \! = \! R_3, \text{-} \lambda_{\text{-}\!\phi} \frac{\partial T_{\text{\tiny M}}}{\partial r} \! = \! \alpha (T_{\text{\tiny M}} \! - \! T_{\text{\tiny OC}}) \, . \tag{6} \label{eq:tau_special}$$

Обозначения: Т – температура, К; τ - время, c; а – коэффициент температуропроводности, м²/c; r – координата, м; R – граница области расчета, м; λ - теплопроводность, $Bt/(m\cdot K)$; Q – теплота фазового перехода, Дж/кг; W – массовая скорость испарения, кг/c; α - коэффициент теплоотдачи, $Bt/(m^2\cdot K)$.

Индексы: тр – труба; 1, 2, 3 – номера границ; тр – труба; и – изоляция; 0 – начальный момент; 9ϕ – 9ϕ фективный; ос – окружающая среда.

Массовая скорость испарения определялась из соотношения [3]:

$$W = \frac{A(P_{\text{Hac}} - P_{\text{парц}})}{\sqrt{\frac{2\pi R_g}{M} T(\tau, R_2)}},$$

где: А – коэффициент аккомодации; $P_{\text{нас}}$ – давление насыщения, Па; $P_{\text{парц}}$ – парциальное давление испаряющейся компоненты, Па; R_g – газовая постоянная, Дж/(кмоль·К); М – молекулярная масса паров, кг/моль.

Коэффициент аккомодации вычислялся по формуле [4]:

$$A = \frac{0.059}{P_{\text{pac}}^{0.5}}$$

Парциальное давление испаряющейся компоненты определялось по аналогии с процессом поверхностного испарения [5]:

$$\psi = \frac{P_{\text{парц}}}{P_{\text{\tiny Hac}}} = \frac{m_{_{B}}}{m_{_{B}} + m_{_{\Pi}}},$$

где: т – массовая доля; в – вода; п – пар.

Исходя из физических соображений, ясно, что $m_{\scriptscriptstyle B}$ значительно больше $m_{\scriptscriptstyle \Pi}$. Следовательно, для рассматриваемой задачи можно принять ψ как параметр: $\psi \approx 0.999...0.995$.

Теплофизические свойства слоя увлажненной изоляции определялись с учетом объемных долей каждой компоненты [6]. Например, эффективная теплопроводность вычислялась из соотношения:

$$\lambda_{9\dot{\varphi}} = \lambda_{_{\rm H}}\phi_{_{\rm H}} + \lambda_{_{\rm B}}\phi_{_{\rm B}}; \quad \phi_{_{\rm B}} + \phi_{_{\rm H}} = 1, \quad \text{где:} \quad \varphi \quad - \quad \text{объ-}$$
емная доля.

Задача (1)—(6) решена методом конечных разностей с использованием неявной четырехточечной разностной схемы. Разностные аналоги исходной системы уравнений решены методом «прогонки».

Численный анализ проводился для трубы с диаметром условного прохода 600 мм, изготовленной из стали 10 (толщина 9 мм) и тепловой изоляцией из стеклянной ваты (толщина 70 мм). Значение температуры в рассматриваемой области решения в начальный момент времени принималось равным T_0 =298 К. Температура внутренней поверхности трубы принималась равной T_1 =363 К, а температура окружающей трубопровод среды составляла T_{oc} =298 К. Коэффициент теплоотдачи от поверхности изоляции к наружному воздуху принимался равным α = 11 $BT/(M^2 \cdot K)$.

Максимальное значение объемной доли воды $\varphi_{\text{в}} = 0.73$.

В таблице 1 приведены значения теплопроводности (λ), теплоёмкости (C), и плотности (ρ) трубопровода, изоляции и воды, использованные при расчетах.

Таблица 1. Теплофизические свойства материалов

Материал	λ, Bτ/(м·K)	C, кДж/(кг·К)	$ρ$, κΓ/ M^3
Сталь 10	57,7	0,466	7860
Стекловата	0,059	0,67	206
Вода	0,571	4,2	1000

Результаты численного моделирования, приведенные в таблице 2, свидетельствуют об ожидаемом росте тепловых потерь теплопровода q_1 с увеличением объемной доли влаги $\varphi_{\rm B}$ в пористой структуре слоя тепловой изоляции.

Таблица 2. Результаты численного анализа тепловых потерь по величине объемной доли влаги в слое тепловой изоляции

Фв	q ₁ , Вт/м	$\delta_{1} = \frac{q_{1}^{\phi \neq 0} - q_{1}^{\phi = 0}}{q_{1}^{\phi \neq 0}}, 100 \%$
0	110,19	-
0,2	271,53	59,4
0,4	404,09	72,7
0,6	515,26	78,6
0,73	578,61	81,0

Величиной δ_2 обозначен рост тепловых потерь теплопровода q_2 по сравнению с потерями без учета испарения при $\varphi_{\rm B}=0$ (таблица 2), а значения δ_3 характеризуют отклонения в расчетах тепловых потерь с учетом и без учета испарения при $\varphi_{\rm B}\neq 0$.

Таблица 3. Результаты численного моделирования по параметру и

no n	по параметру ф					
$\varphi_{\scriptscriptstyle \mathrm{B}}$	ψ	$\begin{array}{c} q_{2,} \\ B_{T/M} \end{array}$	$\delta_2 = \frac{q_2 - q_1^{\phi=0}}{q_2},$ 100%	$\delta_3 = \frac{\mathbf{q}_2 - \mathbf{q}_1^{\phi \neq 0}}{\mathbf{q}_2},$ 100 %		
0,2	0,999	329,6	66,6	17,6		
	0,997	445,8	75,3	39,1		
	0,995	562,1	80,4	51,7		
0,4	0,999	462,2	76,2	12,6		
	0,997	578,3	80,9	30,1		
	0,995	694,50	84,1	41,8		
0,6	0,999	573,33	80,8	10,1		
	0,997	689,46	84,0	25,3		
	0,995	805,60	86,3	36,0		
0,73	0,999	636,61	82,7	9,1		
	0,997	752,72	85,4	23,1		
	0,995	868,84	87,3	33,4		

Отклонение в результатах расчета тепловых потерь с учетом и без учета испарения влаги составляет δ_3 =9,1–51,7 %, что свидетельствует о необходимости учета наличия испарения при проведении анализа тепловых режимов теплопроводов, работающих с увлажненной изоляцией.

Вклад эффекта испарения в суммарные тепловые потери составляет от 1,7 до 21 % (табл. 2, 3) в зависимости от значений $\varphi_{\rm B}$ и ψ . Анализ нестационарности процессов теплопереноса для рассматриваемой задачи свидетельствует о том, что время выхода процессов на стационарный режим не превышает 20 000 секунд, что хорошо согласуется с результатами проведенных ранее исследований [21].

Исследование выполнено при поддержке $P\Phi\Phi U$ в рамках научного проекта № 12-08-00201-а и гранта Президента $P\Phi$ № MK-1652.2013.8.

Литература

- 1. Ватин Н.И., Дубов В.В., Петраков Г.П. Внедрение РМД 41-11-2012 Санкт-Петербург «Устройство тепловых сетей в Санкт-Петербурге». 2013. № 1(6). С. 48–54.
- 2. Кузнецов Г.В., Половников В.Ю. Численное моделирование теплового состояния трубопровода в условиях затопления с учетом нестационарности процесса насыщения теплоизоляции влагой // Теплоэнергетика. 2008. № 5. С. 60—64.
- 3. Полежаев Ю. В., Юревич Ф. Б. Тепловая защита. М.: Энергия, 1976. 392 с.
- 4. Санду С.Ф. Математическое моделирование процессов переноса тепла и массы в испарительно-конденсационных системах теплопередачи энергетических установок // Известия Томского политехнического университета. 2003. Т. 306. N_2 4. С. 60—63.
- 5. Берман Л.Д. Испарительное охлаждение циркуляционной воды. М-Л.: Госэнергоиздат, 1949. 440 с.
- 6. Чудновский А.Ф. Теплофиаические характеристики дисперсных материалов. М.-Л.: Физматгиз, 1962.-456 с.