УДК 543.544.45

ОПРЕДЕЛЕНИЕ КИСЛОРОДСОДЕРЖАЩИХ КОМПОНЕНТОВ ВИНА НА ХЕЛАТСОДЕРЖАЩИХ СОРБЕНТАХ

Ю.Г. Слижов, Л.Е. Каличкина, А.Г. Кузьмина, О.Н. Першина, М.А. Гавриленко

Томский государственный университет E-mail: dce@mail.ru

Показана возможность селективного концентрирования летучих ароматических компонентов вина на сорбенты с адсорбционным слоем хелата металла. Проведено сравнение ацетилацетоната никеля, ализарината меди и диметилглиоксимата цинка по селективности сорбции отдельных классов кислородсодержащих соединений. Определены оптимальные условия концентрирования летучих сложных эфиров, альдегидов и кетонов и проведен анализ паровой фазы коммерческих сортов французских вин.

Ключевые слова:

Анализ вина, капиллярная газовая хроматография, хелатосодержащие сорбенты.

Определение летучих компонентов напитков и, в частности, вина несколько десятилетий выполняют газохроматографическими методами. Наличие селективных детекторов и легкость подключения к масс-спектрометру для надежной идентификации целевых компонентов делают газовую хроматографию наиболее популярным методом анализа вина и виноматериалов [1].

Методом газовой хроматографии были определены летучие вещества, определяющие аромат белых и красных вин [2, 3]. В дальнейшем, этим же методом в вине обнаружили ряд химических веществ, относящихся к спиртам, простым и сложным эфирам, ацеталям, алифатическим и ароматическим альдегидам и кетонам, терпеновым соединениям, предельным и непредельным углеводородам, аминам и другим классам органических соединений [4].

Сложность в анализе микрокомпонентов летучей фазы вина создают пары воды. Независимо от сорта, происхождения и качества напитка около 90 % его содержания составляет вода, которая мешает предварительному концентрированию целевых веществ на сорбент путем блокирования центров активности на их поверхности [5]. В связи с этим актуальной является разработка сорбентов, способных концентрировать микроколичества кислородсодержащих летучих соединений, но не ухудшать свои свойства под действием паров воды.

В данной работе предложены сорбенты на основе силикагеля, модифицированные слоями диметилглиоксимата цинка, ацетилацетоната никеля и ализарината меди, показавшие ранее селективные свойства по отношению к кислородсодержащим соединениям [6, 7]. На хелатсодержащих сорбентах изучен состав кислородсодержащих компонентов вин, обеспечивающих его вкусовые и ароматические свойства. В работе применён вариант анализа паровой фазы с непосредственной подачей анализируемой газовой смеси в хроматограф, что позволяет оценить состав летучих компонентов без их потерь.

Экспериментальная часть

Хроматографическое исследование образцов проведено на газовом хроматографе «Agilent Technologies — 6890 N» с пламенно-ионизационным детектором и приставкой парофазного ввода пробы. Использована капиллярная колонка FFAP (Angilent) длиной 30 м, внутренним диаметром 0,25 мм и толщиной пленки 0,3 мкм. Начальное давление составляло 16 рsi. Температура колонки на начальном этапе 40 °C, затем нагрев в течение 35 мин со скоростью 4 °C/мин до 180 °C, после анализа, выдержка при 200 °C в течение 5 мин. Скорость прохождения газа через колонку 4 мл/мин.

Пробу объемом 50 мл помещали в колбу с барботером (установка для стриппинга) на 100 мл. Через пробу пропускали элюирующий газ (Не) со скоростью 45 мл/мин. Концентрирование осуществляли при подогреве пробы до 60...70 °С в течение 30 мин. Затем обработанный концентратор помещали в виал, герметично закрытый пробкой, и выдерживали при 180 °С в течение 20 мин.

После завершения концентрирования проводили обратную продувку гелием для удаления избытка паров воды и этанола.

Результаты и их обсуждение

Для сорбционного концентрирования применили хелатсодержащие сорбенты в сравнении с универсальным полимерным сорбентом тенакс, который часто используют для подобной пробоподготовки [8]. Данные по сравнению эффективности примененных концентраторов представлены в табл. 1. Видно, что хелатсодержащие сорбенты позволяют сорбировать многие кислородсодержащие компоненты вина более эффективно, чем тенакс, вероятно, вследствие специфичных межмолекулярных взаимодействий электронодонорных атомов кислорода в функциональных группах сорбатов и акцепторными ионами металла в хелатах и могут успешно использоваться для концентрирования.

Таблица 1. Содержание летучих веществ (%) после концентрирования с использованием различных сорбентов (силипор 0,75, модифицированный): 1) ацетилацетонатом никеля; 2) диметилглиоксиматом цинка; 3) ализаринатом меди (n=3, S,=0,13...0,29); 4) тенкас

Соединение	1	2	3	4
Этаналь	0,91	1,62	1,21	0,22
Этилметаноат	0,09	-	0,03	-
Метилэтаноат	0,01	-	-	-
Этилэтаноат	0,16	0,18	0,17	0,04
Метанол	1,06	1,35	1,12	1,64
Пропанол-2	0,04	0,06	0,07	-
2,3-бутандион	0,02	0,03	0,03	0,05
Бутанол-2	-	0,03	0,03	0,05
Пропанол	0,06	-	-	-
Этил-3-метилбутаноат	0,03	0,02	0,06	0,07
3,3-диметилпропилэтаноат	0,01	-	0,01	-
2-метил-1-пропанол	0,41	0,47	0,88	0,76
Бутанол	0,01	0,02	0,03	0,01
3-метил-1-бутанол	1,04	1,85	1,32	1,32
3-метил-2-бутанол	0,19	-	0,10	0,05
Гексанол	0,07	-	0,08	0,02
Этил-2-гидроксопропаноат	0,03	-	0,01	-
Этановая кислота	0,03	0,22	0,18	0,22
Этилоктаноат	0,02	0,01	0,01	-
Бензальдегид	0,01	-	0,01	-
2-метилпропановая кислота	0,25	-	-	0,03
Пентановая кислота	0,01	-	0,01	-
4-бутанолид	1,91	0,13	0,70	0,17
Бутановая кислота	0,02	-	0,02	0,01
3-метилбутановая кислота	0,02	-	0,02	0,01
Гептановая кислота	0,15	-	0,07	0,01
Этилфенилэтаноат	0,86	0,44	0,55	0,54
Гексановая кислота	0,01	-	0,01	0,01

Диметилглиоксимат цинка менее эффективно сорбирует кислородсодержащие вещества, по сравнению с ацетилацетонатом никеля и ализаринатом меди. Это можно объяснить растворимостью указанного комплекса в этиловом спирте. При элюировании паров спиртовой смеси через сорбент, содержащий диметилглиоксимат никеля, последний разрушается, и чем длительнее этот процесс, тем менее воспроизводим результат анализа.

Показано, что вещества, обладающие склонностью к донорно-акцепторному взаимодействию, к которым относятся большинство кислородсодержащих соединений вина, более прочно удерживаются на хелатных комплексах вследствие образования ассоциата с электронодефицитной частью комплекса металла. На хелатосодержащих сорбентах было определено и идентифицировано около 40 кислородсодержащих компонентов, входящих в состав белых и красных вин, табл. 2.

Из приведённых в табл. 2 данных видно, что основное количество идентифицированных компонентов в исследованных образцах приходится на долю сложных эфиров, спиртов, альдегидов (этаналь, метилэтаноат, этилэтаноат, пропанол-2, ме-

танол, этанол, 3-метилпропилэтаноат, бутанол-1, гексанол, фурфураль). Эти вещества характерны для всех исследованных марок вина. Они количественно преобладают над другими веществами, входящими в состав вин. Кроме того, характерными составляющими аромата и вкуса вина могут быть этилпропаноат, 3-метил-2-бутанол, 3-метил-1-бутанол, пропанол-1, пропановая кислота, 2-метилпропановая кислота, пентановая кислота, бутанол-2 и пентанол-2. Остальные идентифицированные соединения встречаются не во всех исследованных сортах вина.

Ароматические соединения, такие как терпеноиды, придают вину «цветочный» аромат; 2-фенилэтанол придаёт вину «сладкий», «благоуханный» аромат; эфиры уксусной кислоты — «сладкий», «фруктовый», «банановый» аромат; большинство эфиров имеют аромат «яблока», «фруктов», «сладкого»; их оценивают как соединения, придающие вину приятный аромат. Чем больше этих соединений в вине, тем более приятным ароматом оно обладает. Высшие спирты придают вину «алкогольный», «удушливый» запах, так, 3-метилбутанол придает запах алкоголя, гексанол-1 — «терпкий», «острый»; метанол — запах «кипящей» капусты, что вносит негативный вклад в аромат вещества [2].

Из этого можно сделать вывод, что вина «Барон де Тур Бордо» 2006 г., «Шато Ла Сере» 2002 г. имеют более приятный, цветочный, фруктовый, сладкий аромат, чем в другие проанализированные вина вследствие большего содержания таких соединений, как метилэтаноат, 2-метилпропилэтаноат, этилэтаноат.

Помимо ацетатов, эфиров и альдегидов некоторые образцы имеют в своём составе терпеноиды, например, «Шато Дю Гайон Бордо» 2004 г. и «Шато Помпред Бордо» 2006 г. обладают более насыщенным ароматом и вкусом, а также имеют меньшее содержание высших спиртов.

Выводы

Методом высокоэффективной капиллярной газовой хроматографии с применением предварительного концентрирования на хелатсодержащий сорбент изучен качественный и количественный состав летучих компонентов образцов виноградных вин производства Франции. Показано, что сорбенты с комплексами металлов проявляют большую селективность к летучим кислородсодержащим соединениям. Наиболее эффективным представляется использование сорбента на основе ацетилацетоната никеля, который позволяет сорбировать максимальное число летучих компонентов и проявляет стабильность при воздействии паров спирта и воды.

Таблица 2. Содержание идентифицированных веществ (г/см³) во французских винах: 1) «Шато Ла Сере 2002 г.»; 2) «Шато Дю Гайон Бордо 2004 г.»; 3) «Шато Гаррита Сэн Мартэн 2005 г.»; 4) «Шато Гаррита Сэн Мартэн 2006 г.»; 5) «Шато Помпред Бордо 2006 г.»; 6) «Барон де Тур Бордо 2006 г.»; 7) «Шевалье Де Бур 2007 г.» (n=2−5, S_r=0,41...0,88)

Соединение	1	2	3	4	5	6	7
Этаналь	1,76·10 ⁻⁶	2,17·10 ⁻⁶	5,75·10 ⁻⁶	6,12·10 ⁻⁶	5,33 · 10 ⁻⁶	8,27·10 ⁻⁶	1,58·10 ⁻⁶
Метилэтаноат	7,66·10 ⁻⁵	4,04•10-5	6,44·10 ⁻⁶	1,22•10-5	7,82•10-6	2,27•10-5	9,49•10-6
Этилэтаноат	4,71•10-6	3,33 · 10 ⁻⁶	2,3·10 ⁻⁶	1,61·10 ⁻⁶	1,24·10 ⁻⁶	3,38·10 ⁻⁶	3,16·10 ⁻⁶
Метанол	4,44•10-4	3,53•10-4	2,18 • 10 - 4	1,65•10-4	1,39•10-4	1,98•10-4	2,68•10-4
Пропанол-2	4,48 • 10 - 5	4,56·10 ⁻⁵	2,68•10-5	2,25•10-5	-	-	3,99•10-5
Этил-2-метилпропаноат	_	_	2,0•10-5	1,27·10 ⁻⁵	4,15·10 ⁻⁵	-	_
2,3-бутандион	7,8·10 ⁻⁶	1,09•10-5	9,21•10-6	5,28·10 ⁻⁶	-	5,64·10 ⁻⁶	4,9·10 ⁻⁶
2-метилпропилэтаноат	2,06•10-6	4,35·10 ⁻⁶	6,9·10 ⁻⁶	1,42·10 ⁻⁶	5,58·10 ⁻⁶	1,44•10-6	1,58·10 ⁻⁷
Этилпропаноат	7,35·10 ⁻⁷	1,45·10 ⁻⁶	1,15·10 ⁻⁶	1,22·10 ⁻⁶	1,24·10 ⁻⁷	-	-
1-Метилпропанол	5,88 · 10 ⁻⁷	2,17·10 ⁻⁶	1,73·10 ⁻⁶	1,29•10-6	1,24·10 ⁻⁷	1,25·10 ⁻⁴	3,16·10 ⁻⁷
Этил-3-метилбутаноат	7,35•10-8	-	5,15 · 10 ⁻⁶	6,44•10 ⁻⁷	6,21 · 10 ⁻⁸	-	-
Пропанол	1,01•10-5	7,1·10 ⁻⁶	5,52 · 10 ⁻⁶	5,28·10 ⁻⁶	8,56·10 ⁻⁶	-	2,18 • 10 -5
3,3-диметилпропилэтаноат	_	_	_	5,79·10 ⁻⁷	_	2,26·10 ⁻⁶	_
2-Метил-пропанол	2,35•10-6	4,34·10 ⁻⁶	3,57 · 10 ⁻⁶	3,22•10-6	2,36•10-6	-	3,64·10 ⁻⁶
Бутанол-1	1,62·10 ⁻⁶	2,75•10-6	1,44·10 ⁻⁶	1,16·10 ⁻⁶	1,24·10 ⁻⁶	2,63·10 ⁻⁶	2,85·10 ⁻⁶
3-Метилбутанол	5,4·10 ⁻⁴	7,2•10-4	6,81•10-4	3,92•10-4	6,32•10-4	-	4,17•10-4
Пентанол-1	1,91·10 ⁻⁵	5,36·10 ⁻⁶	2,3•10-6	4,25•10-6	6,08·10 ⁻⁶	-	-
Гексанол	3,35•10-5	5,64·10 ⁻⁵	3,27•10-5	3,45·10 ⁻⁵	5,31·10 ⁻⁵	2,9•10-5	4,27·10 ⁻⁶
Этановая кислота	4,66•10-5	3,65•10-5	3,15·10 ⁻⁵	4,9•10-5	5,48·10 ⁻⁵	3,02•10-5	2,78 • 10 -5
Фурфураль	2,65·10 ⁻⁶	6,66·10 ⁻⁶	3,92•10-5	3,21•10-5	7,61·10 ⁻⁵	7,37 · 10 ⁻⁶	1,12·10 ⁻⁵
Бензальдегид	1,62·10 ⁻⁶	4,49·10 ⁻⁶	9,78•10-6	9,27•10-6	1,64•10-5	3,01·10 ⁻⁶	5,06·10 ⁻⁶
Пропановая кислота	1,76·10 ⁻⁶	2,75•10-6	7,71·10 ⁻⁶	7,72•10-6	8,07•10-6	3,01·10 ⁻⁶	6,33 · 10 ⁻⁷
2-Метилпропановая кислота	1,47·10 ⁻⁷	_	_	6,44·10 ⁻⁷	6,21·10 ⁻⁸	4,51·10 ⁻⁶	_
Пентановая кислота	3,68•10-6	5,36·10 ⁻⁶	3,45·10 ⁻⁶	9,79•10-6	3,72·10 ⁻⁷	5,26 · 10 ⁻⁶	5,38 · 10 ⁻⁶
4-бутанолид	2,94•10-7	-	5,75 · 10 ⁻⁷	1,29·10 ⁻⁷	6,21 · 10 ⁻⁸	-	-
Гексановая кислота	1,4•10-6	4,49·10 ⁻⁶	5,75 · 10 ⁻⁷	6,43·10 ⁻⁷	3,72·10 ⁻⁷	3,76·10 ⁻⁶	_
Бензиловый спирт	2,48 • 10 -5	2,9·10 ⁻⁷	_	7,73·10 ⁻⁷	1,24·10 ⁻⁷	-	1,58•10-8
Гептановая кислота	2,69•10-5	2,48•10-5	2,60•10-5	1,19·10 ⁻⁴	6,97•10-5	2,92•10-5	2,91•10-5
Этилфенилэтаноат	2,21•10-7	_	3,45·10 ⁻⁶	1,29·10 ⁻⁶	_	-	_
2-Фенилэтанол	_	5,80·10 ⁻⁷	_	-	-	-	_
3,7-диметил-1,6-октадиенол-3	-	4,71·10 ⁻⁶	-	-	6,21·10 ⁻⁸	-	_
Диэтилсукцинат	-	4,71·10 ⁻⁶	-	-	6,21 · 10 ⁻⁸	-	-
Гексилэтаноат	-	4,71·10 ⁻⁶	-	-	-	4,81·10 ⁻⁶	6,33 •10 ⁻⁷
Этил-2-гидроксопропаноат	-	4,71·10 ⁻⁶	-	-	-	-	-
3-Метилбутановая кислота	-	4,71·10 ⁻⁶	-	-	_	-	-
Терпинол	-	4,71·10 ⁻⁶	-	-	-	-	-
2-Этилгексанол	-	5,68·10 ⁻⁶	-	-	-	-	-
•		•	•				

СПИСОК ЛИТЕРАТУРЫ

- 1. Михеева Е.В., Анисимова Л.С., Хахенберг Х., Шмидт Л. Газохроматографический анализ равновесной паровой фазы. М.: Мир, 1979. 160 с.
- Falque E., Fernandez E., Dubordieu D. Differentiation of white wines by their aromatic index // Talanta. 2001. № 54. P 271–281
- 3. Jan C.R., Demyttenae R., Dagher C. et al. Flavour analysis of Greek white wine by solid-phase microextraction-capillary gas chromatography-mass spectrometry // J. Chromatoger. 2003. V. 985. P. 233—246.
- Позняковский В.М., Помозова В.А., Киселёва Т.М. Экспертиза пищевых продуктов и продовольственного сырья. Экспертиза напитков. – Новосибирск: Изд-во Новосиб. ун-та, 1999. – 276 с.

- Другов Ю.С., Родин А.А. Анализ загрязнения биосред и пищевых продуктов: практическое руководство. М.: БИНОМ. Лаборатория знаний, 2007. 294 с.
- Слижов Ю.Г., Гавриленко М.А. Комплексообразование с участием хелатов металлов на границе раздела фаз в газовой хроматографии // Журнал координационной химии. 2002. Т. 28. № 10. С. 783–800.
- 7. Слижов Ю.Г., Гавриленко М.А. Применение внутрикомплексных соединений в газовой хроматографии. СПб.: Спецлит, 2003. 140 с.
- Бетхер В.Н., Кабина Е.А., Георгиади-Авдиенко К.А. Парофазная экстракция органических веществ из водных сред // Журнал аналитической химии. 2007. Т. 62. № 4. С. 342–349.

Поступила 12.05.2008 г.