Химия

УДК 546.62:544.778.4:544.424.2:544.421:544.421.3

МАКРОКИНЕТИКА ВЗАИМОДЕЙСТВИЯ ЭЛЕКТРОВЗРЫВНЫХ НАНОПОРОШКОВ АЛЮМИНИЯ С ВОДОЙ И ВОДНЫМИ РАСТВОРАМИ

А.В. Коршунов, Е.Б. Голушкова, Д.О. Перевезенцева, А.П. Ильин

Томский политехнический университет E-mail: androkor@mail.ru

Исследованы физико-химические закономерности взаимодействия нанопорошков алюминия, полученных при помощи метода электрического взрыва проводников, с водой и растворами гидроксида натрия. Определены кинетические параметры реакции, показан характер их изменения в зависимости от срока хранения порошков, pH раствора и температуры. Установлены особенности влияния температурного режима реакции и pH на степень превращения алюминия и фазовый состав конденсированных продуктов реакции.

Введение

Субмикронные и нанопорошки алюминия обладают рядом свойств, отличающихся от свойств компактного металла и крупных промышленных порошков, прежде всего - высокой реакционной способностью, которая проявляется в реакциях с водными растворами, в процессах горения, низкотемпературного спекания, самораспространяющегося высокотемпературного синтеза. Возрастающий интерес исследователей к взаимодействию нанопорошков алюминия с водой и растворами связан с перспективой использования этого процесса в водородной энергетике, для получения оксидов-гидроксидов алюминия, которые являются ценными прекурсорами керметов, носителей катализаторов, сорбентов [1-3]. Закономерности процесса взаимодействия промышленных микронных порошков алюминия с водой или водяным паром в режиме гидротермального синтеза изучены достаточно подробно [4–7]. При этом конденсированными продуктами являются композиты Al₂O₃/Al, химический и фазовый состав, структура, механические свойства которых определяются условиями синтеза. Известны работы по изучению взаимодействия алюминия с водой при до- и околокритических параметрах ее состояния. Необходимо отметить, что проведение процесса в указанных режимах требует больших энергозатрат; кроме того, использование водорода в данном случае сопряжено с технологическими трудностями.

Использование нанопорошков алюминия в гидротермальных процессах имеет очевидные преимущества по сравнению с крупными промышленными порошками: высокая степень превращения алюминия, возможность осуществления процесса при обычных температуре и давлении, высокая скорость реакции. Вместе с тем, число работ, посвященных изучению особенностей взаимодействия нанопорошков алюминия с водой, невелико [8–12]; результаты этих исследований зачастую противоречивы и не позволяют составить полного представления о закономерностях процесса.

В связи с этим целью настоящей работы являлось изучение физико-химических закономерностей взаимодействия электровзрывных нанопорошков алюминия с водой и водными растворами.

Материалы и методы исследования

В работе использовали пассивированные в воздухе нанопорошки алюминия (НПА), полученные при помощи электрического взрыва проводников на установках НИИ высоких напряжений Томского политехнического университета. В эксперименте использовали свежеполученный образец (срок хранения менее 1 мес.), а также образцы, хранившиеся в условно герметичной упаковке в течение 1–3 лет. Для проведения контрольного эксперимента в работе использовали промышленные порошки алюминия АСД-1 и АСД-4.

Характеристики исходных образцов НПА, а также конденсированных продуктов их взаимодействия с растворами определяли с применением следующих методов. Величину площади удельной поверхности измеряли при помощи метода БЭТ по низкотемпературной адсорбции аргона. Фазовый состав изучали с применением рентгенофазового анализа (РФА) (дифрактометр ДРОН-3, Си_{ка}-излучение), идентификацию кристаллических фаз проводили с использованием базы данных PDF-2 [13, 14]. Параметры структуры металлического Al и продуктов его взаимодействия с водой определяли путем полнопрофильного анализа рентгенодифрактограмм [13]. Долю металлического Al в образцах определяли по данным дифференциального термического (ДТА) анализа (термоанализатор Q 600), а также волюмометрическим методом по объему водорода, выделяющегося при обработке навески образца 30 %-ным раствором щелочи. Дисперсный состав и морфологию образцов НПА изучали при помощи растрового электронного микроскопа JSM-5500. Исследование структуры частиц НПА и состава их поверхностного слоя проводили методом просвечивающей электронной микроскопии высокого разрешения в режиме микроанализа (JEOL JEM-3010 с EDS-анализатором). Распределение частиц НПА по условному диаметру определяли при помощи прибора Nanosizer ZS (Malvern Instruments; диапазон измерений 0,6 нм...6 мкм) при 25 °С в среде этиленгликоля.

Скорость реакции взаимодействия НПА с водой и растворами при различных pH и температуре изучали волюмометрическим методом по объему выделяющегося водорода. Навеску НПА (10...30 мг) помещали в предварительно термостатированный стеклянный реактор, содержащий 30 мл дисперсионной среды (вода или разбавленные растворы NaOH, солей), соединенный с термостатированной волюмометрической системой, напорной жидкостью служил насыщенный раствор NaCl. Перемешивание реакционной смеси проводили при помощи магнитной мешалки.

Тепловые эффекты реакций взаимодействия НПА с водой и разбавленными растворами NaOH изучали с применением метода растворной калориметрии. В ходе эксперимента навеску НПА помещали в предварительно термостатированный раствор, перемешивание смеси проводили при помощи магнитной мешалки, датчиком температуры служила хромель-алюмелевая термопара. Температуру реакционной смеси регистрировали через каждые 10 с. По окончании реакции твердый остаток выделяли, высушивали при комнатной температуре и исследовали при помощи описанных выше методов.

Обсуждение результатов

Использованные в работе образцы НПА агломерированы, размеры агломератов составляют 5...20 мкм. Частицы НПА имеют сферическую форму (рис. 1), распределение частиц по размерам мономодальное в интервале 70...800 нм со среднечисловым максимумом 120 нм, кривая распределения описывается логарифмическим законом. Содержание металлического Al в свежеполученном образце НПА, по данным ДТА и волюмометрии, составляет 90...94 % (мас.), при сроке хранения порошков в течение 1–3 лет массовая доля Al снижается до 68...75 %, остальное приходится на долю оксидов и адсорбированных веществ. По результатам рентгенофлюоресцентного анализа, основными примесями во всех образцах НПА являются железо (до 0,25 мас. %) и медь (до 0,2 мас. %).

Согласно данным рентгенофазового анализа, основной кристаллической фазой исследованных образцов НПА является металлический алюминий с ГЦК-решеткой, параметр которой больше стандартного в среднем на 0,2 %. Размеры кристаллитов Al (по Шерреру) для свежеполученных порошков составляют в среднем $L\approx55$ нм, с течением времени при хранении НПА величина L возрастает. Полнопрофильный анализ рентгенодифрактограмм свидетельствует об определенных текстурных особенностях электровзрывных НПА по сравнению с компактным Al и крупными промышленными порошками. Фазы (гидр)оксидов в образцах НПА со сроком хранения до трех лет рентгенографически не обнаруживаются.

Рис. 1. Микрофотография образца нанопорошка алюминия, полученного электрическим взрывом проводников

Известно, что поверхность металлического алюминия даже при парциальном давлении кислорода порядка 1 Па покрывается тонкой сплошной оксидной пленкой. Благодаря оксидной пленке (10...40 нм) компактный Al и промышленные (микронные) порошки при атмосферном давлении и температурах ниже 100 °С с водой практически не взаимодействуют [15]. Алюминий, лишенный оксидной пленки (путем обработки в щелочах, амальгамированием и т. д.), является весьма активным металлом. Стандартные потенциалы окислительно-восстановительных систем с участием Al отрицательны при любых pH растворов [15]:

Al³⁺+3e
$$\rightarrow$$
Al, φ° =-1,66 B;

$$AlO_2^-+2H_2O+3e \rightarrow Al+4OH^-, \varphi^\circ = -2,33 B.$$

Образование гидроксокомплексов Al приводит к значительному смещению φ в область отрицательных значений, в связи с чем металлический Al в щелочной среде является одним из самых активных восстановителей. При растворении в кислой и щелочной средах Al переходит в раствор в виде устойчивых ионных форм $[Al(H_2O)_6]^{3+}$ и $[Al(OH)_4]^{-}$ соответственно [15]. При взаимодействии Al с водой в качестве конденсированных продуктов образуются малорастворимые гидроксидные формы с различной степенью гидратации.

С целью исключения влияния процессов, связанных с образованием малорастворимых продуктов, нами проведены предварительные исследования формальной кинетики взаимодействия НПА с разбавленными (0,01...0,1 М) растворами NaOH.

Рис. 2. Зависимость степени превращения α НПА (1 – экспериментальная, 2 – расчетная) и скорости реакции ν (3) от времени τ при взаимодействии нанопорошка алюминия с 0,01 М NaOH (23 °C)

Согласно полученным результатам, при протекании реакции в растворах щелочи можно условно выделить две стадии: 1) основная стадия, при которой зависимость степени превращения Al от времени взаимодействия близка к линейной, эта стадия протекает до степени превращения Al $\alpha \approx 50...65\%$; 2) конечная стадия, имеющая место при $\alpha > 80\%$; очевидно, что на этой стадии продолжается растворение фракции крупных частиц НПА, что характеризуется резким уменьшение скорости реакции. На рис. 2 приведены графики зависимости $\alpha = f(\tau)$ и $d\alpha/d\tau = f(\tau)$, отображающие изменение степени превращения НПА в ходе взаимодействия с 0,1 М NaOH при 23 °C.

В интервале концентраций NaOH 0,01...0,1 М процесс характеризуется коротким индукционным периодом продолжительностью 3...8 с. Максимальную скорость растворения (v_{max}) определяли по точкам максимума на кривых $d\alpha/d\tau = f(\tau)$ (рис. 2, кривая 3). Величины v_{max} для всех образцов НПА (со сроком хранения 1 мес и 1–3 года) близки и составляют в среднем 0,024 с⁻¹, время $\tau_{max} \approx 30$ с. Анализ кинетических параметров процесса показывает, что значения v_{max} не коррелируют с дисперсностью исходных НПА.

Обработка данных, полученных при изучении скорости процесса в растворах щелочи, показала, что зависимость степени превращения алюминия от времени описывается уравнением Ерофеева-Аврами [16]:

$$\alpha = 1 - e^{-k\tau}, \tag{1}$$

где k — эффективная константа скорости, с⁻¹. Аналогичо описывается процесс гидротермального окисления грубодисперсных алюминиевых порош-

ков [10]. На рис. 2, кривая 2, приведена расчетная кинетическая кривая, полученная с использованием ур. (1). Линеаризацией экспериментальных данных в координатах $\ln[1/(1-\alpha)] - \tau$ с использованием метода характеристического времени найдена эффективная константа скорости реакции, равная 0,021±0,004 с⁻¹ при 23 °С. Для сравнения, величина *k* для промышленного порошка АСД-1 в сходных условиях в 25 раз меньше, чем для НПА.

Зависимость скорости реакции взаимодействия НПА с растворами щелочи от температуры изучали в интервале 25...70 °С. Вид зависимости $\alpha = f(\tau)$ с увеличением температуры реакционной смеси несколько меняется, при t>40 °С реакция протекает без индукционного периода, общая продолжительность процесса полного растворения Al значительно уменьшается.

При возрастании температуры до 70 °С величина v_{max} взаимодействия НПА с разбавленными растворами щелочи возрастает в среднем в 3,5 раза, эффективная константа скорости реакции – в 2,5 раза. Зависимость $\ln k - 1/T$ линейна в указанном интервале температур и описывается уравнением

$$k = k_0 \cdot \exp\left(-\frac{4714,6}{T}\right). \tag{2}$$

где $k_0 = 204434 \text{ c}^{-1}$ – предэкспонент.

Характер зависимости k=f(T) свидетельствует о неизменности механизма реакции в данном интервале температур.

На рис. 3 эта зависимость представлена графически в виде поверхности в координатах «степень превращения — время превращения — температура» (участок поверхности для t>70 °C построен экстраполяцией). Эффективная энергия активации E_a процесса составляет 42±5 кДж/моль, на основании чего можно сделать заключение о смешанном диффузионно-кинетическом контроле процесса.

Рис. 3. Зависимость $\alpha = f(T, \tau)$ для процесса взаимодействия НПА с 0,1 М раствором NaOH

Калориметрические исследования взаимодействия НПА и промышленных порошков АСД-1 и АСД-4 с разбавленными растворами (0,01...0,1 М) NaOH позволяют выявить различия в термокинетических закономерностях реакции с участием порошков различной дисперсности. На рис. 4 представлены графики зависимости $\Delta T - \tau$, полученные при растворении навесок (50 мг) порошков в 50 мл 0,1 М NaOH. Из рисунка видно, что форма и положение максимума на кривых определяется дисперсностью порошков, которая свою очередь обусловливает скорость взаимодействия, а следовательно и скорость тепловыделения. По причине значительного отличия дисперсности ACД-1 и HПA скорость роста температуры реакционной смеси в ходе взаимодействия для последних намного выше, максимум достигается при меньших τ . Расчет величины ΔT , соответствующей массе взятого порошка, по тепловому эффекту реакции

$$Al_{(\kappa)}+3H_2O_{(\pi)}+OH_{(p)}^-=Al(OH)_{4^{+}(p)}+3/2H_{2^{+}(p)}+3/2H_{2^{-}(p)}+3/2H_{2^{+}(p)}+3/2H_{2^{+}(p)}+3/2H_{2^{-}(p)}+3/2H_{2^{+}(p)}+3/2H_{2^{$$

(с учетом константы калориметра и потерь теплоты при удалении водорода из системы) дает величину $\Delta T=2,33^{\circ}$. Полученная величина ΔT хорошо согласуется с найденной экспериментально ΔT для образца НПА со сроком хранения <1 мес (рис. 4, кривая 5). Для порошка АСД-1 экспериментально найденная величина ΔT в 2 раза меньше (рис. 4, кривая 1), что обусловлено малой в сравнении с НПА скоростью реакции, а следовательно, и скоростью тепловыделения. На основании этих данных, а также макрокинетической модели процесса, ур. (2), термокинетическое уравнение процесса взаимодействия НПА с водой может быть представлено в следующем виде: $Q_{\tau} - K = \Delta H \cdot n_{\mathrm{Al}} \cdot (1 - e^{-k\tau}) = [(C_{p,y\partial} \cdot m)_{p-pa} + (C_p \cdot n)_{\mathrm{H}_2}] \cdot \Delta T_{\tau}, (3)$ где Q_{τ} – количество теплоты в момент времени τ , Дж; K-константа калориметра; $\Delta H-$ стандартный тепловой эффект реакции, кДж/моль; n_{Al} – количество вещества алюминия, моль; $C_{p,y\partial}$ – удельная теплоемкость раствора, Дж/(rK); m – масса раствора, r; C_p – молярная теплоемкость водорода, Дж/моль К; n_H, - количество вещества водорода, моль; ΔT_{τ} – изменение температуры в калориметре. По ур. (3) можно вычислить температуру реакционной смеси НПА+раствор щелочи в любой момент времени τ . График зависимости $\Delta T = f(\tau)$, построенный с использованием ур. (3), прак-

тически полностью совпадает с кривой 5, рис. 4.

Рис. 4. Изменение температуры со временем при взаимодействии 50 мг Al-порошков с 50 мл 0,1 М NaOH в калориметре: 1) ACД-1; 2) ACД-4; 3, 4) НПА со сроком хранения 3 года; 5) свежеполученный образец НПА

Общие закономерности взаимодействия НПА с водой несколько отличаются от таковых для растворов щелочи. В этом случае процесс протекает в 3 стадии: 1) начальная (индукционный период), 2) основная и 3) конечная. Их продолжительность зависит от характеристик исходных НПА, состава раствора, режима проведения процесса. Собственно химической реакцией, сопровождающейся выделением водорода и образованием конденсированных продуктов, является вторая стадия процесса.

Зависимость $\alpha = f(\tau)$ реакции НПА с водой в широком интервале температур имеет вид сигмоиды, рис. 5. С повышением температуры (рис. 5) начальная ветвь сигмоиды редуцируется (продолжительность индукционного периода резко сокращается), форма кинетической кривой приближается к таковой для реакции в растворах щелочи, рис. 2. Скорость реакции на 2-й стадии в интервале степени превращения 10...55 % при температурах 55...80 °C для всех изученных образцов НПА практически не зависит от α и является постоянной величиной. Максимальные значения скорости реакции достигаются при $\alpha \approx 35$ %, в интервале 55...80 °C величина *v*_{max} изменяется от 0,0013 до 0,0067 с⁻¹. Для сравнения, величина v_{max} взаимодействия НПА с водой при 80 °С превышает таковую для гидротермального синтеза с использованием промышленных порошков Al в ~70 раз [6].

Без учета первой стадии процесса (индукционного периода) химическая стадия реакции, так же как и в рассмотренном выше случае взаимодействия НПА с растворами щелочи, описывается ур. (1). Эффективная константа скорости реакции в интервале температур 60...80 °С изменяется от 0,0020 до $0,0069 \,\mathrm{c}^{-1}$. Зависимость $\ln k = f(1/T)$ линейна в данном интервале температур, эффективная энергия активации процесса составляет 63±2 кДж/моль, близкие значения Е_а получены в [12] для механоактивированного Al в углеродной матрице. В работе [11] найдена величина E_a=270 кДж/моль, что представляется маловероятным для исследуемого процесса. Определение величины E_a при $\alpha=12$; 34 и 56 % для исследованных образцов НПА в интервале температур 55...80 °C показало, что энергия активации во всем интервале степеней превращения остается постоянной, что свидетельствует о неизменности механизма процесса при различной глубине протекания реакции в термостатических условиях. С учетом этого зависимость эффективной константы скорости реакции от Т можно выразить уравнением

$$k = k_0 \cdot \exp\left(-\frac{7240}{T}\right). \tag{4}$$

где $k_0 = 5, 1 \cdot 10^7 \text{ с}^{-1}$ – предэкспонент.

Таким образом, с позиции формальной кинетики процесс взаимодействия НПА с растворами щелочи и водой описывается кинетическим уравнением одного вида, в растворах щелочи реакция протекает при смешанном диффузионно-кинетическом контроле, в воде — кинетическом. Определенное сходство механизма процессов подтверждается постоянством значений эффективной энергии активации при различных степенях превращения алюминия в термостатических условиях.

Рис. 5. Зависимость степени превращения НПА от температуры при его взаимодействии с водой: 1) 55; 2) 60; 3) 65; 4) 75; 5) 80 °С

Вместе с тем, константы скорости реакции в растворе шелочи и в воде различаются в значительной степени, ур. (3, 4). Например, при 60 °С величина k при протекании реакции в воде меньше в 73 раза, чем в растворе щелочи, что, очевидно, обусловлено различной природой частиц, участвующих в химической стадии процесса. Кроме того, степень превращения Al при взаимодействии с водой в изученном интервале температур никогда не достигает 100 % и, например, при 80 °С для нанопорошков со сроком хранения <1 мес составляет в среднем 93 %; при сроке хранения 1 год - 82 %, рис. 5; 3 года - 70 % (данные приведены без учета содержания оксидов в НПА). Остаточный Al, как будет показано ниже с применением метода рентгеновской дифракции, всегда присутствует в твердых продуктах реакции.

Рис. 6. Зависимости T=f(т) для реакционной смеси 50 мг нанопорошка алюминия с 50 мл воды, полученные в калориметре при различных температурах термостатирования: 1) 30; 2) 60; 3) 80 °C

Исследование теплового режима и продуктов реакции НПА с водой в термостатических условиях и в условиях линейного нагрева реакционной смеси в интервале температур 30...80 °С, наряду с экспериментами по изучению кинетики реакции, позволило провести оценку температуры начала 2-й стадии реакции, значения максимальной скорости реакции и энергии активации, фазовый состав конденсированных продуктов реакции. Найдено, что продолжительность индукционного периода в термостатических условиях практически не зависит от соотношения масс Al:H₂O. При 30 °С реакция протекает с весьма малой скоростью, индукционный период может достигать 1 ч для различных образцов НПА. Зависимость $T=f(\tau)$ в этих условиях имеет очень пологий максимум (рис. 6, кривая 1). При более высоких температурах τ_{uud} уменышается (рис. 6, кривые 2, 3). Определение тепловых эффектов с применением уравнения (3) позволяет рассчитать степень превращения Al и сопоставить ее с данными РФА. Например, при 60 °С Q=1,26 кДж, $\alpha=62$ %; при 80 °С Q=1,89 кДж, $\alpha=70$ %. Полученные результаты хорошо соответствуют макрокинетическим данным, а также результатам анализа фазового состава продуктов реакции.

Основными фазами в твердых продуктах являются остаточный Al, кристаллический α -Al(OH)₃ (байерит), γ -AlOOH (бемит), кроме того, значительно содержание аморфной фазы (17...20 %), что согласуется с данными [9]. На рис. 7 приведена типичная рентгендифрактограмма продуктов реакции, полученных при взаимодействии НПА с водой. Согласно данным рентгеновской дифракции байерит хорошо окристаллизован (D_{osp} =150...200 нм), бемит в значительной степени аморфизирован (D_{osp} =10...15 нм).

Рис. 7. Рентгенодифрактограмма конденсированных продуктов взаимодействия нанопорошка алюминия с водой в термостатических условиях при 60°С. Условные обозначения фаз: • – Al; • – γ-AlOOH (бемит); • – α-Al(OH)₃ (байерит)

Присутствие нескольких гидроксидных фаз в составе продуктов реакции взаимодействия Al с водой определяется их термодинамической стабильностью при данных условиях. В среде растворов полиморфные превращения кристаллических форм гидроксида алюминия можно представить в виде схемы [15]:

Al(OH)₃
$$\xrightarrow{\rightarrow} Al_2O_3 \cdot 3H_2O \leftarrow ---$$

 $fatieput$
 $\xrightarrow{70 \circ C, 6_{\text{БИСТР0}}} \alpha \cdot Al(OH)_3 \xrightarrow{} \alpha \cdot AlOOH$
 $\xrightarrow{70 \circ C, MEDREHHO} \gamma \cdot Al(OH)_3 \xrightarrow{} \gamma \cdot AlOOH$
 $\xrightarrow{70 \circ C, MEDREHHO} \gamma \cdot Al(OH)_3 \xrightarrow{} \gamma \cdot AlOOH$
 $\xrightarrow{6e_{\text{MUT}}} Al_2O_3 \cdot 3H_2O \leftarrow ---$

Аморфная форма Al(OH)₃ при нагревании быстро переходит в более устойчивые кристаллические орто- (байерит, гиббсит) и мета-формы (бемит, диаспор). Ниже приведены уравнения реакций Al с водой с образованием возможных устойчивых продуктов, стандартные тепловые эффекты реакций (кДж, из расчета на 1 моль Al) вычислены по данным [17]: Al_(x)+3H₂O_(x)=Al(OH)_{3(ам)}+3/2H_{2(r)}, Δ_r H°₂₉₈=-418, Al_(x)+3H₂O_(x)=1/2Al₂O₃·3H₂O_(сбаберит)+3/2H_{2(r)}, Δ_r H°₂₉₈=-437,

 $\begin{aligned} AI_{(k)} + 3H_2O_{(x)} &= 1/2AI_2O_3 \cdot 3H_2O_{(ruf66curt)} + 3/2H_{2(r)}, \ \Delta_r H^{\circ}_{298} &= -432, \\ AI_{(k)} + 2H_2O_{(x)} &= AIOOH_{(guacnop)} + 3/2H_{2(r)}, & \Delta_r H^{\circ}_{298} &= -428, \\ AI_{(k)} + 2H_2O_{(x)} &= AIOOH_{(feburr)} + 3/2H_{2(r)}. & \Delta_r H^{\circ}_{298} &= -416. \end{aligned}$

Судя по приведенным данным, реакции с образованием различных форм гидроксида при взаимодействии Al с водой характеризуются термодинамическими функциями одного порядка, что объясняет сложность фазового состава продуктов реакции.

Результаты РФА продуктов реакции показывают, что относительное содержание фаз незначительно варьируется в зависимости от температуры термостатирования, рН раствора и соотношения масс исходных реагентов. При повышении температуры относительное содержание байерита и остаточного Al в продуктах уменьшается, бемита – увеличивается. Увеличение соотношения масс НПА:Н₂О также способствует увеличению доли бемита. При pH>7 степень превращения Al увеличивается, доля байерита в продуктах уменьшается. Время хранения образцов также сказывается на составе продуктов: для образцов НПА, хранившихся >1 года, содержание остаточного Al при прочих равных условиях больше в 3 раза в сравнении с хранившимся <1 мес образцом НПА, аморфной фазы – меньше в 2 раза, соотношение байерит:бемит – меньше в 1,5 раза. Можно отметить сходство пористости полученных при *T*>60 °С (гидр)оксидов Al; значения S_{vd} , измеренные по методу БЭТ, составляют порядка 230...250 м²/г для всех образцов и не обнаруживают определенной зависимости от соотношения масс НПА:H₂O и pH.

СПИСОК ЛИТЕРАТУРЫ

- Ермоленко Н.Ф., Эфрес М.Д. Регулирование пористой структуры окисных адсорбентов и катализаторов. – М.: Наука, 1991. – 360 с.
- Годымчук А.Ю., Ан В.В., Ильин А.П. Формирование пористых структур оксида-гидроксида алюминия при взаимодействии нанопорошков алюминия с водой // Физика и химия обработки материалов. – 2005. – № 5. – С. 69–73.
- Ильин А.П., Коршунов А.В., Толбанова Л.О. Наноалюминий будущее водородной энергетики // Известия Томского политехнического университета. – 2007. – Т. 311. – № 4. – С. 10–14.
- Жилинский В.В., Локенбах А.К., Лепинь Л.К. Взаимодействие ультрадисперсного алюминия с водой и водными растворами // Известия АН ЛатвССР. Сер. Химия. – 1986. – № 2. – С. 151–161.
- Тихов С.Ф., Романенков В.Е., Садыков В.Н. и др. Физико-химические основы синтеза пористых композитных материалов через стадию гидротермального окисления порошкообразного алюминия // Кинетика и катализ. – 2005. – Т. 46. – № 5. – С. 682–700.
- Бакуменко О.М.. Физико-химические закономерности взаимодействия алюминия и его сплавов с водными и водно-спиртовыми растворами сильных оснований: Автореф. дис. ... к.х.н / Харьк. нац. ун-т им. В.Н. Каразина. – Харьков, 2003. – 18 с.
- Ратько А.И., Романенков В.Е., Болотникова Е.В., Крупенькина Ж.В. Гидротермальный синтез пористой металлокерамики Al₂O₃/Al. 1. Закономерности окисления порошкообразного алюминия и формирование структуры пористого композита Al(OH)₃/Al // Кинетика и катализ. – 2004. – Т. 45. – № 1. – С. 154–161.
- Проскуровская Л.Т. Физико-химические свойства электровзрывных ультрадисперсных порошков алюминия: Дис. ... к.х.н. / Томский политехн. ин-т. – Томск, 1988. – 155 с.

Выводы

- Процессы взаимодействия электровзрывных нанопорошков алюминия с разбавленными (0,01...0,1 М) растворами NaOH или водой описываются кинетическим уравнением Ерофеева-Аврами. В растворах щелочи процесс протекает в смешанной диффузионно-кинетической области, в воде – в кинетической. Значения эффективной энергии активации в обоих случаях не зависят от степени превращения алюминия, что свидетельствует о неизменности механизма реакции за время ее протекания.
- Продолжительность индукционного периода при взаимодействии нанопорошков Al с водой определяется сроком их хранения и температурой. Кинетические параметры основной стадии реакции в большей степени зависят от температуры и мало изменяются с течением времени при хранении.
- Величины тепловых эффектов реакции при различных температурах термостатирования согласуются с макрокинетическими данными по степени превращения Al в ходе реакции, а также с долей остаточного Al в твердых продуктах реакции.
- Основными фазами в составе конденсированных продуктов взаимодействия нанопорошка с водой являются байерит и бемит, соотношение и структурные характеристики которых определяются главным образом температурным режимом реакции.

Работа выполнена при поддержке гранта РФФИ № 06-08-00707.

- Ляшко А.П., Медвинский А.А., Савельев Г.Г., Ильин А.П., Яворовский Н.А. Особенности взаимодействия субмикронных порошков алюминия с жидкой водой: макрокинетика, продукты, проявление саморазогрева // Кинетика и катализ. – 1990. – Т. 31. – № 4. – С. 967–972.
- Гаджиев С.Н., Ильин А.П., Кертман С.В., Хасанов О.Л. Энергетика алюминия в ультрадисперсном состоянии // Физикохимия ультрадисперсных порошков: Межвуз. сб. науч. тр. – Ч. 1. – Томск: НИИ ВН при ТПИ, 1990. – С. 62–67.
- Иванов В.Г., Сафронов М.Н., Гаврилюк О.В. Макрокинетика окисления ультрадисперсного алюминия водой в жидкой фазе // Физика горения и взрыва. – 2001. – Т. 37. – № 2. – С. 57–62.
- Стрелецкий А.Н., Колбанев И.В., Борунова А.Б., Бутягин П.Ю. Механохимическая активация алюминия. 3. Кинетика взаимодействия алюминия с водой // Коллоидный журнал. – 2005. – Т. 65. – № 5. – С. 694–701.
- Ковба Л.М., Трунов В.К. Рентгенофазовый анализ. М.: МГУ, 1976. – 231 с.
- 14. PDF 2 database, 1996, International Centre for Diffraction Data, Newtown Square, Pensylvania, USA.
- Тихонов В.Н. Аналитическая химия алюминия / Серия «Аналитическая химия элементов». – М.: Наука, 1971. – 266 с.
- Дельмон Б. Кинетика гетерогенных реакций / Пер. с франц. М.: Мир, 1972. – 556 с.
- Лидин Р.А., Андреева Л.Л., Молочко В.А. Константы неорганических веществ: справочник. – М.: Дрофа, 2006. – 685 с.