4. Желательно получить такое программное обеспечение, с помощью которого было бы возможно автоматически учитывать характер отказа для широкого диапазона изменения параметров схемы ЭМП, способов питания и управляющих сигналов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Путников, В.В. Бесконтактные электродвигатели постоянного тока с повышенной наработкой для космических аппаратов / В.В. Путников, А.В. Путников, В.Б. Уваров // Электротехника. 2007. № 2. С. 18–23.
- 2. Надежность и эффективность в технике. Методология. Организация. Терминология: справочник / под ред. А.И. Рембезы. М.: Машиностроение, 1986. Т.1. 224 с.
- 3. Вигриянов, П.Г. Электромагнитные процессы многофазных вентильных двигателей: монография / П.Г. Вигриянов. Челябинск: Изд-во ЮУрГУ, 2007. 143 с.
- 4. Вигриянов, П.Г. Особенности исследования электромагнитных процессов вентильных двигателей с изменяемой структурой электромеханического преобразователя при отказах элементов силовой части / П.Г. Вигриянов // Электричество. − 2012. − № 12. − С. 46-50.
- 5. Воронин, С.Г. Обеспечение работоспособности электропривода с синхронным двигателем при единичных отказах в силовом канале / С.Г. Воронин, П.О. Шабуров, Д.А. Курносов // Электричество. 2010. № 11. С. 39-42.
- 6. Вигриянов, П.Г. Общая методика исследования электромагнитных процессов вентильного двигателя cизменяемой структурой преобразователя коммутации / П.Г. Вигриянов // электромеханического Электричество. – 2012. – № 8. – С. 44–51.

ВЕНТИЛЯТОРЫ ГЛАВНОГО ПРОВЕТРИВАНИЯ МЕТРОПОЛИТЕНА ТОМСКОГО ЭЛЕКТРОМЕХАНИЧЕСКОГО ЗАВОДА ДЛЯ ИМПОРОЗАМЕЩЕНИЯ

И.И. Пушкарёв*, В.В. Големгрейн*, О.П. Муравлёв**
* – ОАО «Томский электромеханический завод им. В.В. Вахрушева»
** – Национальный исследовательский Томский политехнический университет, Россия, Томск

Проблема массовых перевозок людей в крупных городах успешно решается посредством создания внеуличного транспорта — метрополитена, который отличается большой провозной способностью, высокой скоростью сообщения, регулярностью движения и высокой надежностью по сравнению с наземным городским транспортом. Метрополитены способствуют сохранности окружающей среды, в первую очередь, воздушной.

Задачей вентиляции станций и тоннелей является не только поддержание в местах пребывания пассажиров заданных метеорологических условий и химического состава воздуха, удовлетворяющих гигиеническим требованиям, и создание необходимых режимов проветривания при нарушении нормальной работы устройств метрополитена и задымлении. Воздухообмен на метрополитене должен составлять 3 ÷ 3,5 и при этом на одного пассажира необходимо подать не менее $30 \text{ m}^3/\text{ч}$ воздуха, а в часы «пик» – не менее $50 \text{ m}^3/\text{ч}$. Стоимость систем тоннельной вентиляции составляет от 4 до 10 % сметной стоимости метрополитена. Рост стоимости электроэнергии привел к тому, что эксплуатационные издержки вентиляционных установок на 75÷99 % идут на оплату электроэнергии. Исправная работа вентиляционных агрегатов квалифицированное обслуживание вентиляционных устройств основой осуществления вентиляции станций и тоннелей. Системы вентиляции с искусственным побуждением являются основными для линий всех уровней заложения. Они делятся на реверсивные и нереверсивные. Реверсивные системы рекомендуются во всех климатических условиях. Для вентиляции тоннелей и станций отечественных метрополитенов используют осевые вентиляторы. Вентиляторами называют машины, служащие для перемещения воздуха, создающие избыточное давление до 15 кПа. Вентиляторы систем тоннельной вентиляции должны соответствовать требованиям действующих стандартов: иметь большую подачу (150000÷250000 м³/ч) при сравнительно небольшом статическом напоре; широкий диапазон регулирования подачи $(70000 \div 250000 \text{ м}^3/\text{ч})$; высокий коэффициент полезного действия и подачу в реверсивном режиме не менее 80 % подачи основного режима [1].

Цель работы — создание вентилятора главного проветривания метрополитена (ВГПМ) для импортозамещения, который должен обеспечить энергосбережение, высокую надежность при эксплуатации и нагревостойкость в условиях аварийного режима.

Проведенный анализ числа и количественных значений технических характеристик асинхронного двигателя позволил определить параметры, которым должен соответствовать асинхронный двигатель нового поколения (АД НП) Исходные требования получены исходя из требований [1], каталогов фирм «Korfmann» - Германия, «Howden» - Германия, «ZITRON» – Испания, российских производителей вентиляторов для проветривания шахт требований заказчика разработку асинхронных двигателей ДЛЯ вентиляторов.

Выделяются следующие требования. Вентилятор предназначен для проветривания тоннелей и станций метрополитенов с потребным количеством воздуха от 90000 до 250000 м 3 /час и давлением от 300 до 950 Па. Вентиляторы устанавливаются в подземных вентиляционных камерах и степень защиты всех устройств ВГПМ – не ниже IP54. Максимальный к.п.д. – не менее 0,75. Требования к надежности: наработка на отказ не менее 15000 час, установленный ресурс до капитального ремонта не менее – 60000 час и срок службы не менее – 20 лет. Вентилятор (включая двигатель) должен

выдерживать работу в аварийном режиме при температуре до 400°C не менее одного часа.

Определены технические характеристики существующих ВГПМ. Как показывает анализ технических характеристик ВГПМ, направления развития АД для этих вентиляторов обусловлены глобальными мировыми процессами: ростом цен на энергоносители, усилением требований к экологии, необходимым повышением надежности и обеспечением безопасности людей при их массовом скоплении, как это бывает в метрополитене. Эти процессы обуславливают, с одной стороны, ужесточение энергетических требований и совершенствование надежности к электрооборудаванию метрополитенов, а с другой стороны, поиск энергосберегающих технологий и разработку энергоэффективных асинхронных надежности. основе высокой Ha экспертных специалистов выделены следующие основные требования, необходимые для создания АД НП вентиляторов главного проветривания метрополитенов: энергосбережение, надежность и нагревостойкость. Под нагревостойкостью понимаем работу двигателя в аварийном режиме при температуре 400°C не менее одного часа.

На основе системного подхода [2,3] построено дерево целей создания АД НП ВГПМ. Оно представлено на рис. 1 и имеет следующие уровни и составляющие.

Рис. 1. Дерево целей создания асинхронных двигателей нового поколения для привода вентиляторов главного проветривания метрополитена

Основная цель уровень А – создание АД НП ВГПМ.

Первый уровень – основные технические требования при создании АД НП ВГПМ: \mathbf{F} – энергосбережение; \mathbf{B} – надежность; $\mathbf{\Gamma}$ – нагревостойкость.

Второй уровень — основные сборочные единицы АД, которые определяют обеспечение технических требований: **Б.1** — обмотка статора; **В.2** — обмотка ротора; **Г.3** — подшипниковый узел.

Третий уровень — конструктивные решения и новые материалы, необходимые для обеспечения заданных технических требований: **Б.1.1** — прямоугольные пазы обмотки статора; **Б.1.2** — корпусная изоляция обмотки статора; **Б.1.3** — витковая изоляция обмотки статора; **В.1.1** — прямоугольные пазы обмотки ротора; **В.1.2** — медная короткозамкнутая обмотка ротора; **Г.1.1** — смазка подшипников; **Г.1.2** — радиальный зазор подшипников.

Рассмотрим элементы первого уровня. Для обеспечения энергосбережения при проектировании АД ВГПМ приняты следующие решения. Выбраны полуоткрытый паз статора прямоугольной формы и обмотка статора из проводников прямоугольного сечения, что позволило увеличить коэффициент заполнения паза медью. Короткозамкнутая обмотка ротора выполнена из меди вместо традиционного алюминия, что привело к уменьшению потерь в обмотке ротора и повышению коэффициента полезного действия. Коэффициент полезного действия АД НП ВГПМ превышает 75 %.

Создание АД повышенной надежности обеспечено выбором пазов прямоугольной формы и проводников прямоугольного сечения обмотки статора, а также усилением виковой и корпусной изоляции, что необходимо было сделать для решения вопроса с нагревостойкостью при аварийном режиме работы ВГПМ. Проводники прямоугольного сечения в пазу прямоугольной формы имеют упорядоченную укладку витков в отличие от всыпной обмотки из круглого провода, что значительно ограничивает перенапряжения между витками [4]. Обмотка статора состоит из жестких полукатушек, намотанных и пропитанных до их укладки в пазы. В связи с этим, дополнительные повреждения изоляции при изготовлении статорных обмоток практически исключены. Лобовые части таких обмоток монолитные, имеют повышенную жесткость и не разрушаются при пусках АД. Предыдущие конструкции ВГПМ имели всыпную обмотку статора, при которой лобовые части не обладали достаточной монолитностью и жесткостью и часто были причиной отказов АД. Расчет надежности обмоток АД при проектировании по существующим методикам является ориентировочным и не учитывает ряд факторов, поэтому самые достоверные данные по надежности можно получить по результатам эксплуатации.

Оценка эксплуатационной надежности вентилятора произведена по эксплуатационным данным аналогов рассматриваемых вентиляторов, которые выпускаются в ОАО «Томский электромеханический завод им. В.В. Вахрушева». В Московском метрополитене они установлены на ряде станций. В табл. 1 представлено их количество с датами установки, рассчитаны наработка в часах на один ВГПМ, накопленная наработка по всем вентиляторам

и средняя наработка на отдельных интервалах X4..X40 в зависимости от их количества и дат установки в метрополитене.

Таблица 1.

No	Кол-во	Дата	Наработка	Накопленная	Средняя наработка
ВГПМ	ВГПМ	уста-	на один	наработка,	на интервале, час
		новки	ВГПМ, час	час	
1	2	3	4	5	6
1-4	4	12.2008	29520	118080	X4 = 29520
5-8	4	02.2010	24120	214560	X8 = 26820
9-10	2	10.2010	21600	257760	X10 = 25776
11-12	2	11.2010	21240	300240	X12 = 25020
13-14-	2	10.2011	17280	334800	X14 = 23914
15-16	2	11.2011	16920	368640	X16 = 23040
17-40	24	07.2012	14040	705600	X40 = 17640

За время эксплуатации ВГПМ ни одного отказа активных частей (обмоток ротора и статора) не произошло. Повышенная надежность обмотки ротора обеспечена технологией ее изготовления: короткозамкнутая медная сварная обмотка ротора с прямоугольными пазами. По сравнению с литой алюминиевой обмоткой ротора она имеет существенные преимущества — повышенная нагревостойкость, отсутствие дефектов при изготовлении и гарантированная механическая прочность при всех возможных режимах АД.

обмотки статора обеспечена специальной Повышенная надежность технологией ее изготовления, разработанной на заводе-изготовителе, и отсутствие отказов обмоток статоров АД при общей наработке всех двигателей, работающих в метрополитене, 705600 часов говорит о достигнутом результате. Следующее требование к надежности – наработка на отказ не менее 15000 час – выполнено для 16 двигателей, а для остальных (24) в настоящее время составляет 14040 ЧТО будет, несомненно, выполнено за два месяца Установленный ресурс до капитального ремонта не менее – 60000 час – практически выполнен для первых четырех двигателей и успешно выполняется при дальнейшей эксплуатации вентиляторов.

Следующий элемент, определяющий надежность двигателя вентилятора – подшипниковые устройства. Для обеспечения ИΧ надежной работы предусмотрен мониторинг в составе автоматизированного контроля ВГПМ, виброскорости включающий непрерывное измерение нагрева подшипниковых узлов. В процессе эксплуатации вентиляторов было два случая отключения асинхронного двигателя по результатам мониторинга из-за недопустимого повышения виброскорости, остановка дефектного двигателя и автоматическое включение резервного вентилятора. В метрополитене на одном направлении всегда установлены два двигателя и перерыва работы нет, отказавшему двигателю заменяется дефектный подшипник без нарушения вентиляции.

Нагревостойкость АД НП ВГПМ обеспечивается всеми тремя сборочными единицами, представленными на рис. 1. Обмотка статора с прямоугольными пазами и проводниками прямоугольного сечения позволяют, кроме улучшения и надежности усилить нагревостойкость АД введением в витковую и корпусную изоляцию дополнительных слоев нагревостойкой Элементы обмотки ротора, которые связаны с обеспечением нагревостойкости АД: изготовление короткозамкнутой обмотки из меди, что использование ее при нагреве до 400 °C без отказов по сравнению с короткозамкнутой обмоткой из алюминия. Для обеспечения нагревостойкости и надежности подшипникового узла применены специальные подшипники: 2 радиально-упорных типа 7220 со стороны рабочего колеса вентилятора и 1 подшипник типа 6220/С3 со стороны тормоза вентилятора. Эти подшипники имеют повышенный радиальный зазор и заполнены нагревостойкой смазкой, которая при высокой температуре разлагается на жидкую и пастообразную фракции. Более густая фракция обеспечивает смазку подшипников при работе вентилятора при высокой температуре в аварийном режиме.

Проведенные испытания в ОАО «Томский электромеханический завод им. В.В. Вахрушева» установили работоспособность созданного АД НП в комплексе с вентилятором при 400 °C в течение двух часов, что подтверждено испытаниями и сертификатом [5,6].

Разработанный асинхронный двигатель нового поколения для привода вентилятора главного проветривания метрополитена обеспечивает энергосбережение, высокую надежность при эксплуатации, имеет нагревостойкость 400 °C течение часа в условиях аварийного режима и его новизна подтверждена патентом на полезную модель [7].

Проведенные исследования позволяют сделать следующие выводы.

- 1. В ОАО «Томский электромеханический завод им. В.В. Вахрушева» серийно изготовляются разработаны И вентиляторы С асинхронными двигателями ДЛЯ привода вентиляторов главного проветривания метрополитена, которые обеспечивают три основных составляющих цели: энергосбережение, повышенную надежность и нагревостойкость при аварийном режиме. Они являются двигателями нового поколения, что подтверждается патентом на полезную модель и сертификатом, определяющими соответствие требованиям технического регламента о пожарной безопасности. Предел огнестойкости: 2 часа при температуре 400 °C подтвержден результатами проведенных испытаний вентилятора ВГПМ-20 на специальной установке, разработанной на заводе для оценки нагревостойкости. Эти вентиляторы могут импортозамещение вентиляторов главного проветривания метрополитена типа ВГПМ-20 в настоящее время.
- 2. Вентиляторы главного проветривания метрополитена типа ВГПМ-20 с разработанными в ОАО «Томский электромеханический завод им. В.В.

Вахрушева» асинхронными двигателями нового поколения установлены и работают в метрополитене г. Москвы при общей наработке 705600 часов не имеют отказов обмоток статора и ротора.

СПИСОК ЛИТЕРАТУРЫ

- 1. Россовский В.Г. Электромеханические устройства метрополитена. М.: Империум Пресс, 2004.-608 с.
- 2. Перегудов Ф.И., Тарасенко Ф.П. Основы системного анализа. Томск: Издво НТЛ, 2001. 396 с.
- 3. Вентилятор главного проветривания метрополитена ВГПМ-20. Руководство по эксплуатации. Томск: Изд-во ТЭМЗ, 2014. 47 с.
- 4. Кузнецов Н.Л. Надежность электрических машин: Учебное пособие для вузов. М.: Издательский дом МЭИ, 2006. 432 с.
- 5. Российская Федерация сертификат соответствия № С-RU.ПБ01.В.02003. Вентиляторы главного проветривания метрополитена типа ВГПМ. Изготовитель ОАО «Томский электромеханический завод им. В.В. Вахрушева». Подтверждается соответствие требованиям технического регламента о требованиях пожарной безопасности: предел огнестойкости 2 часа при температуре 400 °C. Срок действия сертификата соответствия с 16.05.2012 по 16.05.2027.
- 6. Пушкарёв, И. И. Исследование нагревостойкости асинхронного двигателя вентилятора главного проветривания метрополитена // И. И. Пушкарёв, В. В. Дударев, В. В. Големгрейн, О. П. Муравлёв // Известия высших учебных заведений. Электромеханика. 2011. Вып. 6. С. 34–37.
- 7. Вентиляционная установка: Патент на полезную модель № 142806 Рос. Федерация /И.И. Пушкарёв, И.С Ильченко, В.В. Големгрейн, К.Ф. Матвеев; патентообладатель ОАО «Томский электромеханический завод им. В.В. Вахрушева». № 201310478; заявл. 18.01.2013; опубл.10.07.2014, бюл. № 19.

ПОВЫШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ МНОГОДВИГАТЕЛЬНЫХ ЧАСТОТНО-РЕГУЛИРУЕМЫХ ЭЛЕКТРОПРИВОДОВ МАГИСТРАЛЬНЫХ ЛЕНТОЧНЫХ КОНВЕЙЕРОВ

И.Ю. Семыкина

Кузбасский государственный технический университет имени Т.Ф. Горбачева, Россия, Кемерово

Введение

Современный шахтный магистральный ленточный конвейер представляет собой достаточно сложную технологическую установку, которая предназначена для транспортирования добытых полезных ископаемых. Для Кузбасса это – уголь. Конструкция такого конвейера обычно состоит из натяжного и