Литература

- 1. Измерение массовой концентрации химических веществ методом инверсионной вольтамперометрии: Сборник методических указаний / Под ред. В.Б. Скачкова. М.: Федеральный центр госсанэпиднадзора Минздрава России, 2003. 271 с.
- 2. Мартемьянов Д.В., Галанов А.И., Юрмазова Т.А. Определение сорбционных характеристик различных минералов при извлечении ионов As^{5+} , Cr^{6+} , Ni^{2+} из водных сред // Фундаментальные исследования. Москва, 2013. № 8 (Ч. 3). С. 666 670.
- 3. Мосолков А.Ю., Мартемьянов Д.В., Мухортов Д.Н. Модифицирование пористого перлита гидроксидом железа, с целью придания ему сорбционных свойств, для извлечения ионов мышьяка из водных сред // Современные техника и технологии: Труды XIX Международной научно-практической конференции студентов и молодых учёных. Томск, 2013. Т. 2. С. 104 105.
- 4. Мышьяк в экологии и биологии / Под ред. В.С. Гамаюровой. М.: Наука, 1993. 208 с.
- 5. Очистка природных вод / Под ред. В.А. Клячкова. М.: Стройиздат, 1971. 579 с.
- 6. Проблемы загрязнения окружающей среды и токсикологии / Под ред. Дж. Уэра. М.: Мир. 1993. 192 с.
- 7. Проблемы определения реальной структуры глауконитов и родственных тонкодисперсных силикатов / Под ред. В.А. Дриц. М.: Химия, 1993. 200 с.
- 8. Ропот В.М., Кердиваренко М.А., Тарасевич Ю.И., Юрасова В.А. Природные сорбенты и их роль в решении проблемы охраны окружающей среды // Адсорбенты и адсорбционные процессы в решении проблемы охраны природы: Труды междунаролной конференции. Кишинев: Штиинца, 1986. С. 17 24.
- 9. Способы очистки сточных вод и технологических растворов от мышьяка / Под ред. В.А. Серова. М.: Цветинформация, 1977. 32 с.
- Сухарев Ю.И., Черногорова А.Е., Кувыкина Е.А. Особенности структуры и сорбционно-обменные свойства глауконита Багарякского месторождения // Известия Челябинского научного центра УрОРАН. – 1999. – №3. – С. 64 – 69.
- 11. Тарасевич Ю.И. Природные сорбенты в процессах очистки воды. Киев: Наука, 1981. 172 с.
- 12. Теория и практика сорбционных процессов / Под ред. Е.В. Веницианова. Воронеж, 1998. Вып. 23. 24 с.

ИСПОЛЬЗОВАНИЕ ЗОЛО-ШЛАКОВЫХ МАТЕРИАЛОВ ДЛЯ ПРОИЗВОДСТВА МАГНЕЗИАЛЬНОГО ЦЕМЕНТА

А.В. Томшина, А.Н. Постникова

Научный руководитель доцент С.В. Эрдман

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Исходя из современных проблем строительного комплекса, создание новых и совершенствование существующих технологических процессов должно быть направлено на разработку и производство эффективных и конкурентно-способных строительных материалов, изделий и конструкций при максимальном использовании местных и нетрадиционных видов сырья [1].

Потребности в вяжущих строительных материалах для индивидуального строительства в настоящее время возрастают. Разработка вяжущих и изделий на их основе с использованием природного сырья - новое направление в исследованиях, как в химии, так и в технологии вяжущих строительных материалов. Проблемами изучения и рационального использования природного сырья специалисты во всем мире активно занимаются в последние годы [3].

Объектами исследования являются магнезит Савинского месторождения и золошлаковые материалы Северской ТЭС.

Известно, что топливно-сжигательные установки ТЭС ежегодно производят огромные количества золы, загрязняющей почву и воду регионов. Поэтому использование золы в качестве добавки к магнезиальным вяжущим дает возможность не только эффективно использовать для улучшения прочности и повышения водостойкости, но и улучшить экологическую ситуацию [2].

Активность каустического магнезита от температуры обжига

Таблица 1

Температура обжига, °С	Активность, %	
400	32,66	
500	35,48	
600	38,51	
700	41,33	
800	77,62	
900	67,94	
1000	65,72	

По результатам, представленным в таблице видно, что каустический магнезит, обожженный при температуре 800 °C, содержит наибольшее количество активного оксида магния (77,62 %). Следовательно, прочность изделий на основе каустического магнезита, прокаленного при 800 °C, будет максимальной. Для дальнейших исследований будет использоваться данный магнезит.

СЕКЦИЯ 13. КОМПЛЕКСНОЕ ИСПОЛЬЗОВАНИЕ И ПЕРЕРАБОТКА МИНЕРАЛЬНОГО СЫРЬЯ.

ПОДСЕКЦИЯ 1. ПЕРЕРАБОТКА МИНЕРАЛЬНОГО И ТЕХНОГЕННОГО СЫРЬЯ.

Таблица 2

295

Изменение удельной поверхности от температуры обжига

Тобж, °С	Исходный магнезит	400	500	600	700	800	1000
$S_{y_{\text{\tiny J}}}$, M^2/Γ	1,3	1,458	2,293	5,424	19,534	24,106	2,278

По результатам определения удельной поверхности видно, что каустический магнезит, обожженный при температуре 800 °C, обладает наибольшей удельной поверхностью. То есть, данный результат подтверждает, что каустический магнезит, обожженный при 800 °C обладает наилучшими активными свойствами.

Таблица 3 Определение прочности магнезиального цемента с разным соотношением магнезита и золы (воздушная среда)

Соотношение (магнезит:зола)	5:5	6:4	7:3	10 (чистый магнезит)
Прочность, МПа	33,367	45,602	41,709	44,489

Таблица 4 1 соотношением магнезита и золы

Onpedeлeние прочности магнезиального цемента с разным соотношением магнезита и золы (воздушно-водная среда)

Соотношение (магнезит:зола)	5:5	6:4	7:3	10 (чистый магнезит)
Прочность, МПа	77,857	38,928	55,612	50,051

По результатам определения прочности в двух средах магнезиальный цемент лучше затвердевает в воздушно-водной среде.

Литература

- Георги А.А., Бабачев А.А. Магнезиальные вяжущие для ксилолитовых полов // Строительные материалы. Москва, 1961. – № 4. – С. 18 – 19.
- 2. Пат. 2379249 Россия МПК С04 B28/30. Адгезионная вяжущая композиция. Тюльнин В.А., Тюльнин Д.В. Заявлено. 01.07.2008; Опубл. 20.01.2010.
- 3. Смиренская В.Н. Цеолитсодержащие вяжущие повышенной водостойкости и изделия на их основе: Автореферат. Дис. ... канд. техн. наук. – Томск, 1998. – 152 с.

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ТВЕРДОФАЗНОГО ВОССТАНОВЛЕНИЯ ОКСИДОВ ЖЕЛЕЗА УГЛЯМИ РАЗНЫХ ТЕХНОЛОГИЧЕСКИХ МАРОК И.Е. Ходосов, К.С. Медведева

Научный руководитель профессор О.И. Нохрина Сибирский государственный индустриальный университет, г. Новокузнецк, Россия

В настоящее время альтернативным сырьем для производства высококачественных сталей является, так называемое, железо прямого восстановления, которое получают путем внедоменного передела железосодержащего сырья. Технологии производства металлизованных продуктов развиваются и совершенствуются с 60-х годов прошлого столетья, и к настоящему времени объем производства внедоменного железа достиг 76 млн. т. в год. В России и в мире железо прямого восстановления в основном получают с использованием в качестве восстановителя конвертированного природного газа. Гранулированную железную руду подают в печь шахтного типа, где при температурах, не превышающих температур плавления материалов, происходит восстановление оксидов железа. Применение природного газа приводит к удорожанию стоимости железа прямого восстановления и ограничивает развитие данных технологий в регионах, где природный газ является дефицитным. Снижение потребления природного газа возможно при его замене углем. В настоящее время до 8 % произведенного в мире железа прямого восстановления осуществляется с использованием угля. Существует множество технологических предложений использования угля для получения металлизованных продуктов, при этом нет единой технологии, получившей широкое промышленное распространение [1].

Процессы твердофазного восстановления железа из оксидов железных руд с использованием в качестве твердого углеродистого восстановителя угля не имеют однозначной оценки, что связано с многокомпонентностью системы и одновременным развитием реакций газификации угля, а также прямого и косвенного восстановления железа из оксидов железных руд [2].

На кафедре металлургии черных металлов СибГИУ проводится работа по исследованию и разработке энергоэффективной технологии получения высококачественных металлизованных материалов, пригодных для использования при выплавке сталей ответственного назначения.