УДК 621.928.3

СЕПАРАЦИЯ ЧАСТИЦ В КАНАЛАХ РОТАЦИОННОГО АППАРАТА

Василевский М.В., к.т.н., Зятиков П.Н.¹, д.т.н., Деева О.С., Бурыкин А.Ю., маг. Томский политехнический университет, г. Томск, Томский государственный университет¹, г. Томск E-mail: <u>zpavel@tpu.ru</u>

Центробежные пылеотделители с дополнительной сепарацией частиц в каналах ротора исследованы в [1, 2] с противоречивыми выво¬дами об эффективности процессов. Сепарация частиц исследована в каналах с относительной длиной, не превышающей l/h = 5÷6. В работе [3] приведены сведения, что на этой длине происходит интенсивное затухание «внешней» турбулентности и очевидно, что эффективная сепарация должна осуществляться в каналах с относительной длиной l/h>7. Расчеты сепарации частиц с учетом затухания турбулентности сравниваются с экспериментом. В [3,4] описаны различные типы ротационных

Рис. 1 Схема центробежного сепаратора: 1 – корпус, 2-выносной отделитель, 3 – ротор.

Рис. 2. Ротор пылеуловителя: 1-кольцевые диски; 2-пластины, образующие каналы; 3- несущие лопасти; 4-ступица; 5-фиксаторы; 6-крышка

аппаратов и приведены результаты экспериментального и теоретического исследования сепарации влаги из проточных частей турбин, анализируется эффективность внутриканальной сепарации и из пространства над рабочими лопатками при переменных геометрических параметрах ступеней. В [5] дано описание конструкции и схема компоновки турбосепаратора для выделения из природного газа газового конденсата. Отмечается хорошая работоспособность, высокая эффективность по сравнению с гравитационными сепараторами, причем вес турбосепаратора в 52 раза меньше гравитационного при одних и тех же условиях работы.

На рис. 1 приведена схема ротационного сепаратора [5].

Схема ротора приведена на рис. 2 [5].

На рис. 3 показана схема движения частицы в канале

Рис. 3. Скорость частицы в канале.

Компоненты скорости частиц в канале за счет центробежной силы и увлекающей силы газового потока показаны на рис.3. Кориолисовы силы, вследствие их малости, не учитываются. Принимается, что коэффициенты турбулентной диффузии для частиц и газа одинаковы, величины U_y , W_x не зависят от *x*, *y*.

Турбулентное движение аэрозоля в канале описывается уравнением, аналогичным [6] (знак осреднения опускается)

$$\frac{\partial}{\partial x}(c\upsilon_x) + \frac{\partial}{\partial y}\left(c\upsilon_y - D_y\frac{\partial c}{\partial y}\right) = 0$$
(1)

с граничными условиями $c\upsilon_y - (D_y\partial c/\partial y)|_{y=0}=0$, $\partial c/\partial y|_{y=h}=0$, $c(0,y)=c_0$, где $\upsilon_x \sin\alpha$; $\upsilon_x=W_x-\upsilon_x \cos\alpha$; $\upsilon_x=\omega^2 R\tau$; $\tau=\delta^2\rho_\delta/18\mu$. Здесь υ_y , υ_x – осредненные компоненты скорости частиц в канале; x, y — координаты; α — угол наклона канала к радиальному направлению; ω — угловая скорость ротора; W_x , W_y – осредненные компоненты скорости газа в x-ом и радиальном направлениях; δ , ρ_δ – диаметр и плотность частицы;

μ – коэффициент динамической вязкости газа; *R* – радиус ротора;

с – концентрация частиц с размером δ; *c*₀ – концентрация частиц с размером δ₀ на входе в ротор; D_y – коэффициент турбулентной диффузии частиц, определяемый как $D_y = l_y \sqrt{\overline{\nu'}_y}$ [10], где l_y – характеристическая длина турбулентного течения, по порядку равная высоте канала h. Последнее утверждение связано с тем обстоятельством, что при входе в ротор внешние вихри дробятся и имеют масштаб, равный расстоянию пластинами Ha между канала. входе канал В $D_{y0} = h \sqrt{v'_y}^2 = h W_*$, где $W_* = \sqrt{\tau_{ro}/\rho}$ – динамическая скорость, выраженная через напряжение трения на границе ротора. Интенсивность турбулентности на входном участке канала значительно меняется по его длине. Затухание «внешней» турбулентности происходит быстро и при относительной длине канала x/h=15 ее проявление незначительно при всех уровнях начальных возмущений [7]. Выразив длину канала в долях расстояния $l_{\rm T}$ т. е. расстояния затухания внешней турбулентности, можно представить зависимость затухания турбулентности по длине канала в обобщенном виде

$$D_{y}/D_{y0} = B(\overline{x}) = a + (1 - \overline{x})^{b}$$
, где $\overline{x} = x/I_{T}, a \approx 0,01, b \approx 2.$

Коэффициент турбулентной диффузии $D_{y0}=hW_*$ может быть определен следующим образом. В проточной части аппарата между корпусом и ротором реализуется турбулентное течение газа типа вихрестока, где имеется ядро с квазипотенциальным распределением тангенциальных скоростей. Для плоского и симметричного течения уравнение момента количества движения газа имеет вид

$$\rho \frac{1}{r} w_r \frac{\partial (w \varphi^r)}{\partial r} = \frac{1}{r^2} \frac{\partial}{\partial r} (\tau_r \varphi^r)$$

уравнение неразрывности газа $w_l r = K_l = \text{const},$

где $w_n w_{\varphi}$, – радиальная, тангенциальная компоненты скорости газа; $\tau_{r\phi-}$ турбулентное напряжение трения; ρ – плотность газа.

Интеграл уравнения момента импульса запишется в форме

$$\frac{1}{\rho}r^2\tau_{r\varphi} - K_1 r w_{\varphi} = K_2 \tag{2}$$

Основываясь на общих положениях полуэмпирической теории турбулентности, положим

$$\tau_{\kappa\phi} \Big| = -\rho\varepsilon r \frac{d}{dr} \left(\frac{w\phi}{r} \right)$$
(3)

В области течения, где $rw_{\varphi}=K_3 = \text{const}$ из (2) и (3) следует, что $\varepsilon = \underline{\text{const}}$ и соотношение (3) принимает вид

$$\left(-\frac{K_1}{\varepsilon}+2\right)K_3 = K_2$$

причем при $K_1/\varepsilon \rightarrow 2$, $K_z \rightarrow 0$ и при $K_1 l \varepsilon = 2$ величина ε однозначно зависит от K_1 При этом во всей области между вращающимся ротором и внешней поверхностью $K_2=0$.

Уравнение (3) перепишем в виде

$$\frac{1}{\rho}r^2\tau_{r\varphi} - rw_r rw_{\varphi} = 0 \quad \text{или} \quad \frac{\tau_{r\varphi}}{\rho} = w_r w_{\varphi} = w_*^2,$$

и на границе ротора

$$W_* = \sqrt{W_r U_p} \tag{4}$$

где $U_{\rm p} = \omega R$, W_r – радиальная компонента скорости газа на границе ротора.

Эффективность выделения частиц из потока газа в канале ротора определяется из соотношения

$$\eta_1 = 1 - \bar{c}_{*}, \ \bar{c}_{*} = \int_0^1 \bar{c} \ d\bar{y}, \tag{5}$$

где $\overline{y} = \frac{y}{h}; \ \overline{c} = \frac{c}{c_0}.$

l_k/h	ωτ	W_{r}/U_{p}	
		0.05	0.1
3	$5 \cdot 10^{-3}$	0.05	0.098
	10^{-2}	0.3(0.33)	0.15 (016)
	0.1	0.96	0.66 (1)
	0.5	099	0.96
9	$5 \cdot 10^{-3}$	0.4 (0.48)	0.22
	10^{-2}	0.66 (1)	0.4 (0.48)
	0.1	0.99	0.96 (1)
	0.5	0.999	0.99
18	$5 \cdot 10^{-3}$	0.65 (0.95)	0.4 (048)
	10^{-2}	0.9 (1)	0.65 (0.95)
	0.1	0,995	0.99 (1)
	0.5	0.999	0.999

Таблица 1. Эффективность сепарации частиц в канале ротора

В таблице 1. приведена эффективность сепарации частиц в канале для угла $\alpha = \pi/4$ при турбулентном течении аэрозоля, в скобках указаны значения эффективности без учета перемешивания частиц.

В таблице видно, что в диапазоне η₁=0,4—0,99 проявляется существенное различие эффективностей.

Работа была поддержана в рамках программы повышения конкурентоспособности Томского государственного университета, Томского политехнического университета и Российского фонда фундаментальных исследований (проект 14-08-00367/14 НК).

Список литературы:

- 1. Пречистенский С.А. Центрифугирование аэрозолей в ЦРП. М.: Атомиздат, 1960. –144 с.
- 2. Кучерук В.В. Очистка вентиляционного воздуха от пыли М.: «Машиностроение», 1963. –144 с.
- 3. Василевский М.В. Обеспыливание газов инерционными аппаратами. Томск: Изд-во Томского политехнического университета, 2008.– 248 с.
- 4. Филиппов Г.А., Поваров О.А. Сепарация влаги в турбинах АЭС. М.: Энергия, 1980, 320 с.
- 5. А.С. (СССР) 1009495 Ротор центробежного сепаратора для очистки газа / Василевский М.В., Анисимов Ж.А., Виклов В.Ю., Малкин А.И. // Б.И. 1983, № 13.
- 6. Фортье А. Механика суспензий. Пер. с франц. Мир, 1971, 264 с. Сукомел А.С., Величко В.И., Абросимов Ю.Т., Гуцев Д.Ф. Затухание турбулентности на входном

УДК 621.928.93

ОПРЕДЕЛЕНИЕ СВЯЗНОСТИ ДИСПЕРСНЫХ МАТЕРИАЛОВ

Василевский М.В., к.т.н., Разва А.С., к.т.н., Гребеньков Я.А. Томский политехнический университет, г. Томск E-mail: razva@mail.ru

Существующие методы определения структурно-механических характеристик порошкообразных материалов направлены на выявление их технологических свойств в конкретных производствах продукции. Поведение порошка в технологических процессах определяется его способностью оказывать сопротивление изменению объема, формы, нарушению целостности [1]. Эксплуатационная надежность систем пыле- и золоулавливания зависит от аутогезионных свойств (сцепления частиц друг с другом, связность). В технике газоочистки аутогезионным свойствам присвоен термин «слипамость». С целью прогнозирования поведения порошка изучаются его прочностные, реологические характеристики. Реальные порошки характеризуются неоднородностью, наличием агломератов, различаются плотностью упаковки частиц. С уменьшение размера частиц пористость увеличивается. При увеличении размеров частиц в 10 раз при одних и тех же условиях формирования материала относительная плотность возрастает в 2-3 раза [2]. Одним из показателей связности является прочность на разрыв слоя Т. В зависимости от этой прочности дисперсные материалы разделены на группы по слипаемости. По Е.И. Андрианову, пыль неслипающаяся, если прочность разрыва менее 60 Па; слабо слипающаяся 60<T<300 Па; среднеслипающаяся, если 300<Т<600 Па; сильнослипающаяся – прочность разрыва более