АКТИВАЦИЯ АТОМОВ ПОДЛОЖКИ ПРИ ВЗАИМОДЕЙСТВИИ НАПЫЛЕННЫХ ЧАСТИЦ С ОСНОВОЙ В ГАЗОТЕРМИЧЕСКОМ ПОКРЫТИИ

Храпковская Ю.А.

Научный руководитель: Б.С. Зенин, к.ф.-м.н., доцент

Томский политехнический университет,

Россия, г. Томск, пр. Ленина 30, 634050

E-mail: ylia-kallipso@mail.ru

ACTIVATION OF THE SUBSTRATE ATOMS IN THE INTERACTION OF THE SPUTTERED PARTICLES WITH A BASE IN GAS-THERMAL COATING.

Khrapkovskaya Y.A.

Scientific Supervisor: D. Ph., associate Professor, B. S. Zenin

Tomsk Polytechnic University,

Russia, Tomsk, Lenin Avenue 30, 634050

E-mail: ylia-kallipso@mail.ru

Введение

Адгезия является важной характеристикой, определяющей работоспособность любого покрытия. Процесс формирования адгезионных связей покрытия с основой определяется кинетикой межатомного взаимодействия на контактной поверхности частица — подложка. В теории показано, что прочность сцепления напыляемых частиц с подложкой определяется рядом параметров, среди которых определяющим является энергия активации атомов подложки E_a [1] ($Puc.\ 1$).

В работе поставлена задача: разработать метод расчета энергии активации атомов подложки при заданных условиях взаимодействия напыленной частицы с основой.

В [2] показано, что при распределении энергии привносимой частицей в системе частицаподложка можно выделить «горячий» слой приконтактной области подложки толщиной Δh ($Puc.\ 2$), состояние которого определяется температурой в контакте T_k .

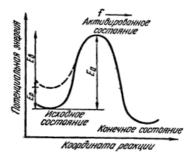


Рис. 1 — Условная схема, поясняющая изменение потенциальной энергии системы частица-основа в зоне контакта при формировании покрытия

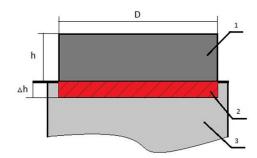


Рис. 2 — Схема формирования сплета (1 -сплет, 2 — «горячий» слой, 3 — подложка).

Для «горячего» слоя можно рассчитать энергию активации атомов подложки по следующей формуле: $\varepsilon_a = Q_{\varepsilon \ cn} / N_{\varepsilon \ cn}$, где $Q_{\varepsilon \ cn}$ - энергия в «горячем» слое подложки, $N_{\varepsilon \ cn}$ – количество атомов в этом слое.

Материалы основы и покрытия, условия напыления

В качестве модельных материалов при проведении численных расчетов были выбраны для подложки — железо, для напыляемой частицы - никель, вольфрам и алюминий. Теплофизические характеристики материалов представлены в таблица 1.

Таблица 1 Теплофизические характеристики материалов

Материал	$T_{n\nu}$, K	$\rho_{O, \ \kappa Z/M}^3$	С, Дж/кг·К	L, Дж/кг·10³
Fe	1810	7870	432,9	276
W	3693	19300	269	185
Ni	1728	8900	364	305
Al	933	2702	903	393

Расчет проводили для следующих условий: диаметр частицы $D_u = 0,1\cdot 10^{-3}$ м; скорость v=100 м/с; начальная температура подложки $T_0 = 300$ К; частица в расплавленном состоянии и ее температура $T_u = T_{n_0}$. Распределение температуры в подложке в момент полной кристаллизации частицы (t^*) для определения толщины «горячего» слоя (Δh) в заданном интервале температур $T_k - T = \Delta T = 30$ К получено с помощью компьютерной программы CRISTALL [3,4].

Результаты расчета

Будем считать, что частица (сплет) после деформации и затвердевания принимает форму цилиндра высотой h и диаметром D. Объем «горячего» слоя определяется контактной площадью S и соответствующей глубиной прогрева подложки Δh . В таблице 2 приведены параметры, необходимые для расчета энергии активации атомов подложки: диаметр напыляемых частиц D_{q} , температура в контакте T_{k} , толщина горячего слоя Δh , средняя температура слоя T_{cp} , объем слоя подложки V_{ccn} , масса слоя m_{ccn} , при напылении различных материалов.

Таблица 2 Характеристики системы частица-подложка при кристаллизации сплета

Материал	T_k K	T_{cp} , K	<i>∆h</i> ,м ·10 ⁻⁷	V_{ccn} , м $^3 \cdot 10^{19}$	m_{ccn} , кг · 10^{-15}	$t^*, c \cdot 10^{-7}$
W	2799	2784	2,19	1,43	1,35	1,74
Ni	1395	1380	3,10	0,47	1,92	2,67
Al	826	811	5,27	0,08	3,26	5,53

Согласно [2] распределение энергии в подложке Q можно представить в виде $Q=Q_{ccn}+Q_{ocm}$, где $Q_{ccn}=m_{ccn}\cdot C_n\cdot (T_{cp}-T_0)$ - энергия «горячего» слоя, Q_{ocm} - остаточная энергия, передаваемая в объем подложки, T_0 — начальная температура подложки. Общее число атомов N в «горячем» слое определим по формуле N=V/v, где $V=S\cdot \Delta h$ — объем «горячего» слоя, $v=a^3$ - объем занимаемый одним атомом.

По данным таблицы 2 была рассчитана энергия активации атомов подложки Fe при напылении частиц W,Ni, Al. Результаты расчетов представлены в таблице 3.

Таблица 3 Энергия активации атомов подложки при напылении выбранных материалов

Материалы	$Q_{\scriptscriptstyle \mathcal{CCN}}$ Дж·1	0^{-10}	Q_{ocm} Дж	·10 ⁻³	$N, 10^{15}$	$arepsilon_a$, \exists в
W	9,14	0,93%	5,72	41,09%	1,27	4,48
Ni	7,74	2,37%	1,73	58,23%	2,09	2,3
Al	0,59	1,94%	0,63	93,48%	53,5	0,18

Для анализа полученных результатов рассмотрим (*Puc. 3*), из которого видно, что значение энергии активации атомов Fe подложки при напылении частиц из W и Ni достаточно хорошо коррелирует с температурой плавления материала частицы и с температурой в контакте. На (*Puc. 4*) показано соотношение параметров, определяющих условия взаимодействия в системе частица-подложка для выбранных материалов. В случае напыления Al энергия активации атомов подложки оказывается существенно ниже. Такой результат можно объяснить тем, что процесс кристаллизации сплета алюминия оказывается длительным (*см. рис. 3*), в результате чего основная часть энергии за это время переходит во внутренний объем подложки.

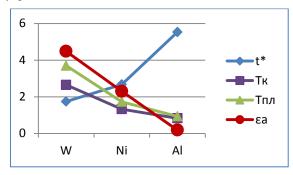


Рис. 3. Теплофизические параметры на границе подложка-частица(W, Ni, Al).

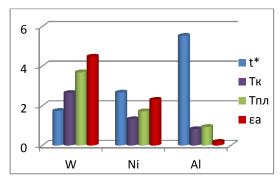


Рис. 4. Соотношение параметров, определяющих условия взаимодействия в системе частица-подложка.

Выводы.

Полученный результат для энергии активации атомов подложки железа в случае напыления никеля $\varepsilon_a=2,3$ 9ε находится в хорошем согласии с данными Кудинова [1] $\varepsilon_a=2,17$ 9ε , что свидетельствует о корректности проведенных расчетов. Повышенную активацию атомов в подложке железа при напылении вольфрама можно объяснить более высоким энергетическим вкладом, привносимым напыляемой частицей. Низкая степень активации атомов железа при напылении алюминия связана с особым характером теплового взаимодействия частицы с подложкой, при котором основная часть вносимой энергии успевает перейти в глубину подложки.

СПИСОК ЛИТЕРАТУРЫ:

- 1) В.В.Кудинов, В.М. Иванов. Нанесение плазмой тугоплавких покрытий. М.: Машиностроение, 1981, 192 с.
- 2) Ю.А. Храпковская, Б.С. Зенин. Распределение энергии в системе частица-подложка при формировании газотермических покрытий. Труды IV МНТК «Высокие технологии в современной науке и технике» (ВТСНТ 2015), Томск. НИ ТПУ. 2015 (В печати).
- 3) Ю.А. Митюшова, Б.С.Зенин, Сравнительный анализ адгезионных и когезионных связей газотермических покрытий. Труды XI Всероссийской школы-семинара с международным участием. «Новые материалы 2011»Томск. НИ ТПУ. 2011. С. 137-142.
- 4) Ю.А. Храпковская, Б.С. Зенин. Энергетическая активация атомов подложки при формировании газотермического покрытия // Современные материалы, техника и технологии в машиностроении: Сб. материалов международной конференции. Андижан: 2014. С.22-25.