УДК 537.52;533.9

ПОТЕРИ ЭНЕРГИИ В РАЗРЯДНИКЕ И ЕГО КОММУТАЦИОННАЯ ХАРАКТЕРИСТИКА ПРИ ЭЛЕКТРИЧЕСКОМ ВЗРЫВЕ ПРОВОДНИКА

А.Н. Григорьев

НИИ высоких напряжений Томского политехнического университета E-mail: alex nick@mail.ru

Предложен способ определения зависимости активного сопротивления коммутатора R_{sw}(t) от времени по осциллограмме тока *I*(*t*) в контуре. Знание зависимости R_{sw}(t) позволяет производить оценки энергии, теряемой в коммутаторе и проводить оптимизационные исследования по повышению эффективности передачи энергии из емкостного накопителя в нагрузку (взрываемый проводник). Информация по R_{sw}(t) (активному сопротивлению всего разрядного контура) позволяет также проводить контроль измерений контура.Исследование коммутационной характеристики воздушного разрядника, работающего на самопробое, показало ее заметное влияние на КПД передачи энергии из емкостного накопителя в нагрузку. В случае, когда индуктивность коммутатора L_{sw}≈(0,05...0,1)L_c потери в коммутаторе составляют величину ~11...22 % от энергии, введенной в медный проводник (режим взрыва, близкий к согласованному по энергии с бесконечной паузой тока).

Ключевые слова:

Емкостной накопитель энергии, коммутатор, разрядный контур, взрываемый проводник, эффективность передачи энергии, активное сопротивление, осциллограмма, нагрузка.

Введение

В настоящее время электрический взрыв проводников (ЭВП) широко используется в экспериментальной физике, технике и технологии [1-6]. Интенсивное развитие электровзрывных технологий – получение импульсных давлений и наноразмерных порошков делает актуальным поиск путей повышения эффективности ЭВП, в частности, повышения эффективности передачи энергии из емкостного накопителя во взрываемый проводник. Основным элементом, определяющим эффективность передачи энергии во взрываемый проводник, является коммутатор (разрядник).

Элементы разрядного контура

При всем многообразии применений явления ЭВП [1-6] принципиальная схема разрядного контура установок различного назначения остается практически одинаковой. Ее основными элементами (соединенными последовательно) являются накопитель электрической энергии, сильноточный замыкающий коммутатор и взрывающийся проводник. Накопитель электрической энергии и коммутатор образуют собой генератор импульсных токов, нагрузкой которого служит взрывающийся проводник. Одна из простейших схем замещения разрядного RLC-контура с учетом коммутатора при электрическом взрыве проводника приведена на рис. 1. При этом считается, что индуктивность взрываемого проводника L_w постоянна до момента собственно взрыва и представлена на рисунке линейным элементом.

Особенности работы коммутатора в электрофизических установках

Повышение скорости ввода энергии в нагрузку вынуждает предпринимать попытки сведения к минимуму индуктивности и активного сопротив-

ления всего разрядного контура. При этом вклад индуктивности коммутирующего разрядника в индуктивность контура может достигать 40 %, а энерговыделение в коммутаторе к моменту времени $t \cong T/4$ (первому максимуму тока), в случае работы ГИТ на закоротку (в случае опыта короткого замыкания) — величины порядка 30 % от общего запаса конденсаторной батареи [7]. Такие сравнительно высокие значения энергии, выделяющейся в разряднике при коммутации им больших токов, должны приниматься во внимание при решении вопроса о выборе коммутирующего разрядника в установке. Таким образом, коммутатор, с одной стороны, уменьшает амплитуду тока в нагрузке (снижает скорость ввода энергии во взрываемый проводник), а, с другой, снижает КПД передачи энергии из емкостного накопителя в нагрузку. Первая и вторая проблемы тесно связаны между собой.

Любой коммутатор (разрядник) обладает характерным для него временем коммутации – зависимостью напряжения на коммутаторе $U_{sw}(t)$ (или сопротивления $R_{sw}(t)$) от времени [8]. Эту зависимость принято называть характеристикой коммутации. Эта характеристика определяется как типом самого коммутатора, так и протекающим через коммутатор током I(t), т. е. $U_{sw}(t)$ зависит от зарядного напряжения накопителя U_0 и импеданса нагрузки.

Целью данной работы является изучение вопроса потерь энергии в коммутаторе применительно к проблеме повышения эффективности ЭВП (осуществление согласованного по энергии взрыва), а также исследование влияния индуктивности разрядника (коммутатора) и контура на коммутационную характеристику разрядника и потери энергии в нем.

Специфика работы коммутатора при ЭВП

Характерной особенностью ЭВП как нагрузки ГИТ является растущее со временем электрическое сопротивление. При этом форма импульса тока и напряжения отражает не только изменения в сопротивлении проводника в процессе его нагрева и взрыва, но и взаимодействие этих изменений с элементами всего разрядного контура (в первую очередь с коммутатором). Коммутатор является элементом, который, как и другие элементы разрядного контура, определяет характеристики взрыва проводника и характеристики которого, в свою очередь, сами определяются параметрами контура, зарядным напряжением конденсаторной батареи и нагрузкой ГИТ – характеристиками взрываемого проводника [9, 10].

Влияние коммутатора на эффективность ввода энергии во взрываемый проводник в подавляющем большинстве работ не учитывалось. До настоящего времени не предпринималось явных попыток описания характеристик коммутатора при его работе на ЭВП-нагрузку (в отличие от диодной нагрузки). Особенностью разрядного контура с ЭВП является реализация работы комбинированного емкостноиндуктивного накопителя энергии, в результате чего величина индуктивности разрядного контура L. оказывает неоднозначное влияние на характеристики электрического взрыва. Индуктивность коммутатора, как элемента разрядного контура, также может оказывать неоднозначное влияние на характеристики взрыва и КПД разрядного контура (эффективность передачи энергии из емкостного накопителя в ЭВП-нагрузку).

Величины, характеризующие ЭВП (величина введенной в проводник энергии, время и скорость ее ввода) определяются как теплофизическими свойствами взрываемого проводника, так и электротехническими параметрами всего разрядного контура. Наличие в схеме замещения разрядного контура (рис. 1) нелинейных элементов (взрываемого проводника и коммутатора) не позволяет произвести точный аналитический расчет контура. Характерной особенностью данных элементов является рост сопротивления взрываемого проводника и уменьшение его у коммутатора с течением времени и с увеличением тока. В процессе срабатывания коммутатора и ввода энергии во взрываемый проводник, сопротивление коммутатора заметно изменяется, проходя область интенсивного поглощения энергии из контура.

Проблема управления процессами, сопровождающими ЭВП, и получением нанопорошков контролируемой дисперсности напрямую связана со скоростью ввода энергии во взрываемый проводник [11]. Поэтому основной проблемой является нахождение способа оптимально повысить скорость нарастания (dI/dt) и амплитуду импульса тока в нагрузке (ЭВП). При этом для повышения КПД передачи энергии из емкостного накопителя во взрываемый проводник необходимо стремиться осуществить взрыв в согласованном (по сопротивлению и энергии) режиме и уменьшить энерговыделение в коммутирующем разряднике.

Понятие согласованного взрыва

Существуют различные определения «согласованного взрыва» — разные авторы брали за основу различные факторы [12–15]. Каждое из них отражает свой аспект «согласования».

- Согласование по напряжению остаточным напряжением на конденсаторной батарее после взрыва (U_c) и пробивным напряжением по продуктам взрыва (U_{np}), так что U_c < U_{np} [12].
- Согласование по сопротивлению сопротивлением нием ВП (*R*_{BI}) и волновым сопротивлением контура (*z*) на стадии ввода энергии до собственно взрыва – для повышения эффективности и скорости ввода энергии [13]. Согласование может быть выполнено для различных моментов времени, но наиболее целесообразно делать согласование ближе к моменту собственно взрыва, когда ток близок к амплитудному значению (реализация работы индуктивного накопителя). Так, в [13] предлагается делать это к моменту времени *t*_e≈(0,6...0,9) *T*/4, где *T* – период разряда конденсаторной батареи в режиме короткого замыкания.
- 3. Согласование по энергии проводник за первый импульс тока потребляет практически всю энергию, первоначально запасенную в конденсаторной батарее [14, 15]. Как следствие, за счет практически полного разряда конденсаторной батареи, происходит согласование по напряжению. В.С. Седым [15] было предложено уравнение, описывающее с точностью ±20 % различные экспериментальные данные:

$W/W_{o} = (h_{e}/h_{o})^{0.5},$

где W — энергия, введенная в проводник; W_o — энергия, запасенная в конденсаторной батарее; h_e — интеграл удельного действия тока, требуемый для взрыва данного металла; h_o — потенциальное

действие контура. Как было показано в [15], при $W=W_o$, $h_e/h_o=1$ среднеинтегральное значение сопротивления \tilde{R} проводника равно волновому сопротивлению контура *z*:

$$z \int i^2 dt = \int i^2 R dt, \tilde{R} = z.$$

Т. е. в соответствии с [15], согласование по энергии включает в себя и согласование по сопротивлению.

Нахождение электротехнических характеристик коммутатора и методика эксперимента

Основной электротехнической характеристикой коммутатора является его характеристика коммутации – $U_{sw}(t)$. Для детального изучения поведения коммутационной характеристики коммутатора в зависимости от параметров контура необходимо ее измерение.

Возможны два подхода к изучению зависимости $U_{sw}(t)$. Первый подход связан с использованием делителей напряжений и анализом контура по законам Ома и Кирхгофа [9, 10]. По величине протекающего через коммутатор тока I(t) и падению напряжения на коммутаторе $U_{sw}(t)$ определяется импеданс разрядника в функции времени $Z_{sw}(t) = U_{sw}(t)/I(t)$.

Основным недостатком данного способа является нахождение не активного сопротивления коммутатора, а его импеданса. При этом величина U_{sw} в любой момент времени *t* протекания тока определяется следующим образом:

$$U_{sw}(t) = (R_{sw} + dL_{sw}/dt) \cdot I(t) + L_{sw}$$

$$dI/dt = R_d \cdot I(t) + L_{sw} dI/dt = Z_{sw} \cdot I(t), \qquad (1)$$

где R_d – динамическое сопротивление коммутатора.

Отсутствие информации о зависимости индуктивности коммутатора от времени $L_{sw}(t)$ не позволяет из измерений $U_{sw}(t)$ найти зависимость активного сопротивления коммутатора от времени $R_{sw}(t)$. (На начальной стадии развития разряда, когда происходит формирование и расширение канала разряда, величина dL_{sw}/dt особенно велика).

Также возможен и другой подход, связанный с вычислением активного сопротивления коммутатора R_{sw} в функции времени по измеренному току в контуре I(t) в приближении $L_{sw}(t)$ =const или при задании закона изменения $L_{sw}(t)$. В общем случае, при решении такого рода задач необходимо численное решение дифференциального уравнения с переменными коэффициентами. Но, учитывая устойчивость решений дифференциального уравнения для данного рода задач (порядок дифференциального уравнения не изменяется, решения не бифурцируют [16, 17]), становится возможным в первом приближении найти зависимость $R_{\infty}(t)$ из известного решения дифференциального уравнения для RLC-контура (второго порядка) с постоянными коэффициентами:

$$I(t) = \frac{U_0}{\omega_0 L_c} \cdot \exp(-\frac{R_c}{2L_c}t) \cdot \sin \omega_0 t.$$
(2)

Тогда сопротивление коммутатора в функции времени для случая колебательного разряда запишется как

$$R_{sw}(t) = -\frac{2L_c \ln \frac{I(t) \cdot \omega_0 L_c}{U_0 \cdot \sin \omega_0 t}}{t} - R'_c, \qquad (3)$$

где L_c – индуктивность контура; U_0 – зарядное напряжение конденсаторной батареи; ω_0 – свободная частота колебаний в контуре, вычисленная в приближении R_c , L_c =const и совпадающая с реально измеренной; R'_c – активное сопротивление контура без коммутатора.

Таким образом, из одной экспериментально измеренной осциллограммы тока становится возможным, в первом приближении, рассчитать коммутационную характеристику коммутатора $R_{sw}(t)$ и по ней рассчитать динамику потерь энергии в коммутаторе. При этом пренебрежение вкладом в коммутационную характеристику $L_{sw}(t)$ не повлияет на баланс энергии, выделившейся в активном сопротивлении разрядного контура.

Объектом данного исследования являлся неуправляемый воздушный искровой разрядник. Величина разрядного промежутка составляла 1 см, диаметр полусфер – 4 см. Емкость конденсаторной батареи C_0 составляла 1,6 мк Φ . Суммарная индуктивность разрядного контура L_c изменялась от 300 до 550 нГн. В качестве закоротки (невзрываемого проводника) использовалась медная проволока диаметром 1 мм. В качестве взрываемого проводника использовалась медная проволока диаметром 0,3 мм. Для осуществления режима взрыва, близкого к согласованному (по напряжению и энергии), длина проводника составляла 8 см. Регистрация тока в контуре осуществлялась с помощью пояса Роговского, напряжения на взрываемом проводнике - с помощью омического делителя напряжения.

Неуправляемый воздушный искровой разрядник

Данный тип коммутатора широко используется в установках, работающих в частотном режиме, в частности в установках по получению нанопорошков. Поэтому актуален поиск режимов работы коммутатора, которые обеспечили бы минимизацию потерь энергии в нем.

Предложенный способ определения зависимости $R_{sw}(t)$ из формулы (3) по осциллограмме тока I(t) в контуре позволяет производить оценки энергии, теряемой в коммутаторе и проводить оптимизационные исследования по повышению эффективности передачи энергии из емкостного накопителя в нагрузку.

На рис. 2, 3 приведены зависимости сопротивления, мощности и энергии, выделившейся в коммутаторе при различных индуктивностях контура L_0 и коммутатора L_{sw} . Индуктивность коммутатора, также как и индуктивность контура, оказывает за-

Рис. 2. Характеристика коммутации (а) и зависимости энерговыделения и мощности в коммутаторе от времени (б) при различных индуктивностях контура L₀ (L₄=497 нГн, L₂=324 нГн; индуктивность коммутатора L_{3M}=const)

Рис. 3. Характеристика коммутации (а) и зависимости энерговыделения и мощности в коммутаторе от времени (б) при различных индуктивностях коммутатора L_{SM2} (L_d=497 нГн, L_d=519 нГн)

метное влияние на потери энергии в коммутаторе – с ростом индуктивности разрядника происходит увеличение его активного сопротивления, при этом уменьшаются потери энергии в нем к одному и тому же моменту времени (рис. 2, 3). Пунктирной прямой на рисунках показана величина волнового сопротивления контура $\rho = (L_c/C_0)^{0.5}$.

На рис. 4 приведены зависимости сопротивлений коммутатора R_{sw} и взрываемого медного проводника R_w от времени и динамики энерговыделения и мощности в коммутаторе и взрываемом проводнике. Способ оценки сопротивления коммутатора по формуле (3), при наличии в цепи разрядного контура взрываемого проводника, позволяет оценивать сопротивление коммутатора до тех пор, пока сопротивление проводника мало по сравнению с сопротивлением коммутатора. В дальнейшем при существенном росте сопротивления оценка R_{sw} по (3) становится некорректной. Тем не менее, в случае режима «быстрого» ЭВП ($10^{-6} < t < 10^{-5}$ с) оценка потерь энергии в коммутаторе до момента времени $t\sim 1$ мкс (когда происходит основное энерговыделение в разряднике) возможна.

На рис. 5, 6 представлены зависимости потерь энергии в разряднике. Как видно из рисунков, потери энергии в разряднике составляют ~11...22 % и зависят от индуктивности контура и соотношения между ее составляющими: (L_b+L_{sw}) и L_w .

а

б

Рис. 4. Зависимости от времени: а) сопротивлений коммутатора R_{sw} и взрываемого проводника R_w; б) энерговыделения и мощности в коммутаторе и взрываемом проводнике

Рис. 5. Энергия, выделившаяся во взрываемом проводнике E_w и коммутаторе W_{sw} (a) и потери энергии в коммутаторе δ_{sw} (б) в зависимости от индуктивности контура без взрываемого проводника $L_c - L_w = L_b + L_{sw}$

Рис. 6. КПД ввода энергии во взрываемый проводник η_w и потери энергии в коммутаторе δ_{sw} в зависимости от индуктивности L_w от 170 и 270 нГн

На рис. 6 приведены результаты исследования эффективности передачи энергии из конденсаторной батареи во взрываемый проводник (с учетом потерь энергии в коммутаторе). Используя данный способ оценки энерговыделения в коммутаторе (энерговыделения в активном сопротивлении разрядного контура), становится возможным проводить проверку измерений параметров контура.

Немонотонное поведение энерговыделения в коммутаторе и взрываемом проводнике (рис. 5, 6) связано с реализацией в разрядном контуре (рис. 1) работы комбинированного емкостно-индуктивного накопителя энергии. С одной стороны, для реализации быстрого разряда конденсаторной батареи (для нагрева проводника и зарядки индуктивности контура) необходимо снижать индуктивность контура. С другой, для реализации финальной стадии ЭВП необходимо иметь запасенную энергию индуктивности, достаточную для реализации заключительной стадии взрыва (пропорциональной скрытой теплоте испарения).

Выводы

- Предложенный способ определения зависимости R_{sw}(t) по осциллограмме тока I(t) в контуре позволяет производить оценки энергии, теряемой в коммутаторе, и оптимизировать передачу энергии из емкостного накопителя в нагрузку. Данные исследования особенно актуальны для минимизации потерь энергии в установках, работающих в частотном режиме, в частности, в установках по получению нанопорошков.
- Решение вопроса повышения эффективности ЭВП при его реализации (первая четверть периода) в низкоомных низкоиндуктивных разрядных контурах (индуктивность контура L_c≤1 мкГн) требует учета характеристик коммутатора (активного сопротивления R_{sw}(t) и индуктивности L_{sw}(t)).
- Индуктивность коммутатора, также как и индуктивность контура, оказывает заметное влияние на потери энергии в коммутаторе. С ростом

СПИСОК ЛИТЕРАТУРЫ

- Бурцев В.А., Калинин Н.В., Лучинский А.В. Электрический взрыв проводников и его применение в электрофизических установках. – М.: Энергоатомиздат, 1990. – 289 с.
- Асиновский Э.И., Кириллин А.В. Нетрадиционные методы исследования термодинамических свойств веществ при высоких температурах. – М.: Янус-К, 1997. – 158 с.
- Cho C., Murai K. et al. Enhancement of energy deposition in pulsed wire discharge for synthesis of nanosized powders // IEEE Trans. Plasma Sci. – 2004. – V. 32. – № 5. – P. 2062–2067.
- Наугольных К.А., Рой Н.А. Электрический разряды в воде. М.: Наука, 1971. – 155 с.
- Столович Н.Н. Электровзрывные преобразователи энергии. Минск: Наука и техника, 1983. – 151 с.
- Кривицкий Е.В. Динамика электровзрыва в жидкости. Киев: Наукова думка, 1986. – 208 с.
- Дашук П.Н., Кичаева Г.С. и др. Исследование формирования и динамика сильноточного разряда в управляемом вакуумном коммутаторе // Журнал технической физики. – 1978. – Т. 48. – № 4. – С. 736–741.
- Месяц Г.А. Импульсная энергетика и электроника. М.: Наука, 2004. – 704 с.
- Grigoriev A.N., Pavlenko A.V. Characteristics of a Multi-channel Surface Discharge Switch for a High Current Generator // IEEE Trans. on Dielectric and Electrical Insulation. – 2007. – V. 14. – № 4. – P. 964–967.
- Григорьев А.Н., Павленко А.В., Ильин А.П., Карнаухов Е.И. Электрический разряд по поверхности твердого диэлектрика.
 Ч. 2. Исследование сильноточного коммутатора // Известия

индуктивности разрядника происходит увеличение его активного сопротивления, при этом уменьшаются потери энергии в нем к одному и тому же моменту времени (рис. 2, 3). В общем случае энерговыделение в коммутаторе является немонотонной функцией его сопротивления.

- 4. Проведенное исследование коммутационной характеристики разрядника, работающего на самопробое, при различных индуктивностях контура показало ее заметное влияние на КПД передачи энергии из емкостного накопителя во взрываемый проводник. В случае, когда индуктивность коммутатора $L_{sw} \approx (0,05...0,1)L_c$, потери в коммутаторе составляют величину ~11...22 % от энергии, введенной в медный проводник (режим, близкий к согласованному) и зависят от индуктивности контура и соотношения между ее составляющими: $(L_b + L_{sw})$ и L_w (рис. 5, 6).
- Используя способ оценки энерговыделения в коммутаторе (или в активном сопротивлении всего разрядного контура), по осциллограмме тока в контуре можно контролировать параметры контура.

Томского политехнического университета. – 2006. – Т. 309. – № 2. – С. 79–82.

- Григорьев А.Н., Павленко А.В. Влияние скорости ввода энергии (индуктивности контура) на генерацию ударной волны и импульса перенапряжения при электрическом взрыве фольги // Известия Томского политехнического университета. – 2006. – Т. 309. – № 3. – С. 50–53.
- Давыдович В.И. Разработка технологического процесса и оборудования для электровзрывного получения порошков металлов с низкой электропроводностью: Дис. ... к.т.н. – Томск, 1986. – 254 с.
- Афанасьев В.Н., Галицкий М.В. и др. Электровзрывной генератор ударных волн // Экстремальные процессы и состояния: Труды V Забабахинских научных чтений. – Снежинск, 1999. – С. 127–128.
- Октей Е. Влияние площади сечения взрывающейся проволочки на первый импульс тока через нее // Приборы для научных исследований. – 1965. – № 9. – С. 40–41.
- Седой В.С. Исследование электрического взрыва проводников и его применение в электрофизических установках. Дис. ... д.т.н. – Томск, 2004. – 235 с.
- Новиков О.Я. Устойчивость электрической дуги. Л.: Энергия, 1978. – 160 с.
- Качественная теория динамических систем второго порядка / А.А. Андронов, Е.А. Леонтович, И.И. Гордон, А.Г. Майер. – М.: Наука, 1966. – 568 с.

Поступила 09.10.2008 г.