ПОСТРОЕНИЕ ВОЛНОВЫХ ФРОНТОВ В АНИЗОТРОПНЫХ СРЕДАХ

¹Мельникова Н.А., ^{2,3}Немирович-Данченко М.М., ²Ислямова А.А.

¹Северский технологический институт НИЯУ МИФИ, Северск, Томская обл. ²Томский политехнический университет

³Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН, Новосибирск

При интерпретации данных в сейсмологии и сейсморазведке одним из основных параметров является время распространения фронта поперечной (продольной) волны от источника до приемников. Задача построения фронтов является тривиальной лишь для изотропных однородных сред. В случае же реальных геосред (неоднородных, слоистых, первично-анизотропных, блочных и т. п.) построение фронтов сопряжено с рядом вычислительных особенностей. В предлагаемой работе приводятся некоторые способы вычисления фронтов упругих волн для анизотропных сред.

Введение

Фундаментальные основы для решения задач кристаллоакустики заложены во второй половине нашего столетия Ф.И. Федоровым [1]. Удается получать и исследовать общее решение для широкого класса практических случаев. Эти результаты находят свое применение в физической акустике, дефектоскопии, пьезотехнике, сейсморазведке. При этом для многих задач возможно лишь численное решение, а для правильной интерпретации результатов расчетов необходимо опираться на некие общие аналитические результаты. Поэтому авторы приводят здесь данные теоретико-справочного характера.

Постановка и общее решение задачи

Будем рассматривать двумерные волновые картины для гексагональных кристаллов для случая, когда ось Z совмещена с главной осью анизотропии. Приведем формулы, характеризующие упругие волны в плоскости XZ. Запишем уравнения движения в перемещениях (смещениях)

$$\rho \ddot{u}_i = c_{ijkl} \frac{\partial u_l}{\partial x_i \partial x_k} \tag{1}$$

Решение уравнений (1) будем искать в виде семейств плоских волн

$$\vec{u}(\vec{r},t) = A\vec{p}\exp[i(\vec{k}\vec{r}-\omega t)], \qquad (2)$$

здесь \vec{r} – радиус-вектор частицы среды, \vec{p} – вектор поляризации, \vec{k} – волновой вектор (вектор пространственных частот), ω – круговая частота, A – амплитуда волн, ρ – плотность среды.

Следовательно, мы ищем решения в виде волн, распространяющихся в положительном направлении оси времени с частотой f ($\omega = 2\pi$ f). В пространстве эти волны распространяются с частотами k_x , k_y , k_z , характеризующими степень наклона фронта волны к соответствующей оси. Например, волновой вектор (k, 0, 0) соответствует плоскости с нормалью, коллинеарной оси X. Вводят единичный вектор волновой нормали \vec{m} так, что $\vec{k} = (2\pi / \lambda)\vec{m}$. В оптике этот вектор называется вектором рефракции. Другие встречающиеся названия – медленность (slowness), обратная скорость. Здесь λ – длина волны. Возмущение данной частоты в среде пробегает путь λ за время T = 1/f, поэтому величину $v = \lambda f$ называют фазовой скоростью. Учитывая вышесказанное, формулу (2) запишем в виде

$$\vec{u}(\vec{r},t) = A\vec{p}\exp[\frac{2\pi}{\lambda}i(\vec{m}\vec{r} - vt)]$$
(3)

Подставив (3) в уравнения (1), получим уравнения Кристоффеля $\rho v^2 p_i = c_{ijkl} m_j m_k p_l$, где свертка $c_{ijkl} m_j m_k$ – тензор Кристоффеля Γ_{il} . Так как $p_i = \delta_{il} p_l$, то запишем окончательно { $\Gamma_{il} - \rho v^2 \delta_{il}$ } $p_l = 0$.

При вычислении компонент тензора Кристоффеля нужно учитывать, что, например, $c_{1313} = c_{1331} = c_{3131} = c_{3113} \equiv c_{13}$.

В нашем случае матрица тензора Γ_{il} имеет размерность 2×2 и составлена из элементов с индексами 1 и 3

$$\Gamma_{il} = \begin{pmatrix} c_{11}m_x^2 + c_{55}m_z^2 & (c_{13} + c_{55})m_xm_z \\ (c_{13} + c_{55})m_xm_z & c_{55}m_x^2 + c_{33}m_z^2 \end{pmatrix}, \quad (4)$$

(здесь необходимо учесть, что индекс 5 соответствует сочетаниям (13) и (31)).

Корни биквадратного уравнения Кристоффеля

$$\begin{vmatrix} \Gamma_{11} - v^2 & \Gamma_{13} \\ \Gamma_{13} & \Gamma_{33} - v^2 \end{vmatrix} = 0$$
(5)

выглядят так:

$$v_{1,2} = \sqrt{\frac{\Gamma_{11} + \Gamma_{33} \pm \sqrt{(\Gamma_{11} - \Gamma_{33})^2 + 4\Gamma_{13}^2}}{2\rho}}.$$
 (6)

При вычислениях по формуле (6) следует иметь ввиду, что угол θ в плоскости (x, z) отсчитывается от оси Z, поэтому для вектора волновой нормали имеем $m_x = \sin(\theta), m_z = \cos(\theta).$

Формулы (6) определяют фазовые скорости. В пространстве поверхности фазовых скоростей – это уравнения 12 степени относительно *v*. Величины 1/ $v_{1,2}$ называются рефракцией (медленностью), поверхности рефракции описываются уравнением 6 степени. Волновая поверхность, или поверхность лучевых скоростей, характеризует перенос энергии в пространстве и описывается уравнением высокой степени (по Фёдорову, [1], предельный порядок уравнения – 150).

Для построения волновых поверхностей нами использован геометрический метод Postma [2].

Решение задачи для монокристалла графита

В таблице приведены константы для ряда гексагональных кристаллов (компоненты c_{ii} даны в ГПа, плотность в кг/м³).

На рисунке построены кривые фазовых скоростей (a), обратных скоростей (b) и лучевых скоростей (c) для одного из предельных случаев анизотропии (монокристалл графита). В изотропной среде все индикатрисы скоростей были бы концентрическими окружностями (а поверхности фазовых скоростей, медленностей и лучевых скоростей – сферами).

		-	-		
Вещество	C11	C13	C33	C44	ρ
Лёд	13,84	5,81	14,99	3,19	919
Цинк	165	50,1	62	39,6	7100
Кобальт	307	103	358	75,5	8900
Апатит	167	66	140	66,3	3200
Графит	1109	0	38,7	4,95	2267

Константы для ряда гексагональных кристаллов

Показанные на рисунках кривые есть сечения поверхностей – поверхности фазовых скоростей (слева), поверхности медленностей (в центре) и поверхности лучевых скоростей (справа). Последние поверхности есть не что иное, как фронты распространяющихся волн, ибо энергия в волне переносится по лучам. Участки вогнутости поверхностей рефракции определяют области рефракции на фронтах.

Индикатрисы фазовых скоростей (а), медленностей (b) и лучевых скоростей (c) монокристалла графита. Сплошная линия – квазипродольная волна, пунктир – квазипоперечная SV волна

В *изотропной* среде лучевые и фазовые скорости совпадают – фронты (волновые поверхности) представляют собой сферы, и нормаль в любой точке фронта коллинеарна лучу, проведенному к этой точке из места излучения.

Заключение

Изложенная методология может быть использована на стадии камеральной обработки временных сейсмических разрезов, при оценке особенностей распространения сейсмических волн в кристаллическом фундаменте.

Литература

1. Федоров Ф.И. Теория упругих волн в кристаллах. – М.: Наука, 1965. – 300 с.

2. Postma G. W. Wave propagation in a stratified medium // Geophysics. – 1955. – Vol. 20. – № 4 (October, 1955). – pp. 780–806.