Геология нефти и газа

УДК 550.36

ТЕРМИЧЕСКАЯ ИСТОРИЯ И ОЧАГИ ГЕНЕРАЦИИ НЕФТИ БАЖЕНОВСКОЙ СВИТЫ ЦЕНТРАЛЬНОЙ ЧАСТИ ЮГОРСКОГО СВОДА

В.И. Исаев, Г.А. Лобова*, С.А. Попов*, А.Б. Хашитова

Томский политехнический университет E-mail: isaev_sah@mail.ru aryuna@sibmail.com *Югорский государственный университет, г. Ханты-Мансийск E-mail: g lobova@ugrasu.ru postal578@mail.ru

Выполнено палеотемпературное моделирование осадочного разреза Панлорской, Западно-Унлорской и Верхненазымской площадей Верхнеляминского вала, расположенного в центральной части Югорского свода. По геотемпературному критерию выделены палеоочаги генерации нефти в баженовской свите. Очаги дифференцируются по интенсивности и временному интервалу действия, локализуя прогнозные ресурсы углеводородов в северо-западной части вала. Проведена количественная оценка существенного влияния векового хода температур земной поверхности за последние 142 млн лет на термическую историю баженовской свиты.

Ключевые слова:

Палеотемпературное моделирование, палеоклимат, очаги генерации нефти, углеводороды, баженовская свита, локализация прогнозных ресурсов углеводородов, Югорский свод.

Введение

Для изучения теплового потока литосферы, термического режима осадочных комплексов и оценки степени катагенеза потенциально нефтематеринских пород получили широкое распространение методы палеотемпературного моделирования [1-5]. Применяемое математическое моделирование, учитывающее изменение во времени многочисленных параметров геотермополя, позволяет достаточно достоверно и точно рассчитывать температуры на любой момент геологического времени в любой точке разреза [6]. Наряду с другими важнейшими для нефтегазовой геологии параметрами термополя, такими, как нестационарность глубинного теплового потока и скорости осадконакопления, обращается внимание на необходимость учета палеоклиматических условий - векового хода температур поверхности земли. Причем, большое значение придается факторам изменения климатических условий в олигоценраннечетвертичное время и резкому похолоданию в позднечетвертичное время [2, 4]. Тем не менее, нам не известны специальные публикации, посвященные конкретным количественным оценкам влияния палеоклимата на интенсивность генерации углеводородов (УВ) глубокопогруженными нефтепроизводящими осадочными комплексами. В настоящем сообщении этот вопрос рассмотрен специально.

Ниже приводятся результаты исследования методом палеотемпературного моделирования в центральной части Западно-Сибирской плиты, в пределах Верхнеляминского вала, осложняющего Югорский свод. На новейшей структурной карте (рис. 1) по отражающему горизонту А (кровля доюрских отложений) в центральной части Фроловской мегавпадины вырисовывается выступ фундамента Югорского свода. Югорский свод выделен недавно, в 2003 г., тематическими работами ГУП ХМАО НАЦ РН им. В.И. Шпильмана (отв. исполнитель В.А. Волков). Этот свод сопоставим по размерам с Сургутским, Красноленинским и Нижневартовским сводами – гигантскими зонами нефтегазонакопления центральной части Западно-Сибирской плиты. В этой связи приводимые результаты наших исследований представляют интерес для региональной оценки нефтегазоносности нового крупного объекта Западно-Сибирской нефтегазоносной провинции.

Цель наших исследований — выявление, картирование и изучение динамики в геологическом времени очагов генерации нефти тутлеймской (аналог баженовской) свиты (K₁b-J₃tt, 142...151 млн лет). Отложения свиты являются основными потенциально нефтематеринскими отложениями, накопившими и сохранившими огромные массы сапропелевого (ак-

Рис. 1. Фрагмент структурной карты по поверхности доюрского основания осадочного чехла центральной части Западно-Сибирской плиты [7]: 1) административная граница Ханты-Мансийского автономного округа; 2) положение Верхнеляминского вала

Рис. 2. Выкопировка из тектонической карты центральной части Западно-Сибирской плиты [7]: 1) границы тектонических элементов I порядка; 2) границы внутреннего районирования; 3) месторождение УВ и его номер на карте; 4) площадь нефтепоискового бурения и ее номер на карте; 5) поисково-разведочная скважина и ее номер; 6) контур участка исследований. Месторождения УВ: 1 – Центральное; 2 – Назымское; 3 – Тункорское; 4 – Апрельское; 5 – Итьяхское; 6 – Тортасинское. Площади нефтепоискового бурения: 1 – Верхненазымская; 2 – Татьеганская; 3 – Панлорская; 4 – Северо-Апрельская; 5 – Западно-Унлорская; 6 – Унлорская; 7 – Северо-Санлорская

вагенного) рассеянного органического вещества (POB) [8]. В результате поисково-разведочных работ в пределах Верхнеляминского вала (рис. 2) открыто 6 мелких нефтяных месторждений: Центральное, Назымское, Апрельское, Итьяхское, Тункорское и Тортасинское. На первых четырех месторождениях ведутся в небольшом объеме промышленные работы по разработке и эксплуатации. На 7 площадях (Верхненазымская, Татьеганская, Панлорская, Северо-Апрельская, Западно-Унлорская, Унлорская и Северо-Санлорская) выполнены поисковые работы разной степени детальности и успешности. Поэтому результаты наших исследований, характеризующие локализацию прогнозных ресурсов УВ, имеют прикладной нефтепоисковый интерес.

Геолого-структурная характеристика района исследований

Согласно тектоническому районированию центральной части Западно-Сибирской плиты [7] Верхнеляминский вал приурочен к центрально-западной приподнятой части Фроловского геоблока, который является крупнейшей шовной зоной. На западе через Елизаровский прогиб, блок граничит с Красноленинским сводом Зауральского геоблока, на востоке — с Сургутским сводом Среднеобского центрального геоблока. В эту же шовную зону входит серия впадин и котловин (Западно-Ярудейская, Вынглорская, Тундринская, Хантымансийская).

На структурной карте по отражающему горизонту А (рис. 1), построенной с учетом материалов работ сейсмопартий 2001-2003 гг., в центральной части Фроловской мегавпадины имеет место сопоставимый по размерам с Сургутским сводом выступ фундамента. Эта структура, выявленная по результатам комплексной интерпретации материалов гравиразведки, магниторазведки, сейсморазведки и данных бурения, была названа Югорским сводом. Свод выделяется по поверхности доюрского основания относительно изогипсы -3350 м и превышает 150 м, увеличиваясь на локальных поднятиях до 400 м. Югорский свод, не имея четких границ, осложнен структурами II порядка: Верхнеляминским, Туманным и Ай-Пимским валами и Северо-Камынской седловиной.

Верхнеляминский вал по горизонту «Б» (кровля юрских отложений), не имея единой оконтуривающей изогипсы, объединяет ряд структур III порядка, представляющих собой структурные мысы и брахиантиклинали, осложненные, в свою очередь, структурами IV порядка: Центральная, Верхненазымская, Назымская, Тункорская, Татьеганская, Апрельская, Северо-Апрельская, Итьяхская, Тортасинская, Панлорская, Унлорская, Западно-Унлорская, Северо-Санлорская.

Краткая характеристика нефтегазоносности

Согласно нефтегеологическому районированию [7] месторождения Верхнеляминского вала от-

носятся к Ляминскому нефтегазоносному району Фроловской нефтегазоносной области, табл. 1.

Таблица 1. Характеристика месторождений Вернеляминского вала

Место- рождение	Фазовый состав	Нефтегазоносные комплексы (свиты)				
Централь-	Нефть	Меловой (викуловская)				
ное	Нефть	Среднеюрский (тюменская)				
Назым- ское	Нефть	Меловой (викуловская, фролов- ская)				
	Нефть	Верхнеюрский (тутлеймская, аба лакская)				
	Нефть	Среднеюрский (тюменская)				
	Нефть	Нижнеюрский (шеркалинская)				
	Нефть	Палеозойский				
Тункор-	Нефть	Меловой (викуловская)				
ское	Нефть	Среднеюрский (тюменская)				
Апрель-	Нефть	Верхнеюрский (тутлеймская)				
	Нефть	Среднеюрский (тюменская)				
CKOC	Нефть	Палеозойский				
	Нефть	Верхнеюрский (тутлеймская, аба- лакская)				
ИПрихская	Нефть, газ	Среднеюрский (тюменская)				
	Нефтепроявления	Зоны контакта				
Тортасин-	Нефть	Меловой (уватская, фроловская)				
	Нефть	Верхнеюрский (тутлеймская)				
ское	Нефть	Среднеюрский (тюменская)				
	Нефть	Нижнеюрский (шеркалинская)				

В табл. 2 сведены данные по испытаниям, проведенным в поисково-разведочных скважинах месторождений и площадей нефтепоискового бурения. Приведены результаты испытаний для мелового и верхнеюрского нефтегазоносных комплексов (НГК), наиболее вероятным источником нефти которых является РОВ баженовской свиты.

Палеотемпературное моделирование

В нашей модели (рис. 3) процесс распространения тепла в слоистой осадочной толще описывается начально-краевой задачей для уравнения

$$\frac{\lambda}{a} \cdot \frac{\partial U}{\partial t} - \frac{\partial}{\partial Z} \left(\lambda \frac{\partial U}{\partial Z} \right) = f, \qquad (1)$$

где λ – теплопроводность; *a* – температуропроводность; *f* – плотность внутренних источников тепла, с краевыми условиями; *U* – температура; *Z* – расстояние от основания; *t* – время.

$$U\Big|_{Z=\varepsilon} = U(t), \tag{2}$$

$$-\lambda \left. \frac{\partial U}{\partial Z} \right|_{Z=0} = q(t), \tag{3}$$

где $\varepsilon = \varepsilon(t)$ – верхняя граница осадочной толщи; q – тепловой поток.

Осадочная толща описывается мощностями стратиграфических комплексов h_i , для каждого из которых заданы теплопроводность λ_i , температуропроводность a_i , плотность радиоактивных источников f_i и скорость осадконакопления v_i . Скорость

	-							
Название площа- ди, месторожде- ния	№ скв.	Интервал испытания, м	Отложения (свита)	Пласт (гори- зонт)	Приток, м³/сут	Тип флюида		
Верхненазымская	13	25602680	К₁−Ј₃tt (тутлеймская) – J₂а-b-bt (тюменская)	Нефть				
Назымская	21	25902860	Ј₃о−km (абалакская) – палеозой	Ю ₁ -Рz	3,9	Нефть		
		25802596	K₁−J₃tt (тутлеймская)	Ю	9,5	Нефть		
Апрельская	4	27222730 27442780 27952821	K ₁ -J ₃ tt (тутлеймская) – J ₂ a-b-bt (тюменская)	а-b-bt (тюменская) Ю ₀ -Ю ₂₋₃ Нет притока				
		16661694	К₁а (викуловская)	BK1	62,4	Вода		
		21412224	К ₁ br-g-v-b (фроловская) AC ₂			Нет притока		
Панлорская	2	21872260	К₁br-g-v-b (фроловская)	AC ₂		Нет притока		
		27802827	Ј₃о-km (абалакская)	Ю1		Нет притока		
		28002864	J ₃ o-km (абалакская) – J ₂ a-b-bt (тюменская)	Ю1-Ю2	2,9	Фильтрат бурового раствора		
Итьяхская	300	26722787	К₁−Ј₃tt (тутлеймская) – J₂a-b-bt (тюменская)	Ю0-Ю2-3	12,8	Нефть, газ		
Западно-Унлор- ская	307	27212741	K₁−J₃tt (тутлеймская)	Ю		Нет притока		
		27382763	Ј₃о-km (абалакская)	ЮК1	11,5	Фильтрат бурового раствора, пленка нефти, газ		
		11101115	К₂s (уватская)	ΠK ₁	45,0	Вода		
		16701675	К₁а (викуловская)	BK1	24,8	Вода		
Тортасинская	1	20702082	К₁br-g-v-b (фроловская)	AC3	4,1	Вода		
	'	23662381	К₁br-g-v-b (фроловская)	AC ₇	7,1	Нефть		
		23962408	К₁br-g-v-b (фроловская)	AC ₇₋₈		Нет притока		
		27902810	K₁−J₃tt (тутлеймская)	Ю	7,8	Нефть		
	101	27562809	K₁−J₃tt (тутлеймская)	Ю	6,2	Нефть		
	101	27822805	K₁−J₃tt (тутлеймская)	Ю	0,7	Нефть		

Таблица 2. Результаты испытания скважин на месторождениях и нефтепоисковых площадях Верхнеляминского вала

осадконакопления может быть отрицательной. Для решения одномерной начально-краевой задачи (1)–(3) с разрывными коэффициентами применен метод конечных элементов [9, 10].

ОСНОВАНИЕ

Рис. 3. Схематическое изображение слоистого осадочного разреза при палеотемпературном моделировании. Условные обозначения и пояснения в тексте

В случае стационарности глубинного теплового потока *q*, решение обратной задачи определяется из условия

$$\sum_{i=1}^{k_i} (U(Z_i, t, q) - T_i)^2 \xrightarrow{q} \min.$$

Решение обратной задачи строится с учётом того, что функция U(Z,t,q), являющаяся решением прямой задачи (1) с краевыми условиями (2) и (3), в этом случае линейно зависит от q.

Краевое условие (2) определяет температуру «нейтрального» слоя и может задаваться в виде кусочно-линейной функции U(t) векового хода температур поверхности земли. А краевое условие (3) может задаваться в виде кусочно-линейной функции q(t) изменения значения глубинного теплового потока. T_i — измеренное распределение температур. «Измеренное» распределение температур может задаваться и по определениям отражательной способности витринита (ОСВ), пересчитанным [6] в градусы Цельсия, с указанием времени срабатывания «максимального палеотермометра».

Схема расчета палеотемператур состоит из двух этапов. На первом этапе по распределению температур T_i в скважине рассчитывается тепловой поток q через поверхность подстилающего основания, т. е. решается обратная задача геотермии. На втором этапе с известным значением q решается прямая задача геотермии – непосредственно рассчитываются температуры U в заданных точках осадочной толщи Z в заданные моменты геологического времени t.

Некоторые результаты исследований

Оценка влияния векового хода температур земной поверхности [2, 11] на термическую историю баженовской свиты приводится для скважин Панлорская 2, Западно-Унлорская 307 и Верхненазымская 13 (рис. 2). Выбор названных скважин в качестве представительных определен тем, что здесь температуры измерены при значительных дебитах флюида из интервалов испытаний. Это позволяет достаточно уверенно измеренные температуры отождествлять с пластовыми. Характеристика разрезов скважин приведена в табл. 3.

···					
Характеристики	Панлорская 2	Западно-Ун- лорская 307	- Верхнена- 7 зымская 13		
Забой, м	3333	2780	2884		
Отложения на забое (свита)	Кора выветри- вания (Р-Т)	Тюменская (J ₂ bt-b-a)	Шеркалин- ская (J ₁ p-t)		
Кровля тутлеймской (баженовской) свиты, м	2783	2724	2564		
Мощность тутлеймской (баженовской) свиты, м	15,0	17,5	38,0		
Мощность олигоцено- вых отложений, м	157	130	146		
Мощность четвертичных отложений, м	65	50	55		
Результаты испытаний с притоками и замерами температур (свита; ин- тервал, м – тип флюи- да; дебит, м ³ /сут; пла-	Тюменская; 3170 — вода; 24,9; 90	Абалакская; 2741 — фильт- рат бурового раствора, пленка нефти,	Тутлеймская; 2560 — неф- ть; 5,2; 91		

Таблица 3. Характеристика разрезов скважин Панлорская	12,
Западно-Унлорская 307 и Верхненазымская	13.
Мощность неогеновых отложений 0 м	

*Отражательная способность витринита изучена в ИНГиГ СО РАН (г. Новосибирск) и предоставлена д.г.-м.н. А.Н. Фоминым

Тутлеймская;

2785 - 93

стовая температура, °C) Температура по ОСВ*

(свита; интервал, м - пла-

стовая температура, °С)

газ; 11,5; 83

Тутлеймская;

2724 - 93

Тутлеймская:

2600 - 103

На первом этапе исследований палеоклиматические температуры не учитывались, т. е. температура «нейтрального слоя» принималась постоянной, нулевой. В этом случае, для согласования температур, определенных по ОСВ (табл. 3) и максимальных расчетных палеотемператур баженовской свиты оказалось необходимым принять размыв верхнепалеогеновых отложений в объеме 450...530 м. Однако, по имеющимся геологическим данным такие размывы для центральной части Западно-Сибирской плиты не установлены.

Поэтому на втором этапе исследований палеотемпературное моделирование выполнено с учетом векового хода температур земной поверхности за последние 142 млн л. (табл. 4). В этом случае максимальные расчетные палеотемпературы баженовской свиты вполне согласовались с температурами по OCB, без включения в модель как размыва верхнепалеогеновых отложений, так и нестационарности глубинного теплового потока.

Анализ таблицы 4 позволяет сделать следующие выводы:

- 1. Вековой ход температур земной поверхности оказал существенное влияние на термический режим (интенсивность генерации УВ) глубоко-погруженных осадков баженовской свиты.
- 2. Наиболее существенное влияние на формирование геотемператур баженовской свиты оказало

изменение климатических условий в олигоценраннечетвертичное время (37...0,5 млн лет назад).

Таблица 4. Геотемпературы баженовской свиты в разрезе скважин Панлорская 2, Западно-Унлорская 307 и Верненазымская 13 (жирным шрифтом обозначены температуры главной зоны нефтеобразования)

Время, млн лет назад	та Та	Панлорская 2		Западно-Ун-			Верхненазым-			
	Чр С	таплорская z			лорская 307			ская 13		
	Вековой ход температу поверхности земли,	Геотемпературы с уче- том палеоклимата, °С	Геотемпературы без учета палеоклимата, °С	Разница, °С	Геотемпературы с уче- том палеоклимата, °С	Геотемпературы без учета палеоклимата, °С	Разница, °С	Геотемпературы с уче- том палеоклимата, °С	Геотемпературы без учета палеоклимата, °С	Разница, °С
0	0	79	79	0	82	82	0	92	92	0
0,03	-4	78	79	-1	81	82	-1	92	92	0
0,07	-4	78	79	-1	81	82	-1	91	92	-1
0,11	-4	79	79	0	82	82	0	91	92	-1
0,19	-8	79	79	0	82	82	0	92	92	0
0,24	-10	80	79	1	83	82	1	94	92	2
0,25	0	81	79	2	85	82	3	94	92	2
0,50	2	82	78	4	86	82	4	95	91	4
1,64	3	81	77	4	85	81	4	94	90	4
3,0	3	82	77	5	86	81	5	94	90	4
5,0	4	83	77	6	87	81	6	95	90	5
10,0	7	85	77	8	89	81	8	98	90	8
15,0	10	88	77	11	92	81	11	101	90	11
20,0	7	85	77	8	89	81	8	98	90	8
24,0	4	83	77	6	87	81	6	96	90	6
30,0	8	85	75	10	89	79	10	97	87	10
35,0	13	89	73	16	92	77	15	99	85	14
37,6	20	92	72	20	97	76	21	103	83	20
40,0	20	91	70	21	96	74	22	102	81	21
45,0	21	87	66	21	89	70	19	98	77	21
50,0	21	83	62	21	87	65	22	94	73	21
54,8	20	79	58	21	82	61	21	90	69	21
61,/	20	/4	54	20	//	56	21	84	63	21
/3,2	20	/1	52	19	/4	54	20	80	60	20
89,8	20	66	46	20	69	48	21	/3	52	21
91,6	20	64	43	21	66	45	21	/1	50	21
98,2	21	5/	35	22	60	38	22	63	41	22
114,1	21	50	28	22	51	30	21	54	33	21
116,3	20	41	20	21	43	21	22	45	23	22
142.2	20	39	8	21	41	20	21	42	20	22
142,2	22	22	U	22	22	U	22	23		22
Расчетный тепло-										
вой поток из ос-		41,6	41,0		44,2	43,4		51,2	50,5	
нования, мВт/м ²										

- Резкое похолодание в поздечетвертичное время (0,25...0,03 млн л. назад) не столь значительно понизило геотемпературы баженовской свиты, однако, в районе скважины Западно-Унлорская 307 вывело свиту из главной зоны нефтеобразования [12].
- 4. В осадочном разрезе района скважины Панлорская 2 генерация нефти баженовской свитой, с преимущественно сапропелевым типом POB, происходило в интервале 45...10 млн л. назад. Причем, интенсивная генерация нефти соответ-

ствует интервалу 40...35 млн л. назад, а в остальное время наблюдается слабый нефтяной очаг.

- 5. В осадочном разрезе района скважины Западно-Унлорская 307 генерация нефти баженовской свитой происходила на более значительном временном интервале 50,0...0,25 млн л. назад, а интенсивный (высокотемпературный) очаг генерации нефти занимает уже широкий временной интервал – 45...15 млн л. назад.
- В осадочном разрезе района скважины Верхненазымская 13 интенсивная генерация нефти началась не позже 55...60 млн л. назад, интенсивный очаг генерации нефти «работает» до настоящего времени.
- Можно сделать предварительное заключение, что несколько более интенсивный и долгоживущий очаг генерации нефти в районе скважины Западно-Унлорская 307 явился причиной более значительных масштабов нефтегазонакопления расположенных рядом месторождений. Так на Тортасинском местрождении, по сравнению с Апрельским, нефтенасыщенными являются не только юрские комплексы, но и меловой (табл. 1).
- Наличие несколько более интенсивного и долгоживущего очага генерации нефти в районе скважины Западно-Унлорская 307, находит, вероятно, отражение и в более значительных дебитах притоков нефти в расположенных рядом скважинах Итьяхского и Тортасинского месторождений (табл. 2).
- Наличие интенсивного и долгоживущего очага генерации нефти в районе скважины Верхненазымская 13 может быть причиной значительных масштабов нефтегазонакопления расположенных рядом месторождений. Так на Назымском и Центральном месторождениях нефтенасыщены практически все НГК (табл. 1).
- Наличие интенсивного и долгоживущего очага генерации нефти в районе скважины Верхнена-

СПИСОК ЛИТЕРАТУРЫ

- Галушкин Ю.И., Симоненкова О.И., Лопатин Н.В. Влияние формирования гигантских скоплений газа на термический режим осадочной толщи Уренгойского месторождения Западно-Сибирского бассейна // Геохимия. – 1999. – Т. 21. – № 12. – С. 1335–1344.
- Ермаков В.И., Скоробогатов В.А. Тепловое поле и нефтегазоносность молодых плит СССР. – М.: Недра, 1986. – 222 с.
- 3. Исаев В.И., Волкова Н.А., Ним Т.В. Решение прямой и обратной задачи геотермии в условиях седиментации // Тихоокеанская геология. – 1995. – Т. 14. – № 3. – С. 73–80.
- Курчиков А.Р., Ставицкий Б.П. Геотермия нефтегазоносных областей Западной Сибири. – М.: Недра, 1987. – 134 с.
- Подгорный Л.В., Хуторский М.Д. Термическая эволюция литосферы зоны сочленения Балтийского щита и Баренцевоморской плиты // Известия РАН. Сер. Физика Земли. – 1998. – № 3. – С. 56–65.
- Исаев В.И., Фомин А.Н. Очаги генерации нефтей баженовского и тогурского типов в южной части Нюрольской мегавпадины // Геология и геофизика. – 2006. – Т. 47. – № 6. – С. 734–745.
- Атлас «Геология и нефтегазоносность Ханты-Мансийского автономного округа» / Ред. Э.А. Ахпателов, В.А. Волков, В.Н. Гончарова, В.Г. Елисеев, В.И. Карасев, А.Г. Мухер, Г.П. Мясникова,

зымская 13 находит отражение в значительных дебитах притоков нефти из интервалов тутлеймской свиты в верхненазымских и назымских скважинах (табл. 2).

11. Намечается четкая положительная корреляция между величиной глубинного теплового потока (табл. 4), интенсивностью и временем действия очагов генерации нефти, нефтенасыщенностью осадочных комплексов и дебитами нефти поисково-разведочных скважин в интервалах мелового и верхнеюрского НГК.

Заключение

В пределах Верхнеляминского вала методом палеотемпературного моделирования проведена количественная оценка влияния векового хода температур земной поверхности на интенсивность генерации углеводородов основным нефтепроизводящим осадочным комплексом — баженовской (тутлеймской) свитой. Изменение климатических условий, начиная с олигоцена, снижает температуры геотермического режима на 10...15 °C, что может выводить свиту из «нефтяного окна».

Палеотемпературным моделированием установлены очаги (или различные зоны одного очага) генерации нефти в баженовской свите для центральной части Югорского свода — нового крупного объекта Западно-Сибирской нефтегазоносной провинции. Температуры в этих очагах могут превышать 100 °С, зарождение очагов происходило 60...45 млн л. назад, долгоживучесть очагов — 60...35 млн л.

На территории Верхнеляминского вала намеченная зональность очага генерации нефти баженовской свиты позволяет ранжировать территорию по степени перспективности мелового и верхнеюрского НГК в следующем порядке: 1 – северо-западный блок; 2 – юго-восточный блок; 3 – северо-восточный блок.

Е.А. Тепляков, Ф.З. Хафизов, А.В. Шпильман, В.М. Южакова. – Екатеринбург: Изд-во «ИздатНаукаСервис», 2004. – 148 с.

- Богородская Л.И., Конторович А.Э., Ларичев А.И. Кероген: методы изучения, геохимическая интерпретация. – Новосибирск: Изд-во СО РАН, филиал «ГЕО», 2005. – 254 с.
- Исаев В.И., Гуленок Р.Ю., Веселов О.В., Бычков А.В., Соловейчик Ю.Г. Компьютерная технология комплексной оценки нефтегазового потенциала осадочных бассейнов // Геология нефти и газа. – 2002. – № 6. – С. 48–54.
- Рояк М.Э., Соловейчик Ю.Г., Шурина Э.П. Сеточные методы решения краевых задач математической физики. – Новосибирск: Изд-во НГТУ, 1998. – 120 с.
- Шарбатян А.А. Экстремальные оценки в геотермии и геокриологии. – М.: Наука, 1974. – 123 с.
- Бурштейн Л.М., Жидкова Л.В., Конторович А.Э. Модель катагенеза органического вещества (на примере баженовской свиты) // Геология и геофизика. – 1997. – Т. 38. – № 6. – С. 1070–1078.

Поступила 05.05.2008 г.