В осадках обработанных растворов снижается содержание более низкомолекулярных н-алканов с увеличением времени обработки в ультразвуковом поле (табл. 2).

Влияние УЗО на содержание н-алканов в составе осадков

Таблииа 2

Время УЗО,	Процентное содержание н-алканов				
мин	$C_{24} - C_{28}$	C_{29} - C_{36}			
0	41,8	58,2			
5	41,0	59,0			
10	39,9	60,1			
15	38.5	61.5			

Таким образом, обработка растворов НП в декане приводит к увеличению реологических и энергетических параметров, повышению температур фазовых переходов и образованию агрегатов, которые слабо разрушаются под действием механической нагрузки. Полученные результаты свидетельствуют о том, что применение ультразвука для нефтей с высоким содержанием парафинов неприемлемо.

Литература

1. Матвеенко В.Н., Кирсанов Е.А., Ремизов С.В. Высокопарафинистая нефть как дисперсная система. Выбор уравнения течения // Коллоидный журнал. – 1994. – Т.56. – № 3. – С. 393 – 399.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ОБЕЗВОЖИВАНИЯ И ОБЕССОЛИВАНИЯ ПРИ ПРОМЫСЛОВОЙ ПОДГОТОВКЕ НЕФТИ Г.С. Архипов

Научный руководитель - доцент О.Е. Мойзес

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Продукция нефтедобывающих скважин представляет собой высокодисперсную эмульсию капель пластовой воды, взвешенных в нефти. Ее формированию и стабилизации способствуют присутствующие в нефти природные эмульгаторы (асфальтены, нафтены, смолы) и диспергированные механические примеси (частицы глины, песка, известняка, металлов).

Технологические схемы подготовки нефти месторождений формировались в условиях их ускоренного освоения, при этом не были выполнены широкие научные исследования физико-химических свойств скважиной продукции для обоснования процессов обезвоживания нефти.

Сложность технологии разрушения водонефтяных эмульсий заключается в необходимости одновременного учета множества параметров, меняющихся в динамике. К ним относятся: компонентный состав нефти, степень ее обводненности, температурный режим, тип деэмульгатора, а также средства, понижающие вязкость для каждого конкретного объекта. Поэтому исследование влияния технологических параметров на качество подготовки товарной нефти, является весьма актуальным.

В настоящее время в связи с переходом все большего количества месторождений на поздние стадии разработки, характеризующиеся высокой обводненностью и минерализацией продукции скважин, а также, что еще серьезнее, широким вовлечением в разработку месторождений все более тяжелых нефтей, образующих эмульсии аномально высокой стойкости, на фоне ужесточающихся требований к качеству товарной нефти проблема ее подготовки приобретает все большую остроту и актуальность.

Успешное решение проблемы подготовки нефти с минимальными материальными затратами тесно связано с разработкой, испытанием и внедрением высокоэффективных технологических и технических решений, направленных на улучшение технико-экономических показателей работы установок первичной подготовки нефти, в частности установок процесса обессоливания. Одним из наиболее эффективных способов обезвоживания и обессоливания нефти при её промысловой подготовке является способ деэмульсации в электрическом поле, осуществляемый в электродегидраторе [1].

Для исследования химико-технологических процессов в настоящее время достаточно широко применяются математические модели, основанные на физико-химических закономерностях протекающих процессов.

На кафедре химической технологии топлива и химической кибернетики была разработана математическая модель процесса обезвоживания и обессоливания в электрическом поле, которая позволяет учесть влияние технологических параметров на качество подготовки нефти: обводненность, расход эмульсии, содержание солей [2].

Нами была разработана функциональная зависимость влияния напряженности электрического поля на процесс каплеобразования, позволяющая учесть влияние напряженности электрического поля и межфазного натяжения на размер капель воды в эмульсии.

Эффективность процесса разрушения водонефтяной эмульсии зависит от расхода и типа деэмульгатора. Поэтому в математическую модель процесса обессоливания была введена зависимость, учитывающая влияние концентрации деэмульгатора на поверхностное натяжение [3].

$$\sigma = 0.002G^2 - 0.0176G + 0.0469$$

где G -расход деэмульгатора, г/т;

 σ – межфазное поверхностное натяжение эмульсии, мН/м.

С учетом полученных зависимостей разработан программный блок модуля процесса обессоливания. Разработана программа расчета в объектно-ориентированном языке программирования Delphi. На рис. 1 представлено диалоговое окно программы в котором вводятся данные о параметрах электродегидратора.

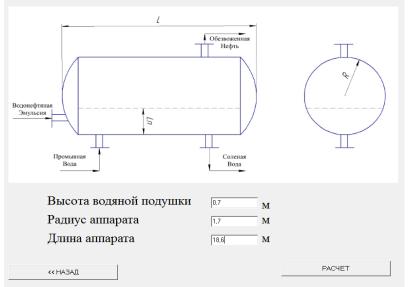


Рис 1. Диалоговое окно программы на языке Delphi

С применением математической модели проведены исследования влияния технологических параметров (расход промывной воды, расход нефти и деэмульгатора, обводненность) на качество товарной нефти на выходе с установки промысловой подготовки нефти (УПН). На Рис. 2 приведены результаты исследований (температура в аппарате -29° C, давление -91 кПа, объем электродегидратора -200 м 3).

Рис 2. Влияние деэмульгатора на остаточную обводненность нефти

Исследования показали, что при расходе деэмульгатора 100 г/т и более снижения остаточной обводненности на выходе из электродегидратора практически не происходит При этом содержание воды в товарной нефти соответствует требованиям ГОСТ.

Таким образом, исследования показали, что с применением математической модели можно прогнозировать влияние технологических параметров на качество товарной нефти на выходе с установки подготовки нефти.

Литература

1. Тронов В.П. Промысловая подготовка нефти. – М.: Казань: ФЭН, 2000. – 417 с.

- 2. Ушева Н.В., Мойзес О.Е., Ким С.Ф., Гизатуллина С.Н. Влияние технологических параметров на процессы обезвоживания и обессоливания нефти// Известия ВУЗов. Химия и химическая технология, 2014. Т.57., Вып.11 с.101–103.
- Пат. 2294956 Россия МКИ С10G 33/04 Способ подготовки нефти с повышенным содержанием примесей. Гумеров А.Г. Заявлено 07.09.2005; Опубл. 10.03.2007, Бюл. №7. – 6 с.: ил.

РАЗРАБОТКА КОМПОЗИЦИЙ ДЛЯ ПРЕДОТВРАЩЕНИЯ НЕФТЯНЫХ ОТЛОЖЕНИЙ В НЕФТЕПРОВОДАХ

Д. Э. Асатурян

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

В связи со значительным увеличением доли высоковязких и высокозастывающих нефтей в общем объеме нефтедобычи особенно актуальным является решение основных проблем, возникающих при добыче, транспортировке и хранении таких нефтей, связанных с их малой подвижностью, высокими температурами застывания, вязкостью, а также образованием большого количества АСПО на поверхностях нефтепромыслового оборудования.

В качестве объектов исследования были выбраны нефти четырех месторождений. С целью прогнозирования эффективности обработки нефти ингибиторами АСПО были определены физико-химические свойства образцов нефти.

Ингибирование асфальтосмолопарафиновых отложений (АСПО) изучали методом «холодного стержня» (cold finger) на специальной установке, моделирующей процесс осаждения АСПО и состоящей из охлаждаемого стержня (моделирует стенку трубы). парафиноотложения в трубопроводе. Установка состоит из охлаждаемого стального стержня, помещенного в анализируемую пробу нефти. Количество осажденных на стержне твердых парафинов определяли гравиметрическим способом.

По окончании экспериментов для нефтей с различных месторождений были получены различные результаты эффективности ингибиторов АСПО, ознакомиться с ними можно в табл. 1. Наибольшую активность из рассмотренных композиций проявляют двухкомпонентные смеси при соотношении реагентов 70:30 и 30:70 (% масс.).

Таблица 1— Результаты исследования ингибиторов

Маркировка Месторождения	Эффективность ингибиторов и их смесей при их разном расходе, %			Ингибиторы АСПО и их	
тиссторождения	50г/тонн	100г/тонн	250г/тонн	500г/тонн	смеси
H1	21,6	22,0	22,0	22,3	
H2	29,4	23,3	33,2	6,6	DCT
Н3	39,2	42,0	43,2	44,0	DC1
H4	23,3	3,7	2,7	4,0	
H1	33,4	38,1	38,9	44,7	
H2	43,6	47,9	48,0	0,2	ЭКС-2
Н3	36,6	40,0	40,2	40,0	JKC-2
H4	26,0	6,4	1,3	8,4	
H1	52,1	52,1	53,4	53,0	
H2	24,1	45,4	65,6	5,6	ЭКС-2+DТМСн
Н3	52,4	52,1	61,8	62,0	70:30
H4	76,3	7,2	7,2	0,2	
H1	53,0	58,3	54,4	53,0	
H2	82,2	82,2	80,0	0,0	DTM-30+DTMCH
Н3	53,0	55,2	55,2	55,0	70:30
H4	77,4	8,9	3,1	4,0	
H1	52,3	53,0	53,0	54,9	
H2	53,0	53,0	54,3	2,0	ЭКС-2+DТМСн
Н3	74,1	72,1	70,0	-	30:70
H4	84,0	4,7	6,2	6,8	

Из данных таблицы четко можно проследить одну особенность, что наибольшая ингибирующая способность достигается при добавлении ингибиторов в количестве от 50 до 250 г/т. В первую очередь это связано с химическим механизмом взаимодействия нефти и ингибитора, на который серьезное влияние оказывает состав нефти и непосредственно самих ингибиторов. Такая дозировка принята на основании лабораторных данных об оптимальной величине их подачи в нефть для предотвращения АСПО. Установлено, что для НМ1 и НМ2 наиболее эффективной является смесь ингибиторов DTM-30+DTMCн 70:30, так как степень ингибирования составляет 58,3%, при расходе ингибитора 100г/т в первом случае и 82,2%, при расходе ингибиторов DTM-30+DTMCh 70:30, благодаря которым степень ингибирования составляет 74,1%, при расходе ингибитора 50г/т для первого месторождения и 86,8%, при расходе ингибитора 50г/т для второго