ИССЛЕДОВАНИЕ СВОЙСТВ ПОВЕРХНОСТИ НАНОСТРУКТУРИРОВАННЫХ СИЛИКОФОСФАТНЫХ ПЛЕНОК

¹Петровская Т. С., ²Козик В. В., ²Борило Л. П., ²Кузнецова С. А., ¹Килин В. А.

¹Национальный исследовательский Томский политехнический университет, г. Томск

²Национальный исследовательский Томский государственный университет, г. Томск

pts@tpu.ru

работе исследованы поверхностные свойства тонких плёнок, полученных золь-гель методом. Пленки получали из коллоидных пленкообразующих растворов качестве исходных веществ использовали (ΠOP). В (ТЭОС), ортофосфорную тетраэтоксисилан кислоту, хлорид кальция, растворитель этиловый спирт (95%). формировали на различных подложках (монокристаллический кремний, кварцевое стекло, др.) вытягивания (скорость ДО см/мин) с 30 последующей сушкой в муфельной печи при температуре 60 °C (1 час) и термообработкой при температуре 600 °C Дисперсные продукты (гидролизаты ПОР) (30 мин). получали сушкой влажного геля до воздушно-сухого рентгенофазового И состояния использовали ДЛЯ термического анализов.

Измерение вязкости ПОР проводили с помощью стеклянного вискозиметра ВПЖ-2 (диаметр капилляра 0,99 мм), термический анализ дисперсий — на дериватографе Q-1500 (от 25 до 1000°С, атмосфера — воздух). Кинетические параметры и энергию активации рассчитывали с помощью метода Метцера-Горовица. Для рентгенофазового анализа (РФА) дисперсных продуктов использовали дифрактометр

ДРОН-3М ($Cu_{K\alpha}$, $\lambda = 1,5418$ нм). Инфракрасные спектры кремнии, хиннэжжото при различных температурах, изучали в области частот 400-4000 см-1 с спектрофотометра Perkin Elmer помощью FTIR-Spectrometer. Для исследования микроструктуры пленок использовали растровый электронный микроскоп Philips ускоряющем SEM-515 при напряжении 30 Морфологию поверхности пленок изучали с помощью атомно-силового микроскопа NtegraAURA (диаметр иглы 2-5 бесконтактного кремниевой нм) профилометра MICRO MEASURE 3D station (STIL), адгезионные свойства пленок - с помощью СЅЕМ Місто Scratch Tester. Толщину пленок измеряли с помощью лазерногом эллипсометра ЛЭФ-3M ($\lambda = 632,8$ нм) при измерении в 5-ти точках по всей поверхности образца.

Установлено, что наряду с аморфной структурой кристаллические фазы содержат пленки кристаллических форм SiO_2 волластонита пирофосфата кальция Са₂Р₂О₇, хлорапатита. ИК спектры показывают наличие в пленках кремнийкислородных и фосфоркислородных атомных групп, [SiO₄] - тетраэдров, $[CaO_6]$ – октаэдров, а также присутствие воды и групп OH. Для оценки морфологии определены параметры шероховатости поверхности пленок, площадь удельной поверхности (18 -20 $\text{м}^2/\Gamma$), размер пор (17-20 нм). В зависимости от температуры термообработки (60 и 600 °C) значения рН поверхности изменяются от 3,8 до 10,8. Толщина пленок регулируется от 90 мкм и больше в зависимости от поставленной задачи. По данным атомносиловой микроскопии при содержании SiO₂ 50-65 % образуются структурированные пленки c развитым рельефом, высокой шероховатостью и адсорбционными свойствами, которые ΜΟΓΥΤ использоваться ДЛЯ

регулирования поверхностных свойств функциональных материалов.

ГОРЕНИЕ КАМЕННОГО УГЛЯ В ВОЗДУХЕ С ДОБАВКАМИ НАНОПОРОШКА ОКСИДА МЕДИ (II)

Котина Р. Е., Ильин А. П., Роот Л. О.

Национальный исследовательский Томский политехнический университет, г. Томск, ilyin@tpu.ru

Каменный уголь является одним из перспективных энергоносителей органического происхождения. исследований проблемой Актуальность связана \mathbf{c} повышения ресурсо- и энергоэффективности в получении тепловой энергии при сгорании каменного угля. В связи с этим, было проведено исследование влияния добавок нанопорошка оксида меди (II) на процесс сгорания каменного угля в воздухе.

Целью работы было сравнение теплоты сгорания каменного угля с добавками нанопорошка оксида меди (II) с теплотой сгорания исходного каменного угля.

Нанопорошок оксида меди (II) получали с помощью электрического взрыва проводников в среде газообразного аргона с добавкой 20 об. % кислорода. Полученный нанопорошок смешивали с измельченным углем и подвергали дифференциально-термическому анализу (термоанализатор SDT Q 600). Установлено, что скорость сгорания угля в смеси CuO (3,2 мас. %) увеличивалась в 7,7 раз в сравнении с углем без добавки, что связано с каталитическим эффектом. При этом на 197 МДж/т возросла теплота сгорания угля в воздухе. Согласно экспериментальным данным сгорание угля происходило в