в рекомбинирующем у стенок трубопровода газе довольно высок и способен значительно менять локальный состав смеси. Перестройка поля температуры за счет теплового эффекта химической реакции сказывается на кинематических характеристиках течения, а также на величине энергии турбулентных пульсаций. Последняя существенно увеличивается в реагирующем потоке. Исследование показывает, что учет химических превращений оказывает влияние на интегральные характеристики процесса.

Таким образом, предложенные в работе подходы, модели и методы прогноза сложных течений в ТП с секциями сложной формы стенки неизменно демонстрируют высокую точность, весьма корректны для систем со специфической реологией и могут быть полезны при выполнении заданий, связанных с организацией эффективного управления транспортировкой продуктов в режимах быстропротекающих процессов.

Литература

- 1. Бубенчиков А.М., Гольдин В.Д., Панько С.В., Старченко А.В., Харламов С.Н. Исследование турбулентных вихревых течений газа и аэродисперсных смесей в камерах и свободном пространстве // Третий Сибирский конгресс по прикладной и индустриальной математике (ИНПРИМ`98). Ч.2. Сек. Механика. 1998. -Новосибирск, 1998. С. 89 90.
- 2. Бубенчиков А.М., Харламов С.Н. Математические модели неоднородной анизотропной турбулентности во внутренних течениях. Томск: Изд–во ТГУ, 2001. -440 с.
- Kharlamov S.N. Mathematical Modelling of Thermo- and Hydrodynamical Processes in Pipelines (academic book). Rome, Italy: Publ. House "Ionta", 2010. 263p.
- Kharlamov S.N., Alginov R.A. Modelling of Complex Shear Flow Structure in Pipelines // International Journal of Engineering, Science and Innovative Technology, 2014. – Vol. 3, - Iss. 6. –C. 500-509.
- Харламов С.Н. Выработка решений по защите теплообменников от гидравлического удара. Материалы итогового отчета в ООО "Томский инженерно-технический центр". Томск. 2012 (X\д № 1-526/12y от 01.08.2012г.).

ЯВЛЕНИЕ РОЛЛОВЕРА ДЛЯ ХРАНИЛИЩ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА Р.Х. Агеев

Научный руководитель профессор С.Н. Харламов

Национальный Исследовательский Томский Политехнический Университет, г. Томск, Россия.

Система хранения сжиженного природного газа (СПГ) включает в себя следующие элементы: стационарные резервуары; оборудование, предназначенное для заполнения резервуаров от технологических линий сжижения газа; оборудования для отгрузки (стендеры); оборудование, обеспечивающее безопасность хранения СПГ. При этом стоимость резервуарного парка составляет до 50 % стоимости всего комплекса. Соответственно, к этим сооружениям должны предъявляться особые требования как при строительстве, так и при эксплуатации [1].

Несмотря на малую аварийность объектов хранения СПГ, всё же аварии происходили и при строительстве, и при эксплуатации. Одной из технологических проблем при эксплуатации является стратификация жидкости в хранилище, и затем возможное резкое перемешивание слоёв и интенсивное парообразование, превышающее стационарное испарение, что может привести к повреждению резервуара [2].

В зарубежной литературе данный процесс получил название «ролловер» (rollover - «переворачивание») Физическая модель процесса отличается тем, что при загрузке резервуара свойства продукта, уже хранящегося в изотермическом резервуаре (ИР), отличаются от свойств СПГ, закачиваемого в резервуар. В ИР, оборудованных системой нижнего налива, СПГ, имеющий большую плотность, образует нижний слой. СПГ, имеющий меньшую плотность, формирует верхний слой, который располагается над поверхностью нижнего, не перемешиваясь с ним. Перегреваясь относительно температуры насыщения за счет внешнего теплопритока через днище и стенки, продукт в нижнем слое при этом не имеет возможности компенсировать теплоприток за счет испарения, т.к. поверхность теплообмена закрыта нижним слоем. Однако имеют место процессы тепло— и массообмена двух слоев между собой и верхнего слоя с парогазовой фазой. В конечном итоге, в определенный момент времени после загрузки и образования стратификации, за счет описанных выше процессов плотности слоев выравниваются с последующей резкой интенсификацией процессов испарения продукта (ролловер). В этом случае важно знать время наступления «ролловера» и возможное парообразование, чтобы предотвратить повреждение хранилища.

Поэтому изучение явления ролловера является актуальной, особенно для России, т.к. на о. Сахалин уже действует завод по производству СПГ и рассматриваются варианты строительства аналогичных заводов на Штокмановском месторождении и на п-ве Ямал, а нормативно-техническая база для объектов СПГ практически отсутствует.

Причины ролловера:

- Когда есть разница температур жидкости.
- Если СПГ хранится в течение длительного времени без циркуляции.
- Если две различные партии СПГ хранятся в одном резервуаре

Эффект от ролловера:

- Увеличение скорости испарения до 10 раз, в отличии от нормального состояния
- Повышение давления бака
- Подъем предохранительного клапана резервуара

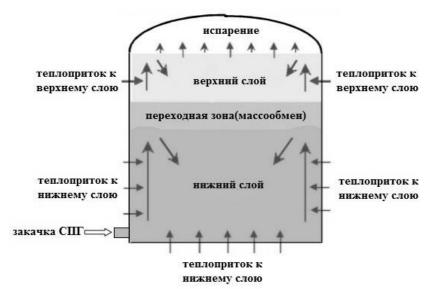


Рис. 1 Перемешивание слоев при закачке продукта в резервуар с процессами тепло- и массообмена

Меры по предотвращению ролловера:

- Партии СПГ с различной плотностью, хранить отдельно
- Загрузка резервуара со специальным оборудованием, такими как насадки способствующие смешиванию СПГ при загрузке (используется для береговых резервуаров).
- Следует избегать продолжительных остановок подачи СПГ при загрузке резервуара.
- Постоянно контролировать уровень испарения СПГ

Как было отмечено выше, причина явления переворачивания слоев - недостаточное смешивание поступающей в резервуар партии продукта с уже находящейся в нем жидкостью. Однако стратификация с дальнейшим вскипанием может также произойти при выдерживании СПГ в течение длительного времени в резервуаре без рециркуляции или при содержании азота в составе СПГ более 1 % (такая пороговая концентрация установлена по данным международных исследований явления rollover). Для предотвращения стратификации резервуар оснащается системой рециркуляции с использованием насосов, а налив продукта должен быть организован предпочтительно таким образом, чтобы более тяжелый продукт образовывал верхний слой и смешение фаз, происходило за счет естественной гравитации. Поэтому конструкция резервуара должна предусматривать системы верхнего и нижнего налива, а также средства контроля плотности и температуры на разных уровнях. Кроме того, как правило, предусматривается многоуровневая защита резервуара от превышения внутреннего избыточного давления газовой фазы, обеспечивающая сброс газа в атмосферу или на факел [3].

Чтобы предсказать параметры, при которых может произойти явление ролловера, необходимо провести математическое моделирование процесса. Математическое моделирование явления ролловера предполагает использование уравнений математической физики, характеризующих процессы переноса теплоты, массы и импульса в рамках термодинамики необратимых процессов.

Литература

- 1. Интернет-ресурсы: http://lngas.ru/life-safety-lng/problemy-termodinamika-spg.html.
- 2. Рахимов В.О. Метод расчета теплогидравлического режима резервуара для хранения сжиженного природного газа / В.О. Рахимов, Г.Е. Коробков // Рассохинские чтения: материалы межрегионального семинара (3-4 февраля 2012 года) / под. ред. Н.Д. Цхадая. Ухта: УГТУ, 2012 С. 312-316.
- 3. Васильев, Г. Г. Особенности обеспечения безопасной эксплуатации крупногабаритных изотермических резервуаров для хранения сжиженного природного газа / Г. Г. Васильев, С. Г. Иванцова, А. И. Рахманин // Газовая промышленность. Выпуск: 11 11. Москва: РГУ нефти и газа им. И.М. Губкина, 2013 С. 57-61.

МЕТОД РАСЧЕТА ПРОЦЕССОВ ТЕПЛО- И МАССООБМЕНА СТРАТИФИЦИРОВАННОЙ ЖИДКОСТИ В ХРАНИЛИЩЕ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА Р.Х. Агеев

Научный руководитель профессор С.Н. Харламов Национальный Исследовательский Томский Политехнический Университет, г. Томск, Россия.

В настоящее время газовая промышленность России достигла высокого уровня как по добыче газа, так и по его реализации. Однако отсутствие магистральных газопроводов на некоторых территориях страны создает проблемы газификации таких регионов сетевым газом. Поэтому вполне обоснованной является необходимость