УДК 550.42:57.4(571.1)

ОЦЕНКА РУСЛОВЫХ ДЕФОРМАЦИЙ В БАССЕЙНАХ РЕК ВАСЮГАН И ПАРАБЕЛЬ (ЗАПАДНАЯ СИБИРЬ)

О.Г. Савичев

Томский политехнический университет E-mail: OSavichev@mail.ru

Разработана методика оценки русловых деформаций на основе анализа данных об измеренных расходах воды. Ее апробация проведена по материалам Росгидромета, полученным на реках Васюган, Парабель и Кенга (Томская область). Показано, что максимальные вертикальные деформации изученных рек в 1959—1974 гг. составляли 0,80...0,98 м, наибольшие плановые деформации — 4,55...13,28 м. Предложен механизм взаимовлияния болотных и русловых процессов.

Ключевые слова:

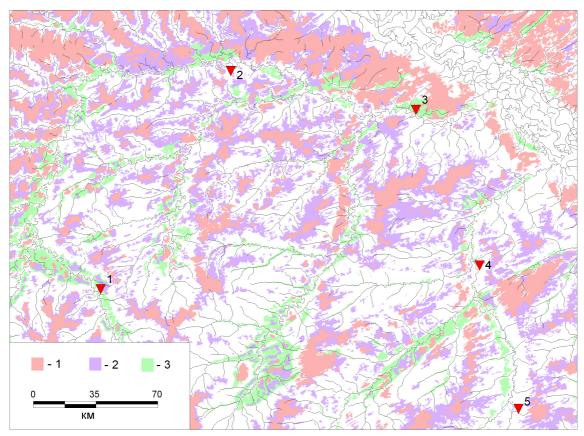
Русловые деформации, болотные реки, Западная Сибирь.

Введение

Бассейн р. Оби – это огромный по площади и весьма разнообразный по природным условиям регион России, расположенный в центральной части Северной Евразии. Анализ материалов многолетних наблюдений за состоянием окружающей среды этой территории позволяет сделать вывод о преобладании двух основных типов экзогенных геологических процессов — заболачивания и речной эрозии. Эти процессы противоположны друг другу по проявлению – если заболачивание характеризуется интенсивной аккумуляцией органического вещества, то речная эрозия по определению характеризуется разрушением подстилающих пород и выносом продуктов разрушения. В то же время, они тесно взаимосвязаны и представляют собой составляющие единого комплекса экзогенных геологических процессов, неразрывно связанных с гидрологическим режимом территории и протекающих в Западной Сибири по окончанию последнего крупного оледенения.

В настоящее время информация об интенсивности русловых процессов в регионе в основном ограничена материалами, полученными на локальных участках на больших реках (Обь, Томь, Чулым, Иртыш) и/или в местах размещения подводных переходов трубопроводов. Однако и в этих случаях полнота и достоверность сведений оставляет желать лучшего, поскольку: 1) материалы русловых съемок, проводимых в целях судоходства в ряде случаев недостаточно точны в части описания положения береговой линии и мелководной части русел; 2) на режимных пунктах Росгидромета наблюдения за русловыми деформациями не выполняются вовсе; 3) на пунктах государственной сети наблюдений за состоянием геологической среды проводится наблюдение только за деформацией речных берегов лишь в некоторых населенных пунктах; 4) в процессе инженерно-гидрометеорологических изысканий для строительства обычно используются упрощенные расчетные методы без подтверждения результатов вычислений натурными наблюдениями.

Все это обусловливает актуальность как оценки масштабов русловых деформаций, так и разработки методики подобной оценки. В данной работе эти задачи рассмотрены на примере крупных притоков р. Обь — рр. Васюган, Парабель, а также р. Кенга (приток р. Парабель). В бассейнах указанных рек, характеризующихся высокой заболоченностью (более 30 %) и густой речной сетью (рис. 1), проводится интенсивная добыча и транспортировка углеводородов по трубопроводам, пересекающим многочисленные водотоки, где во многих случаях и возникают аварийные ситуации.


Методика исследований и исходные материалы

Исходя из ограниченности материалов наблюдений за русловыми деформациями и значительными затратами на проведение специальных исследований в труднодоступных районах, автором предлагается подход, основанный на использовании стандартных материалов гидрологических наблюдений за расходами воды на пунктах Росгидромета. В частности, предлагается использовать опубликованные данные об измеренных гидравлических характеристиках водотоков (расход воды Q, площадь живого сечения F, ширина реки B, средняя глубина h_{cn} , максимальная глубина h_{makc}). Для выяснения масштабов и тенденций деформаций речного дна используются высотные отметки дна, полученные при каждом измерении параметров русла по формулам:

$$Z_{\text{cp}} = Z - h_{\text{cp}},$$
 $Z_{\text{мин}} = Z - h_{\text{макс}},$

где $Z_{\rm cp}$ — средняя отметка дна реки в створе в момент времени t, м; $Z_{\rm мин}$ — минимальная отметка дна реки в створе, м; Z — уровень воды, м. Проверка на случайность выполняется по рядам срочных наблюдений с использованием критерия Питмена [3].

Для оценки плановых и вертикальных деформаций отбираются материалы срочных наблюдений (за шириной и глубиной реки соответственно) при определенном уровне воды, либо выполняется линейная интерполяция между двумя наблюдения-

Рис. 1. Речная сеть, болотные комплексы (типы болот: 1 — верховые; 2 — переходные; 3 — низинные [1, 2]) и схема размещения пунктов наблюдений в бассейнах рр. Васюган и Парабель: 1) р. Васюган у п. Майск; 2) р. Васюган у с. Средний Васюган; 3) р. Васюган у с. Наунак; 4) р. Парабель у с. Новиково; 5) р. Кенга у п. Центральный

ми по заданному уровню воды. По полученной выборке рассчитываются статистические параметры, включая амплитуду изменения ширины и глубины потока. Наибольшее значение амплитуды и является характеристикой максимальных плановых и вертикальных деформаций русла. К сожалению, в открытой печати данные об измеренных расходов приводились только до 1974 г., в связи с чем в данной работе использовались опубликованные в «Гидрологических ежегодниках» материалы Росгидромета за период с 1959 по 1974 гг., полученные на р. Васюган в створах п. Майск, с. Средний Васюган, с. Наунак, р. Парабель у с. Новиково и р. Кенга у п. Центральный. Схема расположения пунктов наблюдений приведена на рис. 1.

Результаты исследований и их обсуждение

В процессе выполненного исследования выявлено статистически значимое (при уровне значимости 5 %) увеличение средних и минимальных отметок дна р. Парабель у с. Новиково и р. Васюган у с. Наунак в течение изученного временного периода. В случае р. Васюган у п. Майск и р. Кенга у п. Центральный, напротив, отмечено уменьшение высотных отметок дна, что позволяет предполо-

жить наличие общей тенденции преимущественно размыва русел в верховьях изученных рек и аккумуляции наносов в их нижнем течении, по крайней мере, в 1960—1970-е гг. (табл. 1, по данным Росгидромета).

Имеющиеся данные не позволяют сделать однозначный вывод о том, допустимо ли аппроксимировать выявленные тенденции на весь период наблюдений. Можно лишь утверждать, что они слабо коррелируют с многолетними изменениями расходов воды и определяются соотношениями скоростей течения и глубин на участке реки и в конкретном створе реки.

Анализ колебаний значений ширины и глубины рек при фиксированных уровнях воды показал, что максимальные вертикальные деформации дна варьируют в диапазоне 0,80 на р. Кенга до 0,98 м на р. Васюган у с. Средний Васюган, максимальные изменения ширины потока — от 4,55 м на р. Васюган у п. Майск до 13,28 м на р. Кенга (табл. 2, по данным Росгидромета). Наиболее интенсивные деформации речных русел в основном приурочены к расходам воды больше среднемноголетних значений, но не превышающих максимальные расходы обеспеченности до 50 %.

Таблица 1. Гидравлические параметры pp. Парабель, Кенга и Васкоган

Река –						Ь		
пункт, пе- риод	Пара- метр ¹	<i>Z</i> _{ср} , м	<i>Z</i> _{мин} , м	В, м	<i>h</i> _{ср} , м	h _{макс} , М	<i>Q</i> , м³/с	
р. Парабель — с. Новиково, 1962—1974	Α	59,93	59,13	87,40	2,45	3,24	146,1 (75,8) ²	
	C _v	0,01	0,01	0,17	0,63	0,61	0,85 (0,41)	
	Min	59,28	58,56	61,00	0,64	0,90	24,40	
	D _{макс}	2,60	1,19	69,00	5,06	7,10	552,60	
	π	8,07	16,80	1,99	1,51	1,78	2,31 (1,30)	
	$\pi_{\kappa p}$	2,26	2,26	2,26	2,26	2,26	2,26 (2,32)	
р. Кенга — п. Центральный, 1964–1974	Α	41,65	40,34	38,99	2,12	3,43	56,8 (26,4)	
	C _v	0,01	0,01	0,28	0,54	0,52	0,95 (0,46)	
	Min	40,57	38,25	24,00	0,74	1,25	5,61	
	D _{макс}	2,97	2,59	44,00	3,45	5,95	199,39	
	π	-2,33	-5,38	2,8	5,78	4,38	2,79 (2,06)	
	$\pi_{\kappa p}$	2,25	2,25	2,25	2,25	2,25	2,25 (2,32)	
р. Васюган — с. Наунак, 1959—1971	Α	38,98	37,07	225,18	5,38	7,29	588,8 (305,0)	
	C _v	0,01	0,01	0,08	0,33	0,30	0,62 (0,24)	
	Min	38,17	35,57	190,00	2,45	3,42	109,00	
	D _{макс}	1,99	2,39	65,00	6,15	8,18	1271,00	
	π	5,48	5,76	1,74	0,34	0,42	1,46 (-0,46)	
	$\pi_{\kappa p}$	2,26	2,26	2,26	2,26	2,26	2,26 (2,30)	
р. Васюган — с. Средний Васю- ган, 1959—1974	Α	52,65	50,38	146,98	4,15	6,54	316,9 (157,5)	
	C_{v}	0,01	0,01	0,11	0,39	0,32	0,73 (0,29)	
	Min	51,65	49,36	112,00	1,40	2,85	32,80	
	D _{макс}	2,10	1,8	62,00	6,00	7,55	851,20	
	π	0,36	-1,97	0,30	-1,14	0,39	-0,14 (-0,35)	
	$\pi_{\kappa p}$	2,25	2,25	2,25	2,25	2,25	2,25 (2,30)	
р. Васюган — п. Майск, 1959—1974	Α	83,98	81,84	33,99	2,89	5,03	54,7 (2,9)	
	C_{ν}	0,01	0,01	0,43	0,51	0,52	0,95 (0,56)	
	Min	82,48	80,78	15,90	0,90	1,57	1,36	
	D _{макс}	6,89	1,77	124,10	5,50	9,23	228,64	
	π	0,36	-9,73	1,44	1,83	1,74	1,77 (-0,24)	
	$\pi_{{\scriptscriptstyle \mathit{KP}}}$	2,25	2,25	2,25	2,25	2,25	2,25 (2,33)	

 1 А — среднее арифметическое; С $_{v}$ — коэффициент вариации; Міп — минимальное значение; $D_{\text{макc}}$ — максимальная амплитуда; π и $\pi_{\text{кp}}$ — фактическое и критическое значения критерия Питмена. 2 В графе «Q, м 3 /с» в скобках приведены значения, полученные по рядам среднегодовых значений за весь период наблюдений

С учетом полученных результатов для решения практических задач проектирования гидротехнических сооружений и подводных переходов трубопроводов предлагается определять координаты профиля устойчивости $Z_{\rm ycr}$ (ниже которых размыв русла маловероятен) по формуле:

$$Z_{\scriptscriptstyle ext{ycT}} = \min(Z_{\scriptscriptstyle ext{MUH}}) - \max(D_{\scriptscriptstyle ext{h,MAKC}}) - \delta_{\scriptscriptstyle ext{h}},$$

где $\min(Z_{\text{мин}})$ — минимальное значение высотных отметок дна на исследуемом участке реки; $\max(D_{h,\text{мак}})$ — максимальное значение амплитуды вертикальных деформаций при фиксированном уровне воды, вычисленное для уровней в диапазоне от минимального до максимального уровней с обеспеченностью, принятой в учетом класса проектируемого сооружения; δ_h — погрешность определения глубины реки (в зависимости от метода измерения).

Подобным образом определяются расчетные прогнозные плановые деформации в течение расчетного срока эксплуатации проектируемого сооружения:

$$\Delta B_T = T \cdot (\max(D_{B,\text{make}}) + \delta_B),$$

где T — прогнозный период, лет; $\max(D_{B,\text{макс}})$ — максимальное значение амплитуды изменений ширины реки при фиксированном уровне воды, вычисленное для уровней в диапазоне от минимального до максимального уровней с обеспеченностью, принятой в учетом класса проектируемого сооружения; δ_B — погрешность определения ширины реки (в зависимости от метода измерения).

Таблица 2. Гидравлические характеристики рр. Кенга, Парабель и Васюган при различных уровнях воды

Река – объект, сред-									
ние ($Q_{\rm cp}$) и макси-	<i>Z</i> , м БС	Пара-			ļ ,	,			
мальные ($Q_{\text{макс, 50%}}$)		метр	<i>F</i> , M ²	В, м	<i>h</i> _{ср} , м	$h_{\text{макс,}}$ м			
расходы воды [4]									
	42,57	Α	39,89	30,96	1,27	2,14			
		C _v	0,25	0,11	0,16	0,25			
		D _{Makc}	10,58	4,65	0,26	0,57			
	43,57	Α	76,50	38,17	1,99	3,23			
р. Кенга – п. Цен-		C_{v}	0,19	0,06	0,16	0,16			
тральный¹		D _{макс}	18,14	7,76	0,28	0,71			
$Q_{cp}=21,7 \text{ m}^3/\text{c}$	44,57	Α	119,77	43,68	2,74	4,32			
$Q_{\text{MaKC, 50\%}} = 105 \text{ M}^3/\text{C}$		C_{v}	0,15	0,05	0,16	0,15			
		D _{макс}	22,91	9,02	0,40	0,80			
	45,57	Α	167,86	49,99	3,40	5,40			
		C _v	0,10	0,09	0,16	0,13			
		D _{макс}	24,45	13,28	0,22	0,39			
		Α	138,44	83,37	1,65	2,28			
	61,41	C _v	0,14	0,04	0,11	0,10			
	'	D _{макс}	52,24	9,30	0,49	0,55			
р. Парабель –		Α	315,96	96,58	3,27	4,28			
с. Новиково	63,41	C _v	0,08	0,02	0,08	0,07			
Q_{cp} =68 m ³ /c $Q_{MAKC, 50\%}$ =362 m ³ /c		D _{макс}	82,02	8,77	0,90	0,87			
Q _{Makc} , 50%−302 M / C	64,41	Α	420,77	101,90	4,14	5,33			
		C _v	0,07	0,03	0,08	0,05			
		D _{Makc}	107,75	11,58	0,94	0,84			
	85,41	Α	54,40	25,85	2,09	3,52			
		C _v	0,05	0,04	0,05	0,04			
		D _{макс}	9,86	3,87	0,41	0,57			
	86,41	Α	84,21	30,76	2,72	4,57			
р. Васюган –		C _v	0,04	0,03	0,05	0,03			
п. Майск		D _{Makc}	14,45	3,72	0,66	0,81			
$Q_{cp}=13.8 \text{ m}^3/\text{c}$	87,41	Α	119,53	37,61	3,17	5,62			
$Q_{\text{макс, 50}\%} = 142 \text{ M}^3/\text{C}$		C _v	0,03	0,03	0,05	0,03			
		D _{Makc}	14,53	4,55	0,61	0,96			
	88,41	A	160,11	43,63	3,66	6,59			
		C _v	0,02	0,01	0,02	0,02			
		<i>D</i> _{макс}	10,76	1,94	0,33	0,50			
	55,84	A	472,87	141,79	3,30	5,41			
		C_{v}	0,05	0,01	0,06	0,05			
		D _{Makc}	74,10	8,22	0,61	0,89			
р. Васюган –	57,84	A	769,03	155,74	4,91	7,49			
с. Средний Васюган		C _v	0,04	0,01	0,04	0,04			
Q_{cp} =665 m ³ /c $Q_{Makc, 50\%}$ =156 m ³ /c		D _{Makc}	119,43	6,11	0,82	0,98			
Q _{Makc} , 50%−130 M1/C	58,84	A	931,22	161,84	5,73	8,52			
		C _v	0,02	0,01	0,03	0,03			
		D _{макс}	72,48	5,39	0,62	0,94			
Уровни воды р. Кенга приведены в условной системе координа									

Рис. 2. Заболоченная старица притока р. Васюган (выделена пунктирной линией; фото О.Г. Савичева)

Рис. 3. Заболоченная долина притока р. Парабель с отсутствием руслового стока в большую часть года (выделена пунктирной линией; фото О.Г. Савичева)

Сопоставление распространенности на исследуемой территории болот (рис. 1), преобладающих типов руслового процесса (согласно схеме [4]) и материалов собственных полевых обследований позволили предположить, что одной из причин заболачивания Западно-Сибирской равнины могло быть постоянное переформирование речных русел в легко размываемых грунтах при отсутствии древесной растительности и избыточном увлажнении водосборов в результате таяния ледников, выпадения атмосферных осадков и затрудненности водного стока за пределы рассматриваемой территории. В подобных условиях наличие многочисленных стариц на фоне в ряде случаев стало катализатором заболачивания региона, что наблюдается и в настоящее время (рис. 2). Следовательно, русловой процесс активизировал болотообразование, которое в последующем привело к стабилизации русловых деформаций, по крайней мере, на малых реках (за счет большей устойчивости к эрозии торфяных берегов, определенной зарегулированности водного и уменьшения твердого стока с болот). Более того, в настоящее время наблюдается захват болотами не только водосборных территорий, но и самих

СПИСОК ЛИТЕРАТУРЫ

- 1. Савичев О.Г., Скугарев А.А. Распространение и гидрохимические особенности болотного процесса на территории Томской области // Гидрогеология, инженерная геология и гидрогео-экология: Матер. научн. конф. / Под ред. С.Л. Шварцева. Томск: Изд-во НТЛ, 2005. С. 174—182.
- Березин А.Е., Базанов В.А., Савичев О.Г. Принципы разработки кадастра торфяных болот (на примере районов нефтедобы-

русел малых водотоков, вплоть до фактического исчезновения некоторых из них (рис. 3).

Выводы

Предложена методика определения расчетных русловых деформаций и профиля устойчивости рек. В рамках апробации методики получена количественная оценка плановых и вертикальных деформаций русел рр. Васюган, Парабель и Кенга, что позволит объективно оценить опасности возникновения аварийных ситуаций на мостовых переходах автодорог, подводных переходах нефте- и газопроводов не только на указанных реках, но и в целом в таежной зоне Западной Сибири. Предложен механизм взаимовлияния болотных и русловых процессов в Западной Сибири. Последний результат позволяет наметить возможности управляющих воздействий на болотный процесс посредством руслоисправительных работ, нацеленных на усиление пропускной способности рек за счет спрямления и углубления русел.

Работа выполнена при финансовой поддержке РФФИ (грант Р_ОФИ 06-05-96924); 08-04-92497 НЦНИЛ_а.

- чи Томской области) // Охрана природы: сборник статей / Под ред. А.Е. Березина. Томск: Изд-во НТЛ, 2005. С. 13–26.
- Христофоров А.В. Надежность расчетов речного стока. М.: Изд-во МГУ, 1993. – 168 с.
- Ресурсы поверхностных вод СССР. Т. 15. Алтай и Западная Сибирь. Вып. 2. Средняя Обь. – Л.: Гидрометеоиздат, 1972. – 408 с.

Поступила 18.03.2008 г.