
Introduction

The problem of graph cutting into minimally con�
nected parts may be referred to a number of classical
problems of graph theory widely used in practical appli�
cations. Among the earliest and the most developed ap�
plications is the problem of cutting computer circuit gi�
ven as a graph [1] or in the form of more adequate mo�
del – hypergraph [2]. For an ordinary graph [3] the pro�
blem of cutting is stated in the following way. Graph
G=(S,V) should be cut into parts Gf=(Sf,Vf), f=1,2,...,F,
where F is the number of parts into which the graph is
cut; Sf is the vertex set belonging to f part; Vf is the set of
arcs incident to vertices Sf.

The set of parts B(Gf) is called cutting of graph G, if

Here Vfq is the set of arcs connecting pairs of vertices
one of which belongs to the part Gf, and another one – Gq.

Let us denote |Vfq|=gfq and call it by a number of arc
attachment of parts Gf and Gq. Then a number of arc at�
tachment of cutting graph G is determined by g:

Traditional criterion of solving the problem of cut�
ting graph G is minimization of a number of arc at�
tachment g at restriction per vertex quantity in parts Gf.

Among the known algorithms of graph cutting there
are exact algorithms using techniques of solving the pro�
blems of discrete programming and the approximate
ones. The approximate algorithms became more wides�
pread. Among them the sequential, iteration and com�
pound algorithms are singled out.

In approximate algorithms of sequential type firstly,
the graph vertex is selected by a certain criterion then
other vertices are attached to it till the first part obtai�
ning. Then the second part and next parts are formed
from the rest graph vertices till complete cutting.

Iteration algorithms take a certain cutting obtained,
for example, by one of sequential algorithms as the ori�
ginal one and then vertices are exchanged from one part
to another in serially connected pairs of parts so that
performance criterion quality is improved.

The analysis of the given algorithm results in the fol�
lowing conclusions:

• presence of a large variety of algorithms which is
generated by a tendency to take into account the
specific character of the investigated objects and
graphs used for their description;

• algorithm alignment on operation directly with a list
of vertices, arcs and their attributes;

• performing operations of optimization of arc at�
tachment between two parts of graph is of local cha�
racter and «does not see» what happens to arc at�
tachment between other parts of cutting.

The first two conclusions reflect both positive and
negative properties of algorithms. So, accounting speci�
fic character results in algorithm uniqueness but allows
increasing their efficiency. Using lists is preferable for
graphs with a large number of vertices and small number
of arcs. As for the third conclusion it reflects the disad�
vantage of such algorithm which is difficult to be sur�
mounted. It is when optimization is fulfilled by local
enhancements of arc attachments inside an ordinary
pair of cutting parts.

The cutting algorithm proposed in the given paper is
based on graph representation by vertex connection ma�
trix and more complete analysis of estimating efficiency
of vertex assignment into subgraphs of cutting.

The fundamentals of matrix algorithm

The cutting problem solution is considered for an
ordinary weighted graph G=(S,V,R) represented by the
matrix R=||rij||, where rij is the weight of the arc vij∈V,
i,j=1,2,...,n. Such graph is, for example, a data transfer
graph [4] between vertices si∈S, which correspond in
this case to the stations of local area network and
weights rij are the volumes of data transferred between
stations si and sj in network. Matrix R is symmetrical as
the weight rij includes the volume of data which transfer�
red from station si to sj and from sj to si.

Constructing local network of computer system on
the basis of several backbones the problem of station di�
stribution on backbones so that the volume of data tran�
sferred between stations connected to different
backbones is minimal occurs. Such problem fits to the
problem of graph cutting into minimal subgraphs. Verti�
ces included into one subgraph correspond to the sta�
tions connected to on backbone.

1 1

, .
F F

fq
f q

g g f q
= =

= ≠∑∑

()[&];

, ()[&

&], , 1,2,..., .

f f f f

f q f f q f q

f q fq

G B G G G G

G G B G G G S S

V V V f q F

∀ ∈ ≠ ∅ =

∀ ∈ ≠ =

= ∅ = =

∪
∩

∩

Bulletin of the Томsк Pоlytеchnic University. 2007. V. 311. № 5

84

UDC 681.3.06

MATRIX ALGORITHM OF SOLVING GRAPH CUTTING PROBLEM

V.K. Pogrebnoy

TPU Institute «Cybernetic centre»

E�mail: vk@ad.cctpu.edu.ru

Matrix algorithm of solving graph cutting problem has been suggested. The main algorithm points based on matrix graph presentation
were considered. Formalization of the main algorithm procedures – defining estimations for selecting relocatable matrix elements and
matrix conversion by reciprocal transfer of columns and lines was given. Algorithm operation was considered by the example of data
transmission graph between the stations of local computer system network.

The result of solving cutting problem may be presen�
ted by the matrix R divided into blocks as it is shown in
Fig. 1. Each f block is a connection matrix of subgraph
Gf vertices. Elements of matrix R being outside the
blocks determine a number of arc attachment of cutting
graph G and form a section area. Matrix shown in Fig. 1
relative to matrix R may be considered as a matrix –
pattern specifying cutting conditions – graph dimen�
sion, block composition indicating the dimension of
each of them, block binding to numbers of lines and co�
lumns of the pattern. Blocks are considered in this case
as potential targets of graph vertices at their inclusion
into proper subgraph.

If such pattern is overlapped on matrix R of graph G
the original cutting in which graph vertex numbers co�
incide with numbers of lines and columns of the pattern
is obtained. In Fig. 1 numbers of lines and columns of
the pattern are shown on the left and on the top respec�
tively and numbers of vertices are shown on the right
and below. In this case index sets Jf and Jq include num�
bers of lines and columns of the pattern and Jf

* and Jq
* –

of matrix R. For initial cutting Jf=Jf
*, Jq=Jq

*.

Fig. 1. Matrix�pattern for cutting problem

Quality of cutting for the considered application is
determined by a sum of weights of arc attachment of
cutting that corresponds to a sum of elements of matrix
R situated in the range of pattern section. Let us denote
the sum of weights by value r and element set of section
region by value Vc. It follows from this that

It is possible to decrease value r by equivalent conver�
sion of matrix R moving elements from set Vc with higher
weights into the region of pattern blocks. Matrix R and
matrix Rk obtained as a result of k transformation are
equivalent if each of them is the vertex matrix of one and
the same graph G. On the basis of this the cutting problem
consists in conversion of matrix R to the form in which a
sum of weights of section region elements is minimal and
a sum of weights of block region elements is maximal, re�
spectively, while moving elements from section region in�
to block region and saving the equivalence of matrix R.

To implement this approach it is necessary to deve�
lop a policy of selection and moving elements of matrix
R fulfilling the conditions of equivalence for solving
cutting problem. A proper algorithm is called matrix
and includes two main procedures:

• determination of estimates for selecting relocatable
elements;

• equivalent conversion of matrix R implementing the
selected relocation.

Implementing this policy two variants of matrix al�
gorithm are singled out. In the first pattern blocks are
considered as free places for assignment of selected ele�
ments. The second variant of algorithm uses pattern
overlap on the matrix R. The initial cutting variant ob�
tained in this case is improved by reciprocal element re�
location between section and block regions. The second
simpler variant of algorithm is suggested further.

Matrix element relocation

Relocation is performed over the elements of matrix
R on which matrix – pattern is overlapped. The neces�
sity of element relocation is stipulated by a criterion of
solving cutting problem according to which a minimal
sum of element weights should remain in section region.
At pattern overlapping on matrix R we obtain the initial
cutting variant. So, operations of element relocation are
performed in conditions when all places in blocks are
occupied. Therefore, to perform the relocation, the tar�
get for moved elements should be released. If the releas�
ed elements are not carried out of the matrix for saving
and arranged on the places of moved elements then re�
ciprocal element relocation occurs; such rule of reloca�
tion fits to the suggested variant of matrix algorithm.

Matrix element may move along a line or a column
as it is shown in Fig. 1 for element r', situated in the 2d

column of the matrix. If element moves with the chan�
ge of line and column as it is shown for the element r"
situated in (n–1) column then two relocations are fulfil�
led, for example, firstly, along the column and then on a
line or on the contrary.

To save matrix equivalence the proper line and co�
lumn should be moved together with element reloca�
tion. If relocation is performed on a line then a column
and appropriate line are moved. So relocation of ele�
ment r' into block GF results in transfer of 2d column in�
to (n–2) column and 2d line into (n–2) line. Similarly,
at relocation of element r' along the column the (n–1)
line is transferred into 3d line and the (n–1) column is
transferred into 3d column.

An object of relocation is often not one but several
elements. A number of elements are determined as a ru�
le by dimension of the block where they move. Reloca�
tion of 4 elements of the 3d column into the 1st column
of the block Gf with the dimension 4×4 is shown in
Fig. 1. One of relocated elements falls on block diagonal
element in this case it is the 1 element from the top. If
this element has the weight rij>0 then it is transferred to
the place of diagonal element of relocated column. Si�
milarly, if nonzero element falls on diagonal element at

.
ij c

ij
v V

r r
∈

= ∑

Control, computer engineering and information science

85

line relocation then it is transferred to diagonal element
of the relocated line. Such rule of interaction of nonze�
ro element and diagonal element is also used at transfer
of lines and columns with released elements.

Element selection for relocation

On the basis of tendency to move elements with ma�
ximal total weights from section region into block re�
gion let us introduce preference judgment of elements
for their reciprocal transfer. For this purpose each co�
lumn of matrix is divided into groups of elements accor�
ding to their belonging to the lines of one block so that f
group of elements corresponds to lines Jf, belonging to
block Gf. for example, for the matrix in Fig. 1, 1st group
of all columns consists of first three elements and the
last one – of elements {n–2, n–1, n}. At such partitio�
ning one of the groups of each column belongs to a
block and all the rest belong to section region.

Let us introduce the following notations. Numbers
of lines and columns of matrix�pattern are denoted by
indices i and j: j is the number of column or line moved
into block; i is the number of column or line excluded of
the block. Block numbers of matrix�pattern are denoted
by indices f and q: q is the number of block into which
column j is relocated; f is the number of block from
which column j is excluded; Jq is the set of line numbers
of block q; Jf is the set of line numbers of block f.

Preference judgments are calculated relative to the
groups of elements situated in section region. Sum of
weights of elements in group Jq of column j which is
transferred into block q is denoted by value α~qj,

(1)

Here ξqji is the weight rij of element (i,j) of group Jq

which at transfer of column j into block q on the place
of column i, falls on its diagonal element; αqji is the sum
of weights of elements in column j after its relocation in�
to block q on the place of column i.

Similarly for column i which moves into block f on
the place of column j, the values α~fi and αfij are calcula�
ted:

(2)

Decrease of element weight sums which occurs in
blocks q and f excluding appropriate columns i and j
from them is determined by values βqi and βfj:

(3)

The diagram of reciprocal transfer of columns j and
i and determination of proper estimates in agreed nota�
tions is given in Fig. 2. Diagonal elements of columns i
and j in blocks q and f are hatched. Elements of columns
i and j which fall on diagonal elements in blocks being
transferred are marked out as well. Before column tran�
sfer the elements marked out in them move in the co�
lumn to the place of diagonal element that is shown by
arrows in Fig. 2. The places of marked out elements are
taken as diagonal elements after column transfer.

Fig. 2. Diagram of column reciprocal transfer

Estimates introduced in (1)–(3) allow obtaining
sum preference judgments μij for pairs of columns i and
j relative to their reciprocal transfer,

(4)

Estimates μij>0 show how much element sum weight
increases in blocks after reciprocal transfer of columns j
and i or, respectively, how much element sum weight
decreases in section region.

Estimates μij are calculated only for elements of pat�
tern section region as element move in blocks does not
change the sum of their weights. If matrix R is symmet�
rical in this case then estimates μij are calculated for one
part of section region – top or bottom.

Matrix algorithm and example of its application

After presentation of graph by adjacency matrix R
algorithm operation includes fulfillment of the fol�
lowing stages.

1. Pattern formation and its overlap on matrix R. Pattern
is formed on the basis of information about a number
of cutting blocks, dimension of each of them and
their place in the pattern. Places of block situation in
the pattern are determined in a random sequence re�
gardless of block dimension. As a result of pattern
overlapping on the matrix R the initial variant of cut�
ting in which Jf=Jf

*; Jq=Jq
*; f,q=1,2,...,F is obtained.

2. Calculation of estimates μij. Estimates are calculated
by the expressions (1)–(4). If matrix R is symmetrical
then calculation is carried out for one part of section
region symmetrical relative to matrix diagonal – top
(over diagonal) and bottom (under diagonal). Among
estimates μij>0 a maximal one is selected and appro�
priate columns i and j are preferred for their reciprocal
transfer. In this case the conversion to fulfilling stage 3
is carried out. Without estimates μij>0 algorithm stops
operating and fixes the obtained variant of cutting.

3. Reciprocal transfer of columns i and j. Columns and
proper lines are transferred by the rules given above
and the diagram given in Fig. 2. Reciprocal transfer
of lines and columns is attended by updating of in�
dex sets Jf

* and Jq
*. After that the conversion to fulfil�

ling the second stage of algorithm is carried out.

.ij qji fj fij qiμ α β α β= − + −

, .
q f

qi ij fj ij
i J i J

r rβ β
∈ ∈

= =∑ ∑

, .
f

fi ij fij fi fij
i J

rα α α ξ
∈

= = −∑� �

, .
q

qj ij qji qj qji
i J

rα α α ξ
∈

= = −∑� �

Bulletin of the Томsк Pоlytеchnic University. 2007. V. 311. № 5

86

Let us show algorithm operation by the example of
weighted ordinary graph containing 10 vertices. The
graph should be divided into 3 subgraphs one of which
contains 4 vertices and two other ones contain 3 verti�
ces. Matrix R of the given graph and matrix – pattern
constructed for the given cutting conditions matched
with it are given in Fig. 3, a. The initial variant of cut�
ting obtained in this case is characterized by element
weight sums in blocks (numerator) and in section region
(denominator) equal 15/50.

To improve the ratio 15/50 the estimates μij are calcu�
lated; the estimate with maximal value is selected among
them. In this case it is estimates μ5,3=μ9,3=9. Let us select
any of them, for example μ5,3 that assumes relocation of
element (2,5) with weight r2,5=2 into block J1 and element
(4,3) with weight r4,3=7 into block J2. To relocate these ele�
ments the reciprocal transfer of columns j=5 and i=3 and
appropriate lines is carried out. The result of transfer is gi�
ven in Fig. 3, б. The ratio of weight sum is equal to 24/41.

μ9,1=14 is maximal estimate μij for the given variant
of cutting. After reciprocal transfer of column j=9 and
i=1 the cutting variant given in Fig. 3, в, with weight
sum ratio 38/27 turns out. μ8,6=3 is maximal estimate μij

in this case. As a result of reciprocal transfer of columns
j=8 and i=6 we obtain cutting given in Fig. 3, г, for
which there are no estimates μij>0. Therefore, algorithm
completes its operation with variant of cutting
J1

*={0,9,2,5}, J2
*={4,3,8}, J3

*={7,6,1} and ratio of weight
sum 41/24.

If the graph used as an example is interpreted as a
graph of data transfer [4] the vertices of which are sta�
tions of local network si, i=0,1,2,...,9, and arc weights rij

correspond to volumes of data transferred between sta�
tions si and sj then as a result of solving cutting problem
we obtain three subsets of stations {s0,s9,s2,s5}, {s4,s3,s8},
{s7,s6,s1}, each of that is connected to one of three net�
work backbones. At such variant of network construc�
tion the majority of data, in this example it is 41 units, is

Control, computer engineering and information science

87

Fig. 3. Example of solving the problem of graph cutting

transferred between stations inside sets loading appro�
priate backbone. In this case data may be transferred si�
multaneously (parallel) in all backbones. Other data at
the rate of 24 units are transferred between stations con�
nected to different backbones. At such transfers two or
three backbones are loaded simultaneously that results
in increasing network load and, respectively, time for
data transfer.

Conclusion

Advantages of suggested algorithm in comparison
with the known ones operating with arc list are stipula�
ted by graph presentation in matrix form at which sec�
tion region is specified in explicit form. It allows easily
observing («seeing») the changes occurring in section
region at matrix conversion and calculating preference
judgments for fulfilling regular transformation on the
basis of analysis of current state of the whole section re�
gion.

The simplest scheme of element relocation from
section region into block region based on reciprocal
transfer of columns and appropriate lines is implemen�
ted in algorithm. Other more complicated schemes
connected, for example, with the formation of reloca�

tion close circuits are the subject of further investiga�
tions and they are not considered in the given article.

Matrix algorithm is applicable for graphs with asym�
metrical matrix including an unweighted one. It is ob�
vious that use of this algorithm turns out to be more pre�
ferable for graphs with high degree of vertices connecti�
vity as the volume of calculations carried out by algo�
rithm does not depend on coefficient of matrix filling
with nonzero elements.

Along with achieving the main goal – formalization
of matrix algorithm of solving cutting problem the ma�
trix technique has another no less important value. It
consists in the fact that matrix form of cutting problem
presentation creates possibilities for deeper understan�
ding of its nature, improving analysis techniques of sec�
tion region at optimization, studying algorithm depen�
dence on various strategies of determining estimates for
making decision.

Matrix method may be taken as a basis of algorithm
development for various types of graphs and cutting
conditions. In particular, bipartite graphs are of interest;
their matrix presentations, in comparison with the exa�
mined ones, assume more efficient operations of matrix
conversion when solving cutting problem.

Bulletin of the Томsк Pоlytеchnic University. 2007. V. 311. № 5

88

REFERENCES

1. Shtein M.E., Shtein B.E. Methods of computer�aided design of di�
gital equipment. – Moscow: Sovetskoe Radio, 1973. – 296 p.

2. Kornienko A.V., Pogrebnoy V.K. Model and algorithm for cutting
digital computing devices into functional blocks // Upravlyayushie
Systemy i Mashiny. – 1976. – № 5. – P. 94�98.

3. Kristofides N. Graph theory. Algorithm approach. – Moscow: Mir,
1978. – 432 p.

4. Pogrebnoy A.V. Determining data transfer volumes in computer sy�
stem network for the specified model of program load // Bulletin of
the Tomsk Polytechnic University. – 2007. – V. 310. – № 3. –
P. 103–107.

Received on 31.10.2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

