УДК 614.876

ВЕРОЯТНЫЙ МЕХАНИЗМ ПРОЦЕССА ДЕЗАКТИВАЦИИ ОБОРУДОВАНИЯ В ХИМИЧЕСКИ АКТИВНЫХ СРЕДАХ И УЛЬТРАЗВУКОВЫХ ПОЛЯХ КАВИТАЦИОННОЙ ИНТЕНСИВНОСТИ

И.Д. Брус, Н.С. Тураев

Томский политехнический университет E-mail: gerin@phtd.tpu.edu.ru

Описан механизм образования радиоактивных отложений на поверхности оборудования реакторных заводов. Показано, что в результате гидравлических ударов при схлопывании кавитационных полостей наблюдается уменьшение и разрушение диффузионного слоя, а также механическое растрескивание части твердых отложений, что резко увеличивает скорость дезактивации.

Ключевые слова:

Радиоактивные отложения, ультразвуковая обработка, кавитационные полости, диффузионный слой, скорость дезактивации.

За длительное время работы заводов атомной промышленности накопилось значительное количество оборудования, вышедшего из эксплуатации. Часть такого оборудования хранится в могильниках. Чтобы улучшить экологическую обстановку вблизи предприятия и использовать металл (зачастую дорогостоящий, например нержавеющие стали) необходимо удалить радиоактивные отложения, то есть произвести дезактивацию.

В практике дезактивации в основном используют химические способы, основанные на растворении радиоактивных отложений при действии химических реагентов. Обычно используют две группы методов: так называемые жесткие процессы в которых используются высокие концентрации реагентов (более 1%), и мягкие процессы с использованием реагентов низких концентраций.

Выбор типа реагентов и их концентраций зависит от химической прочности отложений. Используют кислотные и щелочные растворы в присутствии окислителей и комплексных соединений.

Для дезактивации нержавеющей стали из жестких процессов распространён двухстадийный АРАС-процесс: первая стадия — окисление отложений щелочным раствором перманганата калия (конц. 10...20 %); вторая стадия — растворение кислым раствором цитрата аммония (конц. 5...15 %) [1, 2]. Эффективна дезактивация нержавеющей стали при обработке ее окислительным, а затем восстановительным раствором, в состав которого входят щавелевая кислота и пероксид водорода.

В зависимости от химической и механической прочности отложений степень дезактивации может составлять 90...99 %.

На внутренних поверхностях оборудования сублиматного и разделительного заводов могут отлагаться нерастворимые соединения урана: оксиды, тетрафторид и промежуточные фториды. Активация оборудования реакторного завода носит другой характер. Металлы, входящие в состав первого контура, подвергаются коррозии, попадают в теплоноситель и в активной зоне реактора облучаются нейтронами. При этом

образуются радиоизотопы ⁶⁰Co, ⁵¹Cr, ⁵⁴Fe, ⁵⁸Co и др. Часть активированных продуктов коррозии могут отложиться на поверхности оборудования и трубопроводов. После длительной эксплуатации в аппаратуре наблюдались отложения, состоящие из двух слоев. Верхний слой представлял собой сплошной рыхлый слой красно-бурого цвета, состоящий в основном из гематита (Fe₂O₃) с небольшими добавлениями хрома, никеля, марганца. Нижний слой был плотно сцеплен с поверхностью металла, он содержал вюстит (FeO), магнетит, а также смешанные оксиды железа и легирующих добавок (FeCr₂O₄, NiFe₂O₄, CoCo₂O₄) с прочной кристаллической структурой шпинелей [3].

Если верхний рыхлый слой легко растворяется кислотными растворами, то нижний слой даже при жестких процессах растворяется медленно и неполно (на 60...70 %). Известно, что существенно ускорить процесс очистки изделий от поверхностных загрязнений удается при использовании ультразвуковой активации химически активного реагента. Целью настоящих исследований было установить вероятный механизм процесса дезактивации оборудования в химически активных средах и ультразвуковых полях кавитационной интенсивности.

Для увеличения степени дезактивации и ускорения процесса на кафедре химической технологии редких, рассеянных и радиоактивных элементов ТПУ была использована ультразвуковая обработка.

Процесс дезактивации протекает на поверхности раздела фаз твёрдое тело-жидкость, т. е. относится к гетерогенным реакциям.

В случае, когда дезактивация проводится химическим реагентом без ультразвука и без перемешивания жидкой фазы, возникают большие различия в составах поверхностного и внутреннего слоев жидкой фазы. Выравнивание составов происходит только путем диффузии.

В этом случае распределение концентрации растворенного вещества от точки «Х» по высоте раствора представляется рис. 1. Кривые показывают распределение концентрации вещества «А» в различные моменты времени $\tau_1 < \tau_2 < \tau_3 < \tau_4$.

Если дезактивацию вести раствором химического реагента с механическим перемешиванием последнего, то характер распределения концентраций растворяемого вещества будет меняться, увеличится скорость выравнивания концентрации, что повысит скорость процесса в целом.

Распределение концентраций вещества «А» по высоте слоя раствора для моментов времени $\tau_1' < \tau_2' < \tau_3' < \tau_4'$ (рис. 2) указывает на то, что путем перемешивания можно добиться выравнивания концентраций в большей части объема жидкости, однако у поверхности раздела фаз всегда остается тонкий слой δ , выравнивание концентрации через который происходит путем диффузии.

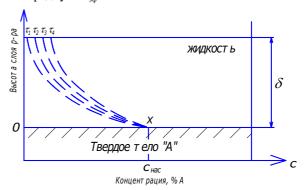
Скорость растворения в этом случае может быть выражена уравнением:

$$\frac{dC}{d\tau} = \frac{D \cdot S}{\delta} (C_{\text{\tiny HAC}} - C).$$

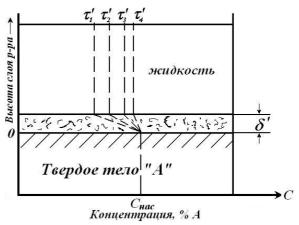
Из уравнения следует, что для повышения скорости растворения необходимо увеличить коэффициент диффузии D, поверхность взаимодействия фаз S, разность концентраций (C_{nac} -C) и уменьшать толщину диффузионного слоя δ .

Если дезактивация проводится химическим реагентом при перемешивании жидкой фазы с применением ультразвуковых полей кавитационной интенсивности, картина процесса дезактивации меняется.

В этом случае тонкий диффузионный слой, который может образоваться у поверхности раздела фаз, будет разрушаться гидравлическими ударами при захлопывании кавитационных полостей, возникающих во всем объеме жидкой фазы, в том числе и у самой поверхности раздела фаз. Можно допустить, что отслоившиеся мелкие частицы загрязнений и выделяющиеся в некоторых случаях при реагировании газы облегчают кавитацию в жидкости, а, значит, кавитационные процессы наибольшее развитие будут иметь у поверхности очищаемой детали. В этом случае процесс дезактивации может быть представлен рис. 3. Кривые представляют распределение концентрации вещества «А» в жидкой фазе в различные моменты времени τ_1 " $<\tau_2$ " $<\tau_3$ " $<\tau_4$ ", причем δ " $<\delta$ $<\delta$.


Механическое перемешивание и перемешивание за счет кавитации жидкости приводит к тому, что время выравнивания концентраций вещества «А» в объеме раствора сокращается, т. е. можно записать:

$$\begin{split} &\tau_{1} > \tau_{1}^{'} > \tau_{1}^{"}, \quad \tau_{3} > \tau_{3}^{'} > \tau_{3}^{"}, \\ &\tau_{2} > \tau_{2}^{'} > \tau_{2}^{"}, \quad \tau_{4} > \tau_{4}^{'} > \tau_{4}^{"}. \end{split}$$


За счет кавитационных взрывов у поверхности раздела фаз толщина диффузионного слоя будет сокращаться и может быть доведена до минимума.

Как показывают наши расчеты по методикам [2], для мольной доли водорода в расплаве металла, равной $3,57\cdot10^{-4}$, количество кавитационных заро-

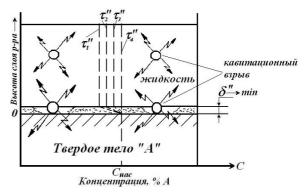

дышей составляет $4,64\cdot10^{23}\ 1/\text{м}^3$, а число кавитационных полостей $4,64\cdot10^{21}\ 1/\text{м}^3$ при их эффективном радиусе $R_{\text{эф}}=8\cdot10^{-6}\,\text{м}$.

Рис. 1. Схема распределения концентрации растворяемого вещества «А» по высоте раствора при отсутствии перемешивания

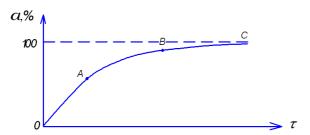

Рис. 2. Схема распределения концентрации растворяемого вещества «А» по высоте раствора при перемешивании

Рис. 3. Схема распределения концентрации растворяемого вещества «А» по высоте раствора при перемешивании и ультразвуковой кавитации жидкости

На скорость процесса дезактивации будут влиять также химические и физико-химические действия ультразвука.

Снятие слоя радиоактивных загрязнений протекает во времени во всех исследованных случаях по одной и той же закономерности-кривые зависимости степени дезактивации α от времени озвучивания τ имеют один и тот же вид, рис. 4.

Рис. 4. Характерная зависимость степени дезактивации оборудования от времени процесса

Кривую $\alpha = f(\tau)$ можно разбить на три участка: ОА, АВ и ВС. Отсюда процесс дезактивации можно рассматривать протекающим в три стадии:

- Снятие слоя радиоактивного загрязнения по толщине участок ОА. На этом участке кривой $\alpha = f(\tau)$ скорость реагирования постоянна. Это относится к реагированию основной массы загрязняющего слоя.
- Снятие наиболее прочно удерживающихся загрязнений, находящихся на поверхности дезактивируемой детали и начало удаление активности из пор и трещин (участок АВ). При этом поверхности центров реакции слились, а в отдельных местах активный слой снят на всю глубину, поэтому реакционная поверхность сокращается, скорость реакции замедляется.

СПИСОК ЛИТЕРАТУРЫ

- Wilic H., Neeb K.H. Decontamination procedures, equipment and experiences // Kerntechnik. – 1987. – V. 51. – № 4. – 259 p.
- MOPAC cleans its 100th reactor coolant pump // Nucl. Eng. Intern. - 1988. - V. 33. - № 408. - P. 20.
- Брусов К.Н., Крутиков П.Г., Осминин В.С., Чекмарев А.М. Продукты коррозии в контурах атомных станций. – М.: Энергоатомиздат, 1989. – 168 с.

Удаление активности из пор и трещин материала детали, а также продиффундировавшей в металл (участок BC). Можно предположить, что площадь поперечного сечения пор и трещин является постоянной по всей их глубине, отсюда поверхность реагирования на участке BC остается постоянной, постоянна и скорость процесса. Это наиболее трудно удаляемая часть активности; кривая $\alpha = f(\tau)$ идет под небольшим углом к оси абсцисе, приближаясь к 100 %.

Итак, гетерогенный процесс, протекающий в обычных условиях в диффузионной области, при улучшении массообмена с помощью ультразвуковой кавитации переходит в кинетическую, а точнее в псевдокинетическую область, т. к. снятие радиоактивных загрязнений происходит не только за счет химического растворения, но и за счет механического дробления при захлопывании кавитационных полостей.

Применение способа дезактивации при одновременном действии ультразвука и растворов химических реагентов обеспечивает полную дезактивацию оборудования сублиматного разделительного и реакторного заводов по α -, β -, γ -излучениям до санитарно допустимых норм и фона, а также сокращает время реагирования в десятки и сотни раз по сравнению с химическим способом дезактивании

Брус И.Д., Буйновский А.С., Курин Н.П., Андреев Г.Г. Применение высокоэнергетических полей ультразвуковой частоты в процессах рафинирования металлического урана // Цветные металлы. – 2005. – № 5–6. – С. 75–78.

Поступила 22.02.2008 г.