- 3. A.V. Gil, A.V. Starchenko. Thermophysics and Aeromechanics, 19, 503 (2012)
- 4. Gil A.V., Zavorin A.S., Starchenko A.V., Obukhov S.V. <u>Power Technology and En-</u> gineering, 45, 42 (2011)
- 5. A.M. Bubenchikov and A.V. Starchenko, *Numerical Models of the Dynamics and Combustion of Aerodisperse Mixtures in Channels*, (Tomsk State Univ., Tomsk, 1998)
- 6. A S Zavorin1 A V Gil1 P S Khaustov1 R B Tabakaev1 and D A Buslov. IOP Conf. Series: Materials Science and Engineering 66 012038 (2014)

УДК 536.4

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ТЕПЛОМАССОПЕРЕНОСА ПРИ ЗАЖИГАНИИ СИСТЕМЫ «ТКАНЬ – ГОРЮЧАЯ ЖИДКОСТЬ – ОКИСЛИТЕЛЬ» ЛОКАЛЬНЫМ ИСТОЧНИКОМ ЭНЕРГИИ

Глушков Д.О., Кузнецов Г.В., Стрижак П.А. Томский политехнический университет, Томск

В последние годы выполнены численные исследования процессов тепломассопереноса при зажигании твердых [1-4], жидких [5-8] материалов конденсированных веществ И полимерных [9, 10] ограниченной энергоемкости (металлические источниками И неметаллические частицы, проволочки, стержни, концентрированные потоки излучения и т.д.).

Целью настоящей работы является математическое моделирование процессов тепломассопереноса в системе «ткань – горючая жидкость – окислитель» и численное исследование предельных условий зажигания паров жидких горючих веществ (топлив), поступающих с поверхностей пропитанных ими тканей, при локальном нагреве.

Рассматривались физико-химические процессы в системе «ткань – горючая жидкость – окислитель». Принималось, что в начальный момент времени (τ =0) нагретая до высоких температур частица осаждается на ткань, пропитанную жидким горючим веществом, объемная доля которого (ϕ) известна. При локальном нагреве ткани компоненты горючей жидкости начинают интенсивно испаряться. Образующиеся пары горючего перемешиваются с окислителем – воздухом и нагреваются за счет энергии разогретой частицы. При достижении предельных температур парогазовой смеси и концентраций в ней горючего происходит воспламенение.

Исследования выполнены для типичных жидких топлив (бензин, керосин, дизельное топливо) и широко распространенных тканей (шерсть, шелк, лен). В качестве источника нагрева выбрана стальная частица в форме цилиндрического диска малых размеров R_p и Z_p .

В качестве условий воспламенения приняты [11]:

1. Теплота, выделяемая в результате химической реакции паров горючего с окислителем, больше теплоты, передаваемой от частицы системе «жидкость – ткань» и в среду окислителя.

2. Температура парогазовой смеси превышает начальную температуру частицы.

Рис. 1. Условная схема области решения задачи τ=0: 1 – воздух, 2 – горячая частица, 3 – ткань, пропитанная горючей жидкостью.

Математическая модель (аналогичная [1–10]), описывающая взаимосвязанные процессы теплопереноса в ткани, испарения горючей диффузионно-конвективного жидкости, тепломассопереноса И в газовой фазе, представлена системой нелинейных окисления дифференциальных уравнений. нестационарных Эта система соответствующими начальными и граничными условиями решена методом конечных разностей. Для решения разностных аналогов уравнений использован дифференциальных локально-одномерный метод. Одномерные разностные уравнения решены методом итераций с применением метода прогонки на каждой итерации при использовании неявной четырехточечной разностной схемы. Для повышения точности вычислений задавалось не менее 400 узлов разностной сетки по каждой из координат и использовался шаг по времени 10⁻⁶ с.

Достоверность полученных результатов проверялась сравнением с экспериментальными данными. Также реализована проверка закона сохранения энергии В области решения согласно алгоритмам, [5-8]. приведенным В Погрешность закона при выполнения температуры размеров варьировании И «горячей» частицы не превышала 2.5 %.

Переход к безразмерным переменным ($R=r/z_L$, $Z=z/z_L$, $\tau=t/t_m$, $\Theta=(T-T_0)/(T_m-T_0)$) был выполнен при использовании следующих масштабных величин: характерный размер области решения $z_L=0.02$ м; масштаб времени $t_m=1$ с; масштаб температуры $T_m=1000$ К.

Численное моделирование выполнено для следующих значений теплофизических и кинетических параметров:

воздух: *С*=1006 Дж/(кг·К), р=1.161 кг/м³, λ=0.026 Вт/(м·К);

сталь: C=470 Дж/(кг·К), ρ =7831 кг/м³, λ =49 Вт/(м·К), Q_c =205·кДж/кг;

лен: *С*=1580 Дж/(кг·К), ρ=1500 кг/м³, λ=0.088 Вт/(м·К);

шелк: *C*=1386 Дж/(кг·К), ρ=1560 кг/м³, λ=0.06 Вт/(м·К);

шерсть: *C*=1721 Дж/(кг·К), ρ=1320 кг/м³, λ=0.052 Вт/(м·К);

бензин: *C*=2060 Дж/(кг·К), ρ=751 кг/м³, λ=0.116 Вт/(м·К), *Q*_e=29.4·кДж/кг, *M*=100 кг/кмоль;

пары бензина: C=2280 Дж/(кг·К), $\rho=2.5$ кг/м³, $\lambda=0.027$ Вт/(м·К), $Q_0=45\cdot10^6$ Дж/кг, $E=130\cdot10^3$ Дж/моль, $k_0=7\cdot10^6$ с⁻¹, $\beta=0.0012$ К⁻¹, $D=14.12\cdot10^{-6}$ м²/с; $v=1.21\cdot10^9$ м²/с;

керосин: *C*=2190 Дж/(кг·К), ρ=885 кг/м³, λ=0.117 Вт/(м·К), *Q*_e=26.1·кДж/кг, *M*=166.2 кг/кмоль;

пары керосина: *C*=2370 Дж/(кг·К), ρ =2.8 кг/м³, λ =0.028 Вт/(м·К), *Q*₀=43.8·10⁶ Дж/кг, *E*=190·кДж/моль, *k*₀=7·10⁷ c⁻¹, β =0.00096 K⁻¹, *D*=8.07·10⁻⁶ м²/c; *v*=0.66·10⁹ м²/c;

дизельное топливо: *C*=2980 Дж/(кг·К), ρ=887.7 кг/м³, λ=0.1169 Вт/(м·К), *Q*_e=25·10³ Дж/кг, *M*=150 кг/кмоль;

пары дизельного топлива: *C*=3230 Дж/(кг·К), ρ =3.1 кг/м³, λ =0.029 Вт/(м·К), Q_0 =42·10⁶ Дж/кг, *E*=250·10³ Дж/моль, k_0 =9·10⁸ c⁻¹, β =0.0009 К⁻¹, *D*=5.29·10⁻⁶ м²/с; v=1.15·10⁹ м²/с.

Размеры частицы $R_p=0.15-0.25$, $Z_p=0.15-0.25$; толщина пленки $Z_1=0.15$; размеры области решения $R_L=Z_L=1$; начальная температура частицы $\Theta_p=1-1.5$; начальная температура воздуха и ткани, пропитанной горючим $\Theta_0=0.3$.

Здесь: C – удельная теплоемкость; D – коэффициент диффузии; E – энергия активации; k_0 – предэкспоненциальный фактор; Q_c – тепловой эффект кристаллизации материала частицы; Q_e – тепловой эффект испарения жидкости; Q_o – тепловой эффект реакции окисления паров горючего в среде окислителя; Θ_0 – безразмерная начальная температура воздуха и ткани, пропитанной горючим; Θ_p – безразмерная начальная температура частицы; β – коэффициент термического расширения; λ – коэффициент теплопроводности; ρ – плотность; υ – коэффициент кинематической вязкости; φ – объемная доля.

При численном моделировании значение объемной доли ф варьировалось в диапазоне от 5 до 50 %. Численно установлено, что стабильное зажигание рассматриваемой гетерогенной системы происходит при высокопористой структуре ткани (до 30 ÷ 40 % массы

гетерогенной системы составляет жидкое конденсированное вещество). Поэтому вне зависимости от температуры локального источника нагрева Θ_p и его размеров R_p и Z_p можно заключить, что для реализации зажигания в системе «ткань – горючая жидкость – окислитель» должно выполняться необходимое условие $\varphi > 30$ %.

Таблица 1. Зависимость безразмерного времени задержки зажигания от безразмерной начальной температуры частицы Θ_p .

$\Theta_{\rm p}$	1.50	1.45	1.40	1.35	1.30	1.25	1.20
$ au_{ m d}^{*}$	0.031	0.041	0.063	0.099	0.152	0.228	_
$ au_{ m d}^{**}$	0.030	0.039	0.058	0.081	0.127	0.187	_

 ${\tau_{\rm d}}^*$ – безразмерного времени задержки зажигания, установленного в результате математического моделирования;

 τ_{d}^{**} – безразмерного времени задержки зажигания, установленного в результате аппроксимации экспериментальных данных.

приведены полученные таблицах 1 и 2 зависимости интегральных характеристик зажигания (времен τ_d) от температуры Θ_p и характерного размера R_p (при фиксированном Z_p) металлической частицы для тканей, пропитанных несколькими видами жидких топлив керосин, дизельное топливо). (бензин, Для вычисления этих характеристик использовалась разработанная математическая модель. Ранее было установлено [5, 6], что именно соотношение площадей источника энергии конденсированным локального с контакта веществом и газовой средой определяет возможность реализации условий зажигания. Поэтому варьировался поперечный размер частицы $R_{\rm p}$, определяющий площадь ее контакта с тканью.

В таблице 1 также приведены экспериментальные значения τ_d и использованием метода наименьших полученная квадратов С аппроксимационная кривая. Видно достаточно хорошее соответствие экспериментальных результатов выполненных численных И значений исследований. Отклонения экспериментальных $au_{
m d}$ (по аппроксимационной кривой) от численных не превышают 18 %. При этом с ростом температуры Θ_p эти отклонения уменьшаются до 11 % (при Θ_p =1.45). Установленную особенность можно объяснить тем, что при моделировании использовались известные [12, 13] значения кинетических параметров реакций окисления (k_0 =const и E=const). Для приближения теоретических моделей к реальным приложениям целесообразно, согласно [12, 13], учитывать зависимость k₀ и E от температуры. В работах [12, 13] показано, что эта особенность важна при локальном нагреве малых капель, тонких пленок и больших

массивов жидких конденсированных веществ источниками нагрева ограниченного теплосодержания. В тоже время следует подчеркнуть, что такие задачи требуют отдельного изучения. Поэтому особенности физико-химических процессов, связанные с зависимостями $k_0=f(\Theta_p)$ и $E=f(\Theta_p)$, не проанализированы в настоящей работе.

Таблица 2. Зависимость безразмерного времени задержки зажигания тканей, пропитанных различными горючими жидкостями, от характерного размера источника нагрева R_p при $Z_p=0.4$, $\Theta_p=1.35$.

R _p	0.150	0.175	0.200	0.225	0.250
$ au_{ m d}^*$	0.102	0.094	0.090	0.089	0.087
$ au_{ m d}^{**}$	0.095	0.091	0.088	0.087	0.086
$ au_{ m d}^{***}$	0.087	0.080	0.076	0.075	0.073

 $\tau_{\rm d}^{*}$ – безразмерное время задержки зажигания ткани, пропитанной бензином;

 $\tau_{\rm d}^{**}$ – безразмерное время задержки зажигания ткани, пропитанной керосином;

 $\tau_{\rm d}^{***}$ – безразмерное время задержки зажигания ткани, пропитанной дизельным топливом.

Зависимости $\tau_d = f(R_p)$ (таблица 2) показывают, что характерные размеры источника (в частности R_p) менее масштабно влияют на интегральные характеристики зажигания по сравнению с Θ_p (таблица 1). Это обусловлено тем, что даже относительно малой площади контакта частицы с пропитанной тканью достаточно для достижения высоких скоростей фазового перехода и ускорения реакции окисления (при $\Theta_p > 1$).

В результате проведенных численных исследований в гетерогенной системе «ткань – горючая жидкость – окислитель» установлены отличия интегральных характеристик процессов зажигания тканей, пропитанных несколькими типичными жидкими топливами (бензин, керосин, дизельное топливо). Эти характеристики хорошо соответствуют результатам ранее выполненных экспериментальных исследований процессов зажигания гомогенных систем – жидких топлив [14]. В частности, выявлено, что времена т_d для систем с парами бензина минимальны, а для дизельного топлива максимальны (таблица 2) при прочих равных условиях. Времена τ_d для систем с парами керосина имеют некоторые промежуточные значения (таблица 2). Это обусловлено закономерностями испарения (температуры фазового перехода, кинетика, химический состав и т.д.) рассматриваемых топлив [14].

Рис.2. Изотермы Θ (a) и изолинии концентраций горючего C_f (б) в системе «стальная частица – шерстяная ткань, пропитанная керосином – воздух» в момент воспламенения (τ_d=0.314) при Θ_p=1.15, R_p=0.15, Z_p=0.25, φ=0.35: 1 – парогазовая смесь, 2 – металлическая частица, 3 – ткань, пропитанная горючей жидкостью.

Также установлено, что для системы «ткань – жидкое горючее вещество» при локальном нагреве возможна реализация трех режимов зажигания. Однако в отличие от гомогенных жидких топлив [5–8] наиболее типичным режимом при варьировании Θ_p , R_p , Z_p , φ в достаточно широких диапазонах является режим, при котором зона ведущей экзотермической реакции формируется в малой окрестности боковой поверхности источника нагрева (рис. 2).

Это обусловлено тем, что площадь контакта источника нагрева с веществом в системе «ткань – горючая жидкость – частица» меньше, чем в системе «горючая жидкость – частица» (при взаимодействии с жидкостями происходит погружение частицы и возрастает площадь теплоотвода в приповерхностный слой вещества). Поэтому локальный источник энергии остывает более интенсивно при взаимодействии с жидкостью по сравнению с системой, включающей пропитанную ткань.

В результате выполненных численных исследований установлены необходимые ($\phi > 30$ %) и достаточные ($\Theta_p > 1$) условия зажигания сложных гетерогенных систем – широко распространенных тканей (шерсть, шелк, лен), пропитанных типичными горючими жидкостями керосин, дизельное топливо), (бензин, при локальном нагреве. Определены масштабы влияния на интегральные характеристики зажигания температуры и размеров локального источника энергии, а также объемной доли жидкости В ткани. Установлено, что доминирующую роль играют значения $\Theta_{\rm p}$ и φ .

Результаты исследований позволяют сделать заключение 0 вероятности условий высокой реализации зажигания при взаимодействии типичных локальных источников нагрева не только с горючими И легковоспламеняющимися жидкими И твердыми конденсированными веществами, но и сложными гетерогенными структурами, В частности, тканями, пропитанными жидкими конденсированными веществами. При этом в случае малых толщин тканей и их высокой пористости процессы зажигания характеризуются небольшой инерционностью относительно $(\tau_{\rm d} < 0.1),$ близкой К гомогенным жидким топливам.

Исследования выполнены при поддержке гранта Президента Российской Федерации (МК-2391.2014.8).

Список литературы:

- Кузнецов Г.В., Мамонтов Г.Я., Таратушкина Г.В. Зажигание конденсированного вещества горячей частицей // Химическая физика. 2004. Т. 23. № 3. С. 67–72.
- 2. Захаревич А.В., Кузнецов Г.В., Максимов В.И., Кузнецов В.Т. Зажигание модельного смесевого состава одиночной частицей, нагретой до высоких температур // Физика горения и взрыва. 2008. Т. 44. № 5. С. 543–546.
- 3. Глушков Д.О., Кузнецов Г.В., Стрижак П.А. Численное исследование твердофазного зажигания металлизированного конденсированного вещества разогретой до высоких температур частицей // Химическая физика. 2011. Т. 5. № 6. С. 1000–1006.
- 4. Глушков Д.О., Кузнецов Г.В., Стрижак П.А. Численное исследование зажигания металлизированного конденсированного вещества источником, внедренным в приповерхностный слой // Химическая физика. 2013. Т. 7. № 3. С. 269–275.
- 5. Кузнецов Г.В., Стрижак П.А. Numerical Solution of the Problem of Ignition of a Combustible Liquid by a Single Hot Particle // Combustion, Explosion and Shock Waves. 2009. T. 45. № 5. С. 42–50.
- 6. Кузнецов Г.В., Стрижак П.А. Влияние формы нагретой до высоких температур частицы на газофазное зажигание пленки жидкости // Химическая физика. 2010. Т. 4. № 2. С. 249–255.
- 7. Высокоморная О.В., Кузнецов Г.В., Стрижак П.А. Моделирование зажигания жидкого топлива локальным источником при учете выгорания топлива // Химическая физика. 2011. Т. 5. № 4. С. 668–673.
- 8. Глушков Д.О., Стрижак П.А. Тепломассоперенос при зажигании растекающейся капли жидкого топлива по нагретой поверхности // Успехи машиностроения. 2014. Т. 2014. ID 269321. 9 с. doi:10.1155/2014/269321.
- Глушков Д.О., Стрижак П.А. Тепломассоперенос при зажигании твердого конденсированного вещества с относительно низкой теплопроводностью локальным источником энергии // Журнал инженерной термофизики. 2012. Т. 21. № 1. С. 69–77.

- Григорьева М.М., Кузнецов Г.В., Стрижак П.А. Свободноконвективный тепломассоперенос при газофазном зажигании кабельной изоляции в результате перенапряжения // Журнал инженерной термофизики. 2011. Т. 20. № 2. С. 192–200.
- 11. Вилюнов В.Н., Зарко В.Е. Зажигание твердых веществ. Амстердам, Эльсевер, 1989.
- 12. Франк-Каменецкий Д.А. Диффузия и теплоперенос в химической кинетике. Нью-Йорк, Пленум пресс, 1969.
- 13. Дагаут П., Казоннет М. Зажигание, окисление и горение керосина: Обзор экспериментальной и кинетической моделей // Успехи в энергетике и науке о горении. 2006. Т. 32. С. 48–92.
- 14. Кузнецов Г.В., Захаревич А.В., Максимов В.И. О механизме зажигания бензина одиночной металлической частицей, разогретой до высоких температур // Пожаровзрывобезопасность. 2008. Т. 17. № 5. С. 39–42.

УДК 620.197

АНАЛИЗ НА ОСНОВЕ ДИФФУЗИОННОЙ МОДЕЛИ НАСЫЩЕНИЯ СИЛИКАГЕЛЯ ПАРАМИ ВОДЫ ПРИ КОНСЕРВАЦИИ АГРЕГАТОВ ПАРОВОДЯНОГО ТРАКТА ТЭС

Голдаев С. В., д. ф-м. н., Хушвактов А. А. Томский политехнический университет, г. Томск Таджикский технический университет, г. Душанбе E-mail: <u>SVGoldaev@tpu.ru</u>

Опыт эксплуатации ТЭС показывает, что при некачественном проведении консервации их агрегатов, конденсация влаги, содержащейся в воздухе и газах, во время останова со снижением давления среды до атмосферного и попадание во внутренний объем кислорода воздуха вызывает стояночную атмосферную коррозию (САК) углеродистой стали [1].

Эффективное решение многосторонней проблемы защиты агрегатов пароводяного тракта (АПТ) ТЭС при простоях от САК позволит сохранить их рабочий ресурс, уменьшить материальные потери в результате коррозии металлов, снизить загрязнение окружающей среды [2].

В работе [3] предложено использовать для консервации АПТ ТЭС силикагель, который широко применяется в процессах очистки дымовых газов от диоксида углерода [4], в адсорберах воздухоразделительных установок [5] и др. Он производится в промышленных масштабах и имеет низкую цену [6].

При консервации АПТ ТЭС, поддержании заданной влажности в замкнутых объемах, достаточно широко распространено осушение в статических условиях. Количество загружаемого адсорбента в этом случае определяется в основном равновесной адсорбционной емкостью. Процесс насыщения силикагелей влагой в статических условиях характеризуется