СПИСОК ЛИТЕРАТУРЫ

- Гефле О.С., Лебедев С.М., Ткаченко С.Н. Применение метода диэлектрической спектроскопии для контроля состояния полимерных диэлектриков в электрическом поле // Известия томского политехнического университета. – 2006. – Т. 309. – № 2. – С. 114–117.
- Тареев Б.М. Физика диэлектрических материалов. М.: Энергоиздат, 1982. – 320 с.
- Справочник по электротехническим материалам / Под ред. Ю.В. Корицкого и др. – 3-е изд. перераб. – М.: Энергоатомиздат, 1986. – Т. 1. – 368 с.
- Бронштейн И.Н., Семендяев К.А. Справочник по математике. – М.: Наука, 1981. – 720 с.
- Липатов Ю.С. Структура, свойства наполненных полимерных систем и методы их оценки // Пластмассы. – 1976. – № 11. – С. 6–10.
- Lewis T.J. Interfaces and nanodielectrics are synonymous // Proc. Intern. Conf. on Solid Dielectrics. – Toulouse, France, July 5–9, 2004. – V. 2. – P. 792–795.

Поступила 14.04.2008 г.

УДК 535.215.12

ФОТОВОЛЬТАИЧЕСКИЙ ЭФФЕКТ В ПИРО- И ПЬЕЗОЭЛЕКТРИЧЕСКИХ КРИСТАЛЛАХ

Б.Х. Каримов

Ферганский государственный университет, Узбекистан E-mail: karimov1948@rambler.ru

Обнаружен и исследован фотовольтаический эффект в пиро- и пьезоэлектрических кристаллах. Определены фотовольтаические коэффициенты k_{ijk} для пироэлектрических кристаллов ZnO и кубических кристаллов ZnS. Определены величины K_{31} =2·10⁻¹⁰ A·cm·(BT)⁻¹, K_{33} =2·10⁻⁹ A·cm·(BT)⁻¹ при λ =460 нм и K_{31} =1·10⁻¹⁰ A·cm·(BT)⁻¹, K_{33} =3·10⁻¹⁰ A·cm·(BT)⁻¹ при λ =600 нм для ZnO, а также фотовольтаический коэффициент K_{14} =2·10⁻⁹ A·cm·(BT)⁻¹ для кубических кристаллов ZnS.

Ключевые слова:

Фотовольтаический эффект, фотовольтаический ток, фотовольтаический тензор, фотовольтаические коэффициенты, пироэлектрический кристалл, ZnO, ZnS, спектральное распределение, оптическое поглощение.

Введение

При освещении короткозамкнутого сегнетоэлектрика через него протекает стационарный ток, который в [1, 2] назван фотовольтаическим. Было показано, что именно фотовольтаический ток приводит к аномальному фотовольтаическому (АФ) эффекту в сегнетоэлектрике.

Аномальный фотовольтаический эффект, обнаруженный для сегнетоэлектриков впервые в [1, 2], является частным случаем АФ эффекта, описываемого для кристаллов без центра симметрии тензором третьего ранга α_{iik} [2, 3]

$$J_i = \alpha_{iik} E_j E_k^*. \tag{1}$$

Согласно (1), при равномерном освещении линейно поляризованным светом однородного кристаллов без центра симметрии (сегнето-, пиро- или пьезоэлектрического кристалла) в нем возникает фотовольтаический ток J_i , знак и величина которого зависят от ориентации вектора поляризации света с проекциями E_i , E_k^* .

Компоненты тензора α_{ijk} отличны от нуля для 20 ацентричных групп симметрии. Если электроды кристалла разомкнуть, то фотовольтаический ток J_i

генерирует фотонапряжение $U_i = \frac{J_i}{\sigma_T + \sigma_{\phi}} l$, где σ_T

и σ_{ϕ} соответственно темновая и фотопроводимость, l – расстояние между электродами. Генерируемые фотонапряжения достигают 10³...10⁵ В.

В соответствии с (1) и симметрией точечной группы кристалла можно написать выражения для фотовольтаического тока J_i . Сравнение экспериментальной угловой зависимости $J_i(\beta)$ с (1) позволяет определить фотовольтаический тензор α_{ijk} или

фотовольтаический коэффициент $K_{ijk} = \frac{1}{\alpha^*} \alpha_{ijk}$ (α^* – коэффициент поглощения света).

1. АФ эффект в пироэлектрических кристаллах ZnO

Все исследуемые кристаллы без центра симметрии представляли собой диэлектрики с широкой запрещённой зоной (E_g =2...7 эВ) и низкой проводимостью (σ =10⁻⁸...10⁻¹⁵ Ом⁻¹·см⁻¹). Поэтому требования, которые предъявлялись к методике эксперимента, в первую очередь обуславливались малыми величинами измеряемых токов (10⁻⁹...10⁻¹⁵A).

В работе использовался двухэлектродной метод непосредственного отклонения [2].

К кристаллам ZnO – полупроводникового соединения группы А^{¹¹}В¹¹, обладающего высокой пьезоэлектрической активностью, проявляется повышенный интерес в связи возможностью их использования в новых перспективных направлениях микро- опто-, акустоэлектроники (создания электромеханических преобразователей, интегральных линий задержки, усилителей ультразвуковых колебаний, канальных триодов, и т. д.).

Кристаллы ZnO является гексагональными, и принадлежат к точечной группе 6mm. В настоящей работе изложен результаты исследования AФ эффекта в пироэлектрических кристаллах ZnO.

В соответствии с (1) и симметрией точечной группы выражение для фотовольтаического тока J_z при освещении в *x* и *y* направлениях имеет вид:

$$J_{z} = \alpha_{31}I + (\alpha_{33} - \alpha_{31})I\cos^{2}\beta, \qquad (2)$$

где J_z — фотовольтаический ток в *z*-направлении (ось *z* совпадает с осью симметрии шестого порядка); *I* — энергетическая освещенность и β — угол между плоскостью поляризации света и оси *z*. Рис. 1 показывает экспериментальную угловую зависимость $J_z(\beta)$ для двух различных примесных спектральных участков (λ =600 нм и λ =460 нм) при освещении вдоль оси [010]. Сравнение экспериментальной угловой зависимости $J_z(\beta)$ с (2) позволяет определить численные значения фотовольтаических коэффициентов K_{ijk} . В результате были получены следующие значения:

 $K_{31}=2\cdot 10^{-10}; K_{33}=2\cdot 10^{-9}$ А·см·(Вт)⁻¹ для λ =460 нм; $K_{31}=1\cdot 10^{-10}; K_{33}=3\cdot 10^{-10}$ А·см·(Вт)⁻¹ для λ =600 нм.

Таким образом, фотовольтаические коэффициенты, характеризующие примесные центры в ZnO, сильно зависят от природы этих центров. Асимметрия центра (и, соответственно, разность $K_{33}-K_{31}$) растёт с ростом энергии активации центра.

Рис. 1. Ориентационная зависимость фотовольтаического тока J_z(β) в ZnO при 133 К. Направление распространение света вдоль оси [010] указано в верхней части рисунка

Этот вывод подтверждается также спектральным распределением J_z в ZnO (рис. 2, *a*). Оно показывает, что максимум при λ =460 нм имеет примесную природу.

Кривые 1 и 1¹, рис. 2, *а*, иллюстрируют влияние оптической перезарядки примесных центров на фотовольтаический эффект в ZnO. Кривая 1¹ была получена после предварительного освещения кристалла, а кривая 1 — без предварительного освещения в собственной спектральной области.

Рис. 2, *а*, показывает, что предварительное освещение кристалла в области собственной фоточувствительности приводит к увеличению концентрации носителей в ловушках, что в свою очередь увеличивает фотовольтаический ток за счёт ассиметричного возбуждения носителей из ловушек в зону. В темноте кривая 1¹ медленно переходит в равновесное состояние, т. е. в кривую 1. Это естественно связать с термическим опустошением ловушек. Рис. 2, *б*, показывает спектральное распределение фотопроводимости σ_{ϕ} в собственной области (кривая 3) и влияние предварительного освещения в собственной области на спектральное распределение ние примесной фотопроводимости (кривая 2 и 2¹).

Рис. 2. Спектральное распределение: а) фотовольтаического то тока J_z и б) фотопроводимости σ_{ϕ}

Кривые 2 и 2¹ иллюстрируют явление оптической перезарядки примесных центров в ZnO, о котором говорилось выше.

2. Фотовольтаический эффект в пьезоэлектрических кристаллах ZnS

В работе изложены результаты исследования объемного фотовольтаического эффекта в пьезоэлектрических кристаллах ZnS, принадлежащих к кубической точечной группе $\overline{43m}$. В отличие от сегнетоэлектриков [1–7] фотовольтаический эффект в ZnS можно наблюдать только в поляризованном свете [5, 6]. В соответствии с (1) и симметрией то-

чечной группы при освещении кристалла в *z* направлении оси 4-го порядка (оси *z*) выражение для фотовольтаического тока в *z* направлении имеет вид:

$$J_{Z} = \frac{1}{2} \alpha^{*} K_{14} I \sin 2\beta, \qquad (3)$$

где β – угол между плоскостью поляризации света и осью *x*.

Измерение фотовольтаического тока J_z и генерируемого им поля $\tilde{E}=J/\sigma_{\phi}$ (σ_{ϕ} – фотопроводимость) производилось путем снятая стационарных вольтамперных характеристик [2].

На рис. 3 представлена ориентационная зависимость $J_z = J_z(\beta)$ в направлении [001], снятая при 143 К при освещении в области $\lambda = 500$ нм ($\alpha^* = 5 \text{ cm}^{-1}$) при энергетической освещенности 2,3·10⁻³ Втсм⁻². Кристалл освещается плоскополяризованным светом в направлении [001]. Сравнение этой угловой зависимости с (3) даёт $K_{14} = 2 \cdot 10^{-9} \text{A} \cdot \text{см} \cdot (\text{Вт})^{-1}$. Таким образом, значение модуля K_{14} в исследованных кристаллах ZnS существенно выше, чем у известных сегнето- и пьезоэлектриков [1–3].

Рис. 3. Ориентационная зависимость плотности фотовольтаического тока J_z в направлении [001]

В интервале температур 140...300 К модуль K_{14} обнаруживает слабую температурную зависимость. Благодаря этому, а также из-за сильной температурной зависимости фотопроводимости σ_{ϕ} генерируемое в направлении оси z поле $\tilde{E}=J/\sigma_{\phi}$ изменялось в пределах от 1 В·см⁻¹ (T=300 K) до 40 В·см⁻¹ (при 143 K) и не зависело от энергетической освещенности.

СПИСОК ЛИТЕРАТУРЫ

- Glass A.M., Von der Linbe D., Nerren T.J. High-voltage Bulk Photovoltaic effect and the Photorefractive process in LiNbO₃ // J. Appl. Phys. Let. – 1974. – V. 25. – № 4. – P. 233–236.
- Фридкин В.М. Фотосегнетоэлектрики. М.: Наука, 1979. С. 186–216.
- Белиничер В.И. Исследования фотогальванических эффектов в кристаллах: Дис. ... докт. физ-мат. наук. – Новосибирск, 1982. – 350 с.
- Леванок А.П., Осипов В.В. Механизмы фоторефрактивного эффекта // Известия АН СССР. – 1977. – Т. 41. – № 4. – С. 752–769.

В кристаллах ZnS, выращенных гидротермальным методом, фотовольтаический эффект имеет в основном примесный характер. Это видно из рис. 4, где представлены спектральные распределения фотопроводимости и фотовольтаического тока, отнесенные к единице падающей энергии, и края полосы оптического поглощения.

Рис. 4. Спектральное распределение: 1) фотопроводимости σ_{ϕ} ; 2) фотовольтаического тока J_z и 3) оптического поглощения α^* при 143 К. β =45°

Примесная полоса в спектральном распределении J_z наблюдается вблизи λ =500 нм. Там же расположен примесный максимум фотопроводимости. Для кристаллов, выращенных в кислотной или щелочной среде, примесный максимум спектра смещается в пределах 450...500 нм.

Заключение

Обнаружен и исследован фотовольтаический эффект в пиро- и пьезоэлектрических кристаллах. Определёны фотовольтаические коэффициенты k_{ijk} для пироэлектрических кристаллов ZnO и кубических кристаллов ZnS. Для ZnO определены величины $K_{31}=2\cdot10^{-10}$ А·см·(Вт)⁻¹, $K_{33}=2\cdot10^{-9}$ А·см·(Вт)⁻¹ при λ =460 нм и $K_{31}=1\cdot10^{-10}$ А·см·(Вт)⁻¹, $K_{33}=3\cdot10^{-10}$ А·см·(Вт)⁻¹ при λ =600 нм. Определен фотовольтаический коэффициент $K_{14}=2\cdot10^{-9}$ А·см·(Вт)⁻¹ для кубических кристаллов ZnS.

Автор благодарит В.А. Кузнецова за предоставление кристаллов и В.М. Фридкина за обсуждение.

- Стурман Б.И., Фридкин В.М. Фотогальванические эффекты в средах без центра инверсии. – М.: Наука, 1992. – 208 с.
- Фридкин В.М. Объемный фотовольтаический эффект в кристаллах без центра симметрии // Кристаллография. – 2001. – Т. 46. – № 4. – С. 722–726.
- Волк Т.М., Иванов Н.Р., Исаков Д.В., Ивлева Л.И., Лыков П.А. Особенности электрооптических свойств кристаллов ниобата бария-стронция и их связь с доменной структурой // Физика твердого тела. – 2005. – Т. 47. – Вып. 2. – С. 293–299.

Поступила 12.05.2008 г.