ВЫБОР ВАРЬИРУЕМЫХ ПЕРЕМЕННЫХ К ПРОЕКТИРОВАНИЮ ВЫСОКОВОЛЬТНОГО АСИНХРОННОГО ДВИГАТЕЛЯ ДЛЯ ПРИВОДА ВЕНТИЛЯТОРА ГЛАВНОГО ПРОВЕТРИВАНИЯ

Кашеутов Д. В.

Научный руководитель Баклин В.С., к.т.н., доцент Томский политехнический университет, 634050, Россия, г. Томск, пр. Ленина, 30 E-mail: kasheutov@sibmail.com

Для привода высокоэффективных, конкурентоспособных на внутреннем и внешнем рынке вентиляторов высокой производительности, высоковольтные требуются c номинальным напряжением 6 кВ взрывозащищённые четырёхполюсные асинхронные двигатели мощностью 200 кВт и выше. Эти двигатели должны: хорошо встраиваться в вентиляционную установку, т. е. быть компактными; улучшенные пусковые свойства; удовлетворять эксплуатационно-техническим требованиям, предъявляемым к асинхронным двигателям для вентиляторов и при минимальных габаритных размерах обеспечивать КПД не ниже двигателей аналогов - ВАО или 1ВАО.

Использование для привода вентиляторов серийных высоковольтных взрывозащищённых двигателей типа ВАО, 1ВАО не оправдано из-за их пусковых свойств, конструктивных особенностей и массогабаритных показателей. Поэтому проектирование и создание высоковольтных асинхронных двигателей, предназначенных для привода вентиляторов высокой производительности, является актуальной задачей.

В данной работе рассматривается проектирование взрывозащищённого высоковольтного асинхронного двигателя для привода вентилятора высокой производительности. Номинальная мощность двигателя $P_{_{
m H}}=200~{\rm kBt},$ номинальное напряжение $U_{_{
m H}}=6~{\rm kB},$ число полюсов 2p=4.

Требование компактности, предъявляемое к проектируемому двигателю, ограничивает наружный диаметр $D_{\rm H}=0,66~{\rm M}$ и активную длину сердечника статора $l_1=0,31~{\rm M}.$

В вентиляторах интенсивный наружный обдув двигателя осуществляется главным вентилятором, поэтому в проектируемом двигателе имеется возможность исключить радиальные вентиляционные каналы, что существенно упрощает конструкцию сердечника статора. Система вентиляции – аксиальная.

С целью повышения КПД двигателя короткозамкнутая обмотка ротора — сварная из меди. Для снижения массы двигателя станина — сварная из стального проката.

В оптимизационных расчётах обычно используются [1] следующие данные: постоянные, неизменные в течение всего расчёта-поиска;

лимитирующие показатели (ограничения); варьируемые переменные, изменяемые в течение всего расчёта-поиска и критерий оптимальности.

лимитирующие Постоянные данные; показатели представлены в [1]. При заданных значениях наружного диаметра и активной сердечника статора задачей **ДЛИНЫ** оптимизационных расчётов является определение диаметра расточки статора D_1 , обмоточных данных статора, размеров пазов статора и ротора, что и предопределяет выбор варьируемых переменных.

Варьируемые переменные. За варьируемые переменные приняты диаметр расточки статора D_1 , число эффективных проводников в пазу статора $U_{\rm nl}$, ширина прямоугольного провода $b_{\rm ml}$ обмотки статора, ширина медного стержня в пазу ротора $b_{\rm c2}$.

При оптимизационных расчётах возникают трудности в выборе значений и пределов варьирования переменных D_1 , U_{n1} , b_{m1} .

Существуют рекомендации [3] к выбору диаметра расточки статора как $D_{\text{I}} = k_D \cdot D_{\text{f}}$. При ĸВ, номинальном напряжении 6 2p = 4коэффициент $k_D = 0.61...0.66$. Пределы варьирования диаметра расточки статора $D_1 = 0,4...0,435$ Такие Μ. пределы варьирования диаметра расточки статора свойственны серийным асинхронным двигателям с кратностью пускового момента $\hat{I}_{ij} \ge 1$ о. е.

Кратность пускового момента асинхронного двигателя для привода вентилятора обычно не оговаривается и может быть меньше единицы. По рекомендациям МЭК в асинхронных двигателях перспективных разработок кратность пускового момента может быть снижена до 0,65 о. е. Снижение кратности пускового момента в асинхронном двигателе для привода вентилятора до 0,65 о. е. позволит также снизить кратность пускового тока, что актуально для прямого пуска асинхронного двигателя.

С целью снижения кратности пускового тока целесообразно рассмотреть возможность проектирования асинхронного двигателя для

привода вентилятора при диаметрах расточки статора D_1 = 0,37; 0,38; 0,39 и 0,4 м.

Для определения значений и предела варьирования числа проводников в пазу статора $U_{\rm nl}$ в работе предлагается использовать предельные значения электромагнитных нагрузок — линейной нагрузки $A_{\rm lmax}$ и индукции в воздушном зазоре $B_{\rm \delta max}$. На основании опыта проектирования асинхронных двигателей для привода вентиляторов и рекомендаций [2, 3] приняты: линейная нагрузка $A_{\rm lmax} = 42\cdot10^3$ А/м, произведение линейной нагрузки на плотность тока $AJ_{\rm max} = 18,0\cdot10^{10}$ А $^2\cdot$ м 3 , индукция в воздушном зазоре $B_{\rm \delta max} = 0,9$ Тл.

При выбранных значениях диаметра расточки статора и постоянных исходных данных минимальное число активных проводников обмотки в пазу статора $U_{\rm nmin}$ определяется допустимой индукцией в воздушном зазоре $B_{\rm \delta max}$, а максимальное $U_{\rm nmax}$ — допустимой линейной нагрузкой $A_{\rm l\,max}$. Минимальное и максимальное число активных проводников в пазу статора предварительно рассчитываются по формулам:

$$U_{\text{nmin}} \geq \frac{1}{B_{\delta \text{max}}} \cdot \frac{2p \cdot m_{\text{l}} \cdot a_{\text{l}} \cdot k_{\text{E}} \cdot U_{\text{H}\phi}}{4,44 \cdot f_{\text{l}} \cdot k_{\text{wl}} \cdot Z_{\text{l}} \cdot D_{\text{l}} \cdot l_{\text{l}}}, (1)$$

где $k_{\scriptscriptstyle E}=0.97\,,$ $k_{\scriptscriptstyle w1}=0.91\,$ – обмоточный коэффициент;

$$U_{\text{nmax}} \leq A_{\text{lmax}} \cdot \frac{m_{\text{l}} \cdot a_{\text{l}} \cdot \eta_{\text{\tiny 3H}} \cdot U_{\text{\tiny H}\varphi}}{P_{\text{\tiny H}}} \cdot \frac{\pi \cdot D_{\text{l}}}{Z_{\text{l}}}, (2)$$

где $\eta_{\circ} = \eta_{\tilde{o}} \cdot \cos \varphi_x$ — энергетический КПД двигателя аналога. Результаты расчётов по формулам (1), (2) представлены в табл. 1.

Таблица 1. Результаты расчётов

таолица т. т сзультаты расчетов				
$D_{\!\scriptscriptstyle 1}$, м	0,37	0,38	0,39	0,4
$U_{\scriptscriptstyle m min}$	32	32	32	30
$U_{\scriptscriptstyle \Pi ext{max}}$	34	34	36	36

В зависимости от диаметра расточки статора табл. 1 число активных проводников в пазу статора принимает значения $U_{\rm nl} = U_{\rm nmin} \dots U_{\rm nmax}$ с шагом 2 для двухслойной обмотки.

В асинхронных двигателях с открытыми пазами статора значительную часть потерь составляют добавочные потери – пульсационные и поверхностные. Уменьшение добавочных потерь возможно за счёт применения магнитных клиньев или уменьшения ширины паза статора. В данной работе рассматривается возможность снижения добавочных потерь за счёт уменьшения ширины открытого паза статора.

Чем меньше ширина прямоугольного провода $b_{\rm ml}$, тем меньше ширина пазу статора. Минимальная ширина стандартного медного провода принята $b_{\rm mmin} = 3,55$ мм.

Для определения максимальной ширины провода $b_{\text{мmax}}$ в первом приближении рассчитывается сечение прямоугольного провода, мм²,

$$q_{\text{MX}} = \frac{P_{\text{H}} \cdot 10^{3}}{m_{1} \cdot U_{\text{H}} \cdot \eta_{\text{OH}} \cdot \eta_{\text{OH}} \cdot a_{1}} \cdot \frac{A_{\text{lmax}}}{AJ_{\text{max}}} \cdot 10^{6}. (3)$$

Для проектируемого двигателя $q_{\rm i\ \tilde{o}} = 5,55$ мм². Максимальная ширина провода $b_{\rm mmax} = q_{\rm mx} \, / \, a_{\rm mmin} = 4,7$ мм.

С учётом размеров стандартных прямоугольных проводов принимаем $b_{\rm i,1}$ =3,55; 4,5 и 4,75 мм.

Сечение провода, рассчитанное по формуле (3), позволяет в первом приближении определить толщину прямоугольного провода $a_{_{\mathrm{MX}}} = q_{_{\mathrm{MX}}}/b_{_{\mathrm{M}1}}$ и выбрать ближайшую стандартную толщину провода $a_{_{\mathrm{M}1}} \approx a_{_{\mathrm{MX}}}$.

Для изготовления стержней короткозамкнутой обмотки ротора используется листовая медь. Пределы варьирования толщиной стержня короткозамкнутой обмотки ротора приняты $b_c=5;\ 5,5;\ 6$ и 6,5 мм, что соответствует стандартной толщине листовой меди.

Выводы

- 1. На основании предельных электромагнитных нагрузок предложен алгоритм определения значений и пределов варьирования отдельных независимых переменных.
- 2. Предложенный алгоритм позволит существенно ограничить область поиска оптимального варианта расчётов.

Список литературы

- 1. Баклин В.С., Пушкарёв И.И. Алгоритм оптимизационных расчётов высоковольтных асинхронных двигателей // Известия Томского политехнического университета. -2011. Т. 318. № 4. С. 132–136.
- 2. Копылов И.П., Клоков Б.К., Морозкин В.П. и др. Проектирование электрических машин. М.: Высшая школа, 2005. 767 с.
- 3. Гурин Я.С., Кузнецов Б.И. Проектирование серий электрических машин. М.: Энергия, 1978. 480 с.