МЕТОДИКА РАСЧЕТА ПРОДОЛЖИТЕЛЬНОСТИ ЦИКЛА СПЕЦИАЛИЗИРОВАННЫХ ЗВЕНЬЕВ ПРИ ОБСЛУЖИВАНИИ ГОРНЫХ РАБОТ КОМПЛЕКСОМ САМОХОДНЫХ МАШИН

В.А. Шмурыгин, В.Г. Лукьянов

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Подземные горно-разведочные выработки на месторождениях часто проводятся с боковыми ответвлениями (ствол штольни или штрек с квершлагами и рассечками), как правило, включающими в себя более или менее протяженную вскрывающую (проходную) выработку и одну или несколько прослеживающих выработок, которые в свою очередь, проходятся обычно короткими (рассечки или орты).

Проведение горно-разведочных выработок является сложным технологическим процессом, состоящим из суммы производственных процессов (ПП): бурения, заряжания и взрывания, проветривания, уборки и откатки оторванной горной массы, крепления, настилки рельсовых путей и других работ, увязанных между собой и выполняющихся в определенной последовательности. Исходя из этого следует, что для выполнения выше перечисленных ПП требуется соответствующее оборудование и машины.

Проведение горных выработок предполагает такое распределение всех работ в проходческом цикле, при котором обеспечивается максимальное использование горнопроходческих машин и механизмов.

В зависимости от горно-геологических условий и технической оснащенности проведение горно-разведочных выработок может быть организовано по одной из 3-х схем организации производства работ:

 последовательное выполнение основных производственных процессов проходческого цикла в одном забое без совмещения их во времени;

- 2 параллельное выполнение основных производственных процессов проходческого цикла с совмещением их во времени в одном забое;
- 3 комбинированное выполнение основных производственных процессов проходческого цикла в нескольких забоях.

Рассмотрим последовательную схему организации работ в проходческом забое. При этом забойное оборудование комплекса (погрузочная машина и буровая каретка) постоянно находится в забое (либо на призабойной тупиковой разминовке) до окончания проходки соответствующей выработки, т.е. обслуживается комплексным проходческим звеном, последовательно выполняющим все операции цикла. Время цикла при этом составит:

$$T_u = T_{IIo} - K_{36} \cdot T_{36n}, \tag{1}$$

$$T_{Uo} = T_{v} + T_{\delta} + T_{sen}, \tag{2}$$

$$T_{36n} = T_{36} + T_{np}, K_{36} = \Delta T_{Uo} / T_{36n},$$

где $T_{I\!I\!O}$ — продолжительность цикла при последовательном выполнении основных процессов цикла комплексным проходческим звеном (когда буровое и погрузочное оборудование постоянно находится в забое), ч; T_y , T_6 , T_{36} , T_{np} — продолжительность соответственно уборки горной массы, бурение комплекта шпуров, заряжания-взрывания, проветривания забоя, ч; K_{36} — коэффициент, учитывающий возможность совмещения во времени заряжания-взрывания и проветривания с периодом межсменного перерыва.

В частном случае, когда цикл начинается с уборки поды, среднее время сокращения цикла составит [1]

$$\Delta T_{II_0} = \frac{T_{II_0} - T_{cM}}{n_u}, \text{если } n_{II} T_{II_0} - \min\{T_{sen}, T_{MCII}\} \le T_{cM}$$
 (3)

$$\Delta T_{IIo} = T_{IIo} - n'_{u}T_{cm}$$
, если $T_{IIo} - \min\{T_{sen}, T_{MCII}\} \le n'_{u}T_{cm}$ (4)

$$0$$
 — в противном случае, $n_{_{\!\mathit{U}}} = \left[\frac{T_{_{\mathit{CM}}}}{T_{_{\mathit{U}\!o}}} \right[+1$, если $T_{\mathit{U}\!o} \leq T_{_{\mathit{CM}}}$,

$$n'_{u} = \frac{1}{T_{Uo}} \left[T_{Uo} \geq T_{CM} ; T_{MCH} = 24 / n_{CM} - T_{CM} \geq 0, \right]$$

где T_{cm} , $T_{MC\Pi}$ — продолжительность соответственно смены и межсменного перерыва, ч; Δ_{Uo} — среднее время сокращения цикла (цикл начинается с уборки поды), ч; n_{u} — число циклов в смену; n_{cm} — число смен работы участка (забоя) в сутки. Выражение x означает, что берется целая часть числа.

При невыполнении неравенства (3) или (4) сокращением времени цикла за счет частичного совмещения времени заряжания-взрывания и проветривания со временем межсменного перерыва можно пренебречь, так что $T_{ij} = T_{ij}$. Максимальное расстояние L_{ij} между забоями сооружаемых выработок, при превышении которого переезд оборудования становится нецелесообразным, не должно превосходить наименьшей из величин

$$L_{3max} \le \min \{ V_{nepj} (0.5 T_{Uo} - T_j) \}.$$
 (5)

где T_j – продолжительность выполнения j-го процесса, ч; V_{nepj} – средняя скорость передвижения (транспортировки) по выработкам забойного оборудования, м/ч.

При этом если $L_3 \le L_{3max}$, то $T_{\mathcal{U}} = T_{\mathcal{U}o}$, если $L_3 > L_{3max}$, то $T_{\mathcal{U}} > T_{\mathcal{U}o}$. Если в расчетах по формуле (5) получается, что

$$L_{3max} \leq 0$$
, r.e. 0,5 $T_{Uo} \leq T_{jm}$ ($T_{U} > T_{Uo}$),

где T_{jm} – время наиболее продолжительного из процессов цикла, ч;

 L_{3max} — максимальное расстояние между забоями сооружаемых выработок, м; L_{3} — среднее расстояние между забоями сооружаемых выработок в процессе их проходки, м.

В этом случае комплекс предпочтительнее использовать в одном забое. График организации работ специализированных звеньев при одновременной проходке двух выработок комплексом самоходного оборудования на колесно-рельсовом ходу, работавшего в организациях ПГО «Севвостгеология», приведен на рисунке. Для изображенной на рисунке циклограммы проходки подставим в формулу (5) соответствующие исходные данные ($T_y = 2,3$ ч; T_6 2,4 ч; $T_{3вп}$ 1,3 ч; $T_{Цo} = 6,0$ ч) получим, что максимальное расстояние между забоями сооружаемых выработок данным комплексом, не должно превышать:

 для буровой каретки (при средней скорости передвижения ее по выработкам

$$V_{nep} = (2,27 / 6,5)^{1/3} \cdot 3,6 = 2,5 \text{ км/ч}) - 1500 \text{ м};$$

для погрузочной машины (при средней скорости ее передвижения

$$V_{nep} = 1 \cdot 3,6 = 3,6 \text{ км/ч}) - 2500 \text{ м}.$$

Окончательно для данного комплекса машин в качестве максимального расстояния между обслуживаемыми забоями принимаем минимальную из двух величин, т.е. 1500 метров.

	Процессы	Продол- житель- ность, ч.	Смены											
Номер забоя			I II											
			Время, ч.											
			1	2	3	4	5	6	7	8	9	10	11	12
I	Уборка породы	2,3						t	_		<u> </u>			f-
	Переезд погрузочной машины в другой забой	0,2			1			Ти						ļ
	Бурение шпуров	2,4		1				i						
	Переезд буровой каретки в другой забой	0,3					-				İ		-	
	Заряжание, взрывание, проветривание	1,3					1						<u>_</u>	
п	Уборка породы	2,3			Ĺ.				Tu		Ļ_			
	Переезд погрузочной машины в другой забой	0,2				•			1.19					—
	Бурение шпуров	2,4												
	Переезд буровой каретки в другой забой	0,3												
	Заряжание, взрывание, проветривание	1,3								-				

Рис. График организации работ при обслуживании одним комплектом проходческого оборудования двух забоев

Выводы

Для определения средней скорости передвижения по выработкам каждой из машин комплекса были предложены формулы для определения времени проведения наиболее продолжительного из процессов проходческого цикла (уборка, бурение шпуров).

Литература

- 1. Панкратов А.В. Перспективы использования самоходного оборудования на подземных горно-разведочных работах в условиях Северо-Востока страны // Проблемы и перспективы развития горного дела на Северо-Востоке СССР: Материалы научно-практического семинара. Часть 2. Якутск: Институт горного дела Сибирского отделения Академии наук СССР, 1990. С. 203 211.
- 2. Шмурыгин В.А., Панкратов А.В., Лукьянов В.Г. / Методика расчета темпов проходки горно-разведочных выработок, сооружаемых каждым проходческим комплексом, при одно- и многозабойной работе. Томск, Известия Томского политехнического университета Т. 323, № 1: 2013. С. 200 207.