ИЗМЕРЕНИЕ ПАРАМЕТРОВ ДЕФЕКТОВ СЛОЖНОЙ ФОРМЫ В АКТИВНОМ ТЕПЛОВОМ НЕРАЗРУШАЮЩЕМ КОНТРОЛЕ

Разумова А. А., Ширяев В. В.

Томский политехнический университет, г. Томск Научный руководитель: Ширяев В. В, к.т.н., доцент кафедры физических методов и приборов контроля качества

Введение

Дефектоскопия - это область знаний, охватывающая теорию, методы и технические средства определения дефектов в материале контролируемых объектов типа несплошности материала, оценки физико-химических свойств материала и измерения геометрических параметров деталей [1, 2].

В данной статье рассматривается активный метод теплового неразрушающего контроля (АТНК). Проводя диагностику данным методом, производят нагрев/охлаждение объекта контроля (ОК), передачу его тепловой энергии специальными внешними источниками тепла для создания тепловых потоков внутри изделия. Высокая чувствительность аппаратуры для регистрации тепловых полей, таких, как тепловизоры, пирометры и др. не имеет особого значения в производственных условиях [3]. Цель работы - измерение параметров дефектов в ОК.

Теоретический раздел

Для проведения теоретических расчетов в качестве программного обеспечения были использованы программа ThermoCalc2D. Теоретическая модель исследования – цилиндр. С помощью программы были рассчитаны следующие данные для стеклопластика (объекта контроля), которые записаны в Таблице 1:

Толщина ОК d в указанных точках Ti (см.	L=4,	L=6,	L=8,
рис.1), мм	T 1	T2	T3
Температурный сигнал dT, °C	0,067	0,065	0,056
Время появления максимума температуры	18,225	18,525	18,699
сигнала t, с			

Таблица 1. «Характеристики температурного сигнала»

На рисунке 1 показан ОК и размещение точек измерения температур.

Рис. 1. Объект контроля а) Профиль ОК, б) Размещение точек измерения температур

Таблица 2. «Значения температуры в	бездефектной области ОК»

		1 71				
	T1',°C,	T2',°C,	T3',°C,	T4',°C,		
Стеклопластик	41,37	41,29	41,19	41,41		
Таблица 3. «Значения температуры в дефектной области ОК»						
	T1,°C,	T2,°C,	T3,°C,	T4,°C,		
Стеклопластик	41,26	41,29	41,19	41,41		
Таблица 4. «Контраст ОК»						
	$\overline{C_0(T1)}$	C_0	(T2)	$C_0(T3)$		
Стеклопластик	0,0036	0,0)029	0,0053		

Расчет контраста проводился по следующей формуле:

$$C_0 = \frac{T4 - T}{T4}$$

i

Таблица 5. «Контраст ОК – влияние толщины материала под дефектом»

	C' (T1)	C' (T2)	C' (T3)
Стеклопластик	0,0027	0	0

Расчет контраста проводился по следующей формуле: $C' = \frac{Ti' - Ti}{Ti'}$

Ti'

Результаты теоретических исследований показывают, что для материалов с теплопроводностью от 0,1 до 10 Вт/м·К температурный сигнал имеет слабую зависимость от толщины материала под дефектом.

Эксперимент: односторонний контроль образца

Для проведения опыта по изучению зависимости глубины дефекта собрана залегания ОТ толщины изделия, была экспериментальная установка, с помощью которой был проведен эксперимент и получены следующие данные, показанные в таблице 6.

Гаолица о. «Объект контроля с черным покрытием в два слоя»			
Толщина ОК L в указанных точках Ti (см.	L=4,	L=6,	L=8,
рис.1), мм	T1	T2	T3
Температурный сигнал dT, °С	1,3	1,63	1,45

Термограмма объекта контроля, по которой с помощью программы ThermoFit Pro были определены температурные сигналы:

Рис. 3. Распределение температуры по образцу. Термограмма № 80

Значения температурных сигналов, полученные в эксперименте для данного покрытия показывают, что поверхность ОК необходимо покрыть слоем краски не менее, чем в два слоя, чтобы устранить влияние поверхности ОК на сигнал.

В таблице 7 показаны данные, которые были получены в определенных точках на поверхности (см. рис. 1,б) объекта контроля.

	T0	T1	T2	T3
Температура, °С, 3 кадр	14,83	18,07	16,95	16,45
Температура, °С 80-ый кадр	1,3	1,63	1,45	1,27
Сигнал, °С, 3 кадр		3,24	2,12	1,62
Сигнал, °С, 80-ый кадр		0,33	0,15	-0,03
Контраст (3 кадр)		0,22	0,14	0,12
Контраст (80-ый кадр)		0,25	0,12	-0,02

Таблица 7. «Данные в точках Т0-Т4»

Определение коэффициента температуропроводности данного образца

Для иллюстрации влияния изменения толщины материала под образце проведен дефектом исследуемом эксперимент В по определению его коэффициента температуропроводности.

Рис.4. Объект контроля с точками исследования

Таблица 8. «Определение коэффициента температуропроводности»						
№ п/п	1	2	3	4	5	6
$a, \mathrm{M}^2/\mathrm{c}$	1,43.10-7	$1,17 \cdot 10^{-7}$	$1,56 \cdot 10^{-7}$	$1,3.10^{-7}$	1,43.10-7	1,43.10-7

Среднее квадратичное отклонение по точкам 3-5-6: $\sigma = 0.063 \times 10^{-7}$.

Расчеты показывают, что отклонение коэффициента температуропроводности меньше 1,5%, следовательно, влиянием толщины материала под дефектом можно пренебречь при его определении.

Дисперсия общая: D=0,0015*10⁻¹³. Дисперсия по точкам 3-5-6: D=0,0004*10⁻¹³.

Заключение

По полученным данным можно сделать следующие выводы о том, что экспериментальные теоретические данные практически И совпадают. Представленные данные несколько различаются по абсолютным значениям, что связано с тем, что неизвестна точная мощность ламп-вспышек и данный параметр в программах ThermoFit ThermoCalc2D стоит заданным по умолчанию. Данный Pro И эксперимент показывает, что изменение толщины ОК за дефектом при данных условиях практически не влияет на результаты. Однако следует иметь ввиду, что при измерительных процедурах необходимо знать значение глубины залегания дефекта.

Список информационных источников

1.Виды дефектоскопии. Классификация. И методы Ультразвуковой, магнитный, вихретоковый, капиллярный методы [Электронный дефектоскопии // pecypc]. URL: http://gosnik.postach.io/60-vidy-i-metody-defektoskopii-klassifikatsiiaultrazvukovoi-magnitnyi-vikhretokovyi-kapilliarnyi-metody-defektoskopii (дата обращения 05.01.2015)

2.Юношев М. А. ДЕФЕКТОСКОПИЯ // [Электронный ресурс]. Юношев М. А. Забурненко Е. В. (руководитель). – 2014. – URL: http://www.scienceforum.ru/2014/pdf/6822.pdf (дата обращения 05.01.2015)

3.Инфракрасная термография и тепловой контроль: научное издание/ Вавилов В. П.; редактор Клейзер В. П. – Москва: ИД Спектр, 2013. – 27, 91-93, 179 с.

БЕТАТРОН С ШИРОКИМ УГЛОМ РАСХОЖДЕНИЯ ПУЧКА ИЗЛУЧЕНИЯ

Руденков Д.Е.

Томский политехнический университет, г. Томск Научный руководитель: Касьянов С.В., к. т. н., с.н.с. лаборатории разработки бетатронов

Главной задачей неразрушающего контроля является изучение и анализ объектов без их деформации и разборки. Эту задачу можно решить с помощью радиометрических систем неразрушающего контроля на основе источников высокоэнергетического тормозного излучения. Одним из таких источников является бетатрон.

Бетатрон - это индукционный ускоритель электронов. Принцип его действия заключается в ускорении электронов по круговой орбите с помощью электрического поля, индуцируемого изменяющимся во времени магнитным потоком. В работе бетатрона, можно выделить три основных этапа: первый этап – это ввод пучка электронов в ускорительную камеру. Второй этап – ускорение электронов, при этом их энергия увеличивается. На третьем этапе производится смещение пучка электронов с равновесной орбиты на мишень. После попадания электронов в мишень, получается коротковолновое тормозное излучение.

Одним применений бетатрона, ИЗ самых важных для неразрушающего контроля, является его использование в досмотровых комплексах. Метод цифровой рентгенографии, используемый помощью бетатронов, отличает высокая информативность, основанная на возможности визуализации структуры объекта контроля, выявления, идентификации веществ недопустимых локальных вложений И определения их геометрического положения.

Для удобного и быстрого досмотра объекта, к досмотровым комплексам предъявляются определённые требования: пропускная