ЭЛЕМЕНТЫ-ПРИМЕСИ В УГОЛЬНЫХ МЕСТОРОЖДЕНИЯХ КАЗАХСТАНА М.З. Кажумуханова

Научный руководитель профессор С.И. Арбузов

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Республика Казахстан располагает значительными ресурсами разнообразных по качеству и марочному составу ископаемых углей. По запасам угля страна занимает восьмое место среди 12 государств, в которых сосредоточено свыше 96 % мировых запасов угля и третье место среди стран СНГ. Суммарные запасы угля в Казахстане достигают 170 млрд т. На территории страны известно 10 угольных бассейнов и около 400 обособленных месторождений и углепроявлений. По степени преобразованности органического вещества угли относятся к бурым (от лигнитов и землистых бурых) и каменным различной степени метаморфизма вплоть до полуантрацитов и антрацитов. Возраст углей от девона до палеогена [4].

С каменноугольным периодом связаны крупнейшие бассейны (Карагандинский, Экибастузский) и многочисленные месторождения высококачественных коксующихся и энергетических углей. Для этих углей характерны повышенные концентрации Ge, Ga, Sc, REE, которые, в основном, встречаются в богатых витринитом углях долинской и тентекской свит Карагандинского бассейна [1, 4]. Отмечают наличие аномалий Ag, Sc, Y, Cu, Zn, Au, иногда редкоземельных элементов в высокозольных углях Экибастузского бассейна [3, 9].

С ранне-среднеюрской эпохой связан второй максимум угленакопления на территории Казахстана, когда сформировались высококачественные малозольные угли Тургайского и Майкубенского бассейнов и многочисленные обособленные месторождения (Шубарколь, Каражыра и др.). Юрские угли Казахстана характеризуются устойчивыми повышенными концентрациями REE, Sc и Ti [1–3, 8].

Угли Казахстана в целом слабо изучены на комплекс попутных ценных и токсичных элементовпримесей. Для оценки углей на комплекс попутных элементов была подготовлена коллекция из 100 проб углей и углевмещающих пород различных угольных бассейнов и месторождений Казахстана и выполнено ее исследование. В качестве основного метода использован инструментальный нейтронно-активационный анализ (ИНАА), реализованный на базе исследовательского ядерного реактора ИРТ-Т Томского политехнического университета. Методом ИНАА определены содержания 29 элементов-примесей (табл.) в 74 пробах угля (аналитик А.Ф. Судыко).

Таблица Средние содержания элементов-примесей в угольных бассейнах и месторождениях Казахстана, г/т

	Бассейны, месторождения						75		ТИ
Элементы	Экибастузский	Карагандинский	Каражыра	Талдыколь	Сарыколь	Шубарколь	Кларк для углей [10]	Минимальное возможно промышленно значимое содержание [7]	Порог токсичности для углей [7]
Sc (0,02)	8,7	6,0	8,9	8,7	7,9	0,42	3,7	10	н.д.
Cr (0,2)	7,3	10,0	23,5	34,9	17,7	3,2	17	1400	100
Co (0,1)	6,0	3,6	8-539	7,1	6,6	1,9	6	20	100
Zn (2)	н.д.	н.д.	119	37,3	27,0	22,8	28	400	200
As (1)	2,4	н.д.	0,13	3,4	11,7	0,63	9	н.д.	300
Rb (0,6)	3,3	<0,6	12,5	21,6	30,9	6,8	18	35	н.д.
Sr (7)	150	100	270	119	140	30	100	400	н.д.
Cs (0,3)	0,62	0,63	0,35	1,4	2,9	0,03	1,1	30	н.д.
Ba (8)	272	149	190	248	279	7	150	н.д.	н.д.
La (0,03)	11,6	4,5	10,4	13,1	7,8	1,2	11	150	н.д.
Ce (0,05)	26,7	10,2	23,3	30,7	21,0	2,2	23	н.д.	н.д.
Nd (2)	н.д.	н.д.	12,9	13,9	7,7	0,92	12	н.д.	н.д.
Sm (0,01)	2,9	1,4	4,9	2,8	2,0	0,25	2,1	н.д.	н.д.
Eu (0,01)	0,8	0,44	1,1	0,8	0,5	0,04	0,43	н.д.	н.д.
Tb (0,05)	0,6	0,25	0,67	0,6	0,4	0,04	0,31	н.д.	н.д.
Yb (0,1)	2,0	0,62	1,9	1,9	1,3	0,32	1	1,5	н.д.
Hf (0,01)	2,5	1,8	0,74	2,1	1,9	0,05	1,2	5	н.д.
Аи, мг/т (0,01)	0,88	< 0,01	11,0	1,6	0,82	4,3	4,4	20	н.д.
Hg (0,002)	0,07	0,87-1,25	0,013-1,7	0,05	0,08	н.д.	0,1	1,0	1,0
Th (0,2)	2,7	1,1	0,1	3,3	3,9	0,12	3,2	н.д.	н.д.
U (0,1)	0,98	0,42	0,5	9,0	1,0	0,17	1,9	н.д.	н.д.
A ^d ,%	36,4	9,8	11,7	25,3	25,7	н.д.			

Примечание: н.д. – нет данных; жирным шрифтом выделены содержания, превышающие «порог токсичности» и минимальное возможно промышленно значимое содержание; в скобках указаны пределы обнаружения содержаний химических элементов в углях, г/т.

Определение содержания Hg производилось атомно-абсорбционным методом с электрохимической атомизацией на анализаторе ртути PA 915+ с приставкой Пиро – 915+ (100 проб). Анализы выполнялись на кафедре геоэкологии и геохимии Томского политехнического университета.

В целом, угли Казахстана обогащены редкими, радиоактивными и цветными металлами. Наиболее высокие концентрации характерны для Sr, Sc, Hf, REE, меньше – для Cs, Zn, Th, U и Au.

Для углей Карагандинского бассейна в целом характерно невысокое среднее содержание большинства элементов-примесей, сопоставимое с кларковыми значениями для каменных углей. В них установлены более высокие, по сравнению с кларком, концентрации скандия и ртути. Содержание ртути в некоторых пробах превышает «порог токсичности» для углей и достигает 1,25 г/т. Природа накопления ртути в углях требует специального изучения. Аномалии ртути могут быть обусловлены значительным влиянием вулканогенного материала, установленного в верхней части угленосного разреза и представленного многочисленными тонштейнами и рассеянным пепловым материалом [5]. Известно, что пепловые выбросы вулканов обогащены As, Sb, Hg, Cu и другими летучими элементами [4]. Учитывая высокое качество углей бассейна, широкий спектр их использования, с целью инвентаризации участков с опасными концентрациями ртути необходимо провести детальное исследование ее распределения в разрезе угленосных отложений.

Высокие концентрации ртути выявлены также и в месторождении Каражыра. При этом содержание ртути довольно неравномерно и колеблется от 13 до 1710 мг/т. Здесь же отмечены наиболее высокие для углей Казахстана содержания кобальта (до 539 г/т), цинка (в среднем 119 г/т) и золота (в среднем 11 мг/т). Своеобразный характер геохимической специализации углей предполагает связь этих аномалий с общими минерагеническими и геохимическими особенностями этого блока земной коры.

В углях Экибастузского бассейна существенно выше кларкового среднее содержание Hf, Ba, Sr, Sc, Co, лантаноидов, а уровни накопления Yb достигают возможно промышленно значимых концентраций. Однако в связи с высокой зольностью углей бассейна содержание этих элементов в золе угля существенно ниже среднемировых данных (табл.). Это ограничивает перспективы комплексной переработки экибастузских углей.

Новые данные свидетельствуют о низком содержании элементов-примесей в углях месторождения Шубарколь. Они, в основном, ниже соответствующих кларков для каменных углей. Это позволяет рассматривать их как одни из наиболее экологически чистых в регионе. Согласно ранее проведенным исследованиям [3, 8], угли Шубарколь обогащены редкоземельными элементами, наиболее высокие концентрации которых наблюдаются в зоне выветривания углей, при этом максимальные накопления (г/т) Y – 254, Sc – 96, Dy – до 384, Gd – до 335, Sm –до 211, La – 46, Ce – 89 и Nd – до 806 приурочены пространственно к линзовидным зонам аномального накопления урана.

Таким образом, исследование углей Казахстана показало, что здесь возможно выявление промышленно значимых концентраций Со, Zn, Rb, Hg, REE и Sc. Следует также учитывать, что ряд малых элементов при определенных содержаниях (превышение «порога токсичности») являются в той или иной мере «вредными» по уровню негативного воздействия на природные объекты. Одним из таких элементов является Hg, содержание которой в изученных углях Карагандинского бассейна и месторождения Каражыра достигает «порога токсичности», а иногда и превышает его. Эти факты необходимо учитывать при освоении месторождений и разработке природоохранных мероприятий. Необходима организация мониторинга качества товарных углей с учетом их возможного ртутного загрязнения.

Литература

- Арбузов С.И. Природа аномальных концентраций скандия в углях // Известия Томского политехнического университета. Томск, 2013. Т. 323. № 1. С. 56 64.
 Арбузов С.И., Маслов С.Г., Волостнов А.В., Архипов В.С., Ильенок С.С. Формы нахождения урана и тория в
- 2. Арбузов С.И., Маслов С.Г., Волостнов А.В., Архипов В.С., Ильенок С.С. Формы нахождения урана и тория в углях Северной Азии // Изд-во ХТТ, 2012. № 1. С. 55 68.
- Бассейны и месторождения углей и горючих сланцев Казахстана: справочник / Под ред. А.М. Кажегельдина. Алматы, 1997. – 113 с.
- 4. Геология месторождений угля и горючих сланцев СССР. Т. 5: Угольные бассейны и месторождения Казахстана / Под ред. И.В. Орлова и др. М.: Недра, 1973. 718 с.
- 5. Лущихин Г.М. Вулканический пепел в углях Карагандинского бассейна // Вопросы геологии угленосных отложений Азиатской части СССР. М-Л.: Изд-во АН СССР, 1961. 342 с.
- 6. Миклишанский А.З., Яковлев Ю.В., Меняйлов И.А. О геохимической роли поступления химических элементов с летучей компонентой активного вулканизма // Геохимия, 1979. №11. С. 1652 1660.
- 7. Ценные и токсичные элементы в товарных углях России: справочник / Под ред. В.Ф. Череповского, В.М. Рогового и В.Р. Клера. М.: Недра, 1996. 238 с.
- 8. Элементы-примеси в месторождениях Казахстана: справочник / под ред. А.А. Абдуллина и др. Алматы: ИАЦ ГПР РК, 1999. Т. 2. 144 с.
- 9. Юровский А.З. Минеральные компоненты твердых горючих ископаемых. М.: Недра, 1968. 214 с.
- 10. Ketris M.P., Yudovich Ya.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals // Int. J. Coal Geol., 2009. V. 78. P. 135 148.