Показано, что при замене аргона на азот во взрывной камере (*e*/*e*<sub>c</sub>=0,7; *e*/*e*<sub>д</sub>=0,5) площадь удельной поверхности нанопорошка молибдена максимальна – 4,9 м<sup>2</sup>/г. На поверхности частиц при взрыве проводника в химически активной среде – азоте образуются тугоплавкие нитриды, препятствующие укрупнению наночастиц.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Зеликман А.Н. Молибден. М.: Металлургия, 1970. 440 с.
- Морохов И.Д., Трусов Л.И., Лаповок В.И. Физические явления в ультрадисперсных средах. – М.: Энергоатомиздат, 1984. – 224 с.
- Давыдович В.И. Разработка технологического процесса и оборудования для электровзрывного получения порошков металлов с низкой электропроводностью: Дис. ... канд. техн. наук. – Томск, 1986. – 254 с.
- Тихонов Д.В. Электровзрывное получение ультрадисперсных порошков сложного состава: Дис. ... канд. техн. наук. – Томск, 2000. – 237 с.

 При нагревании нанопорошка молибдена на воздухе при 280...340 °С наблюдалось выделение запасенной энергии: тепловой эффект 8 кДж/моль не сопровождался изменением массы образца, что обусловлено релаксационными процессами в структуре наночастиц.

Работа выполнена при финансовой поддержке гранта РФФИ № 08-08-12077-офи.

- Ильин А.П., Назаренко О.Б., Тихонов Д.В., Яблуновский Г.В. Получение нанопорошков вольфрама методом электрического взрыва проводников // Известия Томского политехнического университета. – 2005. – Т. 308. – № 4. – С. 68–70.
- Назаренко О.Б. Электровзрывные нанопорошки: получение, свойства, применение / Под ред. А.П. Ильина. – Томск: Изд-во Том. ун-та, 2005. – 148 с.

Поступила 11.02.2009 г.

#### УДК 546.16:182

## СТРУКТУРА, СВОЙСТВА И ПРОБЛЕМЫ АТТЕСТАЦИИ НАНОПОРОШКОВ МЕТАЛЛОВ

## А.П. Ильин, А.В. Коршунов, Л.О. Толбанова

Томский политехнический университет E-mail: genchem@mail.ru

Рассмотрены основные характеристики нанопорошков металлов: форма, размеры частиц, содержание металлической составляющей, параметры химической активности, электрохимические характеристики, термодинамическое состояние наночастиц и нанопорошков. Приведены экспериментальные результаты применения стандартных методов анализа и особенности их использования при определении характеристик нанопорошков. Показано, что для аттестации нанопорошков как метастабильных систем необходима разработка комплекса методов и методик анализа, учитывающих их метастабильное структурно-энергетическое состояние.

#### Ключевые слова:

Нанопорошки металлов, метастабильные системы, наночастицы, размеры частиц, электрохимические характеристики, термодинамическое состояние, структурно-энергетическое состояние.

### Введение

Одной из причин развития техники и технологий является стремление к снижению материалоёмкости и энергоёмкости. Уменьшение характерных размеров частиц порошков в материаловедении на первых этапах не приводило к качественному изменению их свойств, например, порошки алюминия ACД-1 ( $\overline{a}_0$ =100 мкм), ACД-4 ( $\overline{a}_0$ =9 мкм) и ACД-6 ( $\overline{a}_0$ =2,5 мкм) имеют близкие значения насыпной плотности, толщины оксидной оболочки, содержания сорбированных газов и др. [1]. Современный этап развития техники и технологий характеризуется переходом к субмикронным и нанометровым объектам, для которых наблюдается качественное изменение их характеристик и свойств.

Российское название «ультрадисперсные системы» (УДС) первоначально относили к совокупности частиц металлов, находящихся в среде газов, диаметр которых составляет от 10 до 100 нм [2]. Этот диапазон совпадает с диаметрами коллоидных частиц по классификации Оствальда [3]. В рамках коллоидной химии состояние системы, состоящей из химически инертных частиц в газе - коллоидная система «твёрдое тело - газ»: твёрдая дисперсная фаза и газообразная дисперсионная среда. Впоследствии термин «УДС» стали применять и к неметаллическим порошкам. Порошки, диаметр частиц которых менее 10 нм, относят к кластерам. Состояние всех дисперсных систем является неравновесным, т. к. вещества в таком состоянии характеризуются повышенной энергией поверхности за счёт особого положения структурных единиц в поверхностном слое (энергия поверхности E<sub>s</sub>). При уменьшении диаметра частиц доля атомов на поверхности и в объёме частиц становятся соизмеримы. При этом наблюдается взаимное влияние структурных единиц, находящихся на поверхности и в объёме частицы (энергия объёма  $E_{\nu}$ ). Предельный максимальный диаметр частиц, определяющий устойчивость малых частиц к спеканию, составляет 10...30 нм: размерная граница между ультрадисперсными частицами и кластерами. Если стабилизация ультрадисперсных порошков в воздухе возможна путём создания оксидно-гидроксидной защитной оболочки, то стабилизация кластеров возможна только в «жёстких матрицах»: полярные жидкости, поверхностно-активные вещества и др.

Позже Глейтер ввёл упрощённое понятие «наночастица», «нанопорошок», которое связано с геометрическими размерами частиц порошков: к «нано» он относит все порошки, диаметр частиц которых ≤100 нм [4].

Целью данной статьи является анализ структурно-энергетического состояния нанопорошков металлов и выбор характеристик и параметров, пригодных для их аттестации.

#### Фазовый и химический состав нанопорошков

Определение фазового и химического состава нанопорошков является необходимым при их исследовании и тестировании. В отличие от грубодисперсных порошков толщина окидно-гидроксидных плёнок на металлах составляет от 2 до 8 нм, причём с уменьшением диаметра частиц со 100 до 50 нм, их толщина уменьшается. При такой толщине плёнки рентгеноаморфны, т. е. определение их фазового состава с помощью рентгенофазового анализа проблематично. При формировании наночастиц в сильно неравновесных условиях, например, при скорости охлаждения >106 К/с происходит перераспределение примесей. При охлаждении наночастиц алюминия тугоплавкие примеси сосредотачиваются в приповерхностных слоях, образуя защитную оболочку от окисления.

Экспериментально было установлено, что наночастицы меди высокой чистоты (99,997 мас. %) на воздухе быстро окисляются. Образуются два оксида: CuO и Cu<sub>2</sub>O, которые имеют различный тип кристаллических решёток, поэтому они не образуют сплошной плёнки, а образуют нанокристаллы, размеры которых составляют 4...6 нм. Нанопорошки меди, полученные из электротехнической меди (99,5 мас. %), при хранении в условно герметичной таре в течение 2...3 лет практически не окисляются. В то же время, содержание меди в нанопорошке особо чистой меди через 1 месяц хранения в аналогичных условиях снижается до 40 мас. %.

#### Параметры химической активности

Для тестирования устойчивости нанопорошков (НП) и их смесей к окислению и к химическому взаимодействию предлагается использовать дифференциальный термический анализ (ДТА). На ос-

нове данных ДТА определяют четыре параметра химической активности [5]. В работе использовали термоанализатор SDT Q600; анализ проводили в режиме линейного нагрева в интервале 20...1000 °C со скоростью нагрева 10 град./мин в атмосфере воздуха; Си<sub>ка</sub>-излучение, метод порошка. Для тестирования был выбран нанопорошок алюминия и его смеси с нанопорошком молибдена (табл. 1) и с нанопорошком вольфрама (табл. 2), которые, как известно, обладают каталитическими свойствами. Для тестирования были выбраны нанопорошки алюминия, молибдена и вольфрама, полученные с помощью электрического взрыва проводников в среде аргона [1]. Исследуемые смеси подвергались ДТА, на основе которого были определены параметры химической активности для оценки термической устойчивости смесей.

Параметры химической активности НП алюминия. При нагревании в воздухе согласно ДТА (рис. 1) НП алюминия проявляет высокую активность в сравнении с другими, используемыми в данной работе, порошками.



Рис. 1. Термограмма НП алюминия



Рис. 2. Термограмма НП молибдена

По ТГ (рис. 1) заметна десорбция газообразных веществ, адсорбированных на поверхности частиц (~3 мас. %). Затем происходит резкое увеличение скорости роста массы (ТГ) и выделение теплоты, носящие взрывоподобный характер (ДТА).

Параметры химической активности НП молибдена и его смесей с НП алюминия. При нагревании НП молибдена (рис. 2) процесс его окисления протекает в две стадии с максимумами при 441 и 517 °С, что сопровождается увеличением массы образца. Наличие двух максимумов тепловыделения, наиболее вероятно, связано с бимодальным распределением частиц по диаметру: сначала окисляется фракция более мелких частиц, а затем – более крупная фракция. Необходимо также отметить, что вероятность образования MoO<sub>2</sub> при повышенных температурах мала: оксид молибдена (IV) практически мгновенно окисляется до MoO<sub>3</sub>, и его можно получить только в восстановительной среде. При дальнейшем нагревании, начиная с 784 °С, наблюдается эндоэффект и резкое уменьшение массы образца, связанное с возгонкой оксида молибдена (VI).

На термограмме НП молибдена при температуре ~300 °С наблюдался эффект выделения тепла (8 кДж/моль), не сопровождавшийся изменением массы образца. Такой тепловой эффект объясняется протеканием релаксационных процессов в структуре наночастиц, что для НП молибдена обнаружено впервые.

Параметры химической активности исследуемых смесей (табл. 2), необходимые для оценки устойчивости к окислению и к химическому взаимодействию компонентов, были также определены по данным термического анализа.

Таблица 2. Состав исследуемых смесей НП алюминия и молибдена и параметры их химической активности

| Nº   | Состав обра | взца, мас. % | t <sub>H.0.</sub> |       | V <sub>max</sub> , | ΔН,  |
|------|-------------|--------------|-------------------|-------|--------------------|------|
| обр. | Al          | Мо           | °C                | α, 70 | мас. %/с           | Дж/г |
| 1    | 100         | 0            | 450               | 63,8  | 0,130              | 4995 |
| 6    | 90,9        | 9,1          | 400               | 52,5  | 0,130              | 4265 |
| 7    | 83,3        | 16,7         | 380               | 42,8  | 0,080              | 4612 |
| 8    | 71,4        | 28,6         | 370               | 20,3  | 0,020              | 4020 |
| 9    | 0           | 100          | 350               | 42,3  | 0,007              | 3299 |

При содержании НП молибдена в смеси менее 30 мас. % термограмма имеет вид, близкий к термограмме НП алюминия: наблюдается один узкий экзотермический экстремум окисления алюминия, сопровождающийся интенсивным окислением с большим тепловыделением и значительным приростом массы (до 4995 Дж/г и 63,8 %, соответственно, для НП алюминия).

В целом, параметры активности смесей изменялись немонотонно: максимальная скорость окисления ( $v_{max}$ , мас. %/с) уменьшалась с увеличением содержания НП молибдена. При нагревании до 1000 °С степень окисленности ( $\alpha$ , %) смесей НП ниже, чем НП алюминия без добавок и минимальна (20,3 %) для образца 3. Что касается величины удельного теплового эффекта ( $\Delta H$ , Дж/г), то для смесей он меньше, чем для НП алюминия без добавок: в целом  $\Delta H$  с увеличением содержания добавьки НП молибдена в смеси температура начала окисления снижается от 450 °С (НП алюминия) до 370 °С (НП молибдена).

Параметры химической активности НП вольфрама и его смесей с НП алюминия. Согласно ДТА исходных порошков и их смесей и расчетам параметры активности образцов приведены в табл. 3.

| Таблица 3. | Состав | исследуем | 1ЫХ СМ | есей НП | алюмин    | ИЯ И ВС | )ЛЬ- |
|------------|--------|-----------|--------|---------|-----------|---------|------|
|            | фрама  | и парамет | ры их  | химиче  | ской акті | ивност  | И    |

| Nº   | Состав образца, мас. % |      | t <sub>н.о.</sub> , | a 0/  | V <sub>max</sub> , | ΔН,  |
|------|------------------------|------|---------------------|-------|--------------------|------|
| обр. | Al                     | W    | °C                  | α, 70 | мас. %/с           | Дж/г |
| 1    | 100                    | 0    | 400                 | 45,9  | 0,10               | 4995 |
| 10   | 90,9                   | 9,1  | 380                 | 50,3  | 0,10               | 5794 |
| 11   | 83,3                   | 16,7 | 380                 | 58,5  | 0,41               | 6993 |
| 12   | 71,4                   | 28,6 | 380                 | 56,2  | 0,05               | 6593 |
| 13   | 0                      | 100  | 370                 | 24,1  | 0,03               | 3197 |

Температура начала окисления ( $t_{\text{H},o.}$ ) НП алюминия составляла 400 °С, а НП вольфрама – 320 °С. С ростом содержания НП вольфрама в смесях  $t_{\text{H},o.}$  не изменялась (табл. 3). Для смеси НП вольфрама и алюминия, содержащей 16,7 мас. % НП вольфрама, три параметра активности из четырех в несколько раз выше, чем для других составов. При нагревании в воздухе вначале окисление НП протекает относительно медленно, а затем, с увеличением количества выделяющегося тепла, процесс окисления переходит в режим теплового взрыва.

## Электрохимические характеристики нанопорошков металлов

Изучение микро- и наноразмерных структур с использованием электрохимических методов, а также размерно-зависимых эффектов в системах и процессах с участием малых частиц является интенсивно развивающимся направлением в электрохимии. В этом плане интерес представляет изучение особенностей реакционной способности НП металлов, полученных разными методами, а также динамики изменения свойств порошков при их хранении [6]. Необходимо отметить, что высокодисперсные металлические порошки как гетерогенные системы, свойства которых определяются как размерными факторами, так и состоянием поверхности частиц, являются относительно новым объектом, их поведение в среде растворов с применением электрохимических методов систематически не изучено.

Поверхность частиц металлов (в том числе и благородных), помещенных в среду водного раствора, всегда покрыта тонким слоем адсорбированных (хемисорбированных) молекул и ионов, обусловливающих электрохимическую активность частиц при их контакте с поверхностью электродов. Более того, технологии получения наночастиц металлов предусматривают их пассивирование путем нанесения тонких защитных покрытий, чаще всего – оксидных, предотвращающих быстрое окисление и спекание частиц. Эти покрытия также обладают электрохимической активностью, что позволяет охарактеризовать дисперсные системы с участием нанопорошков металлов при помощи электрохимических методов.

Одним из перспективных направлений является применение метода циклической вольтамперометрии, позволяющего исследовать процессы восстановления (окисления – в случае анодного процесса с участием низших оксидов) оксидной оболочки металлических частиц [7]. Электродный процесс при этом характеризуется наличием на вольтамперных зависимостях максимумов необратимого тока. На рис. 3 приведена циклическая вольтамперная кривая, зарегистрированная при использовании стационарной ртутной капли в деаэрированной суспензии НП меди в растворе NaOH. Значение потенциала максимума Е<sub>тах</sub> катодного тока для суспензий НП зависит прежде всего от природы и состояния поверхностного слоя частиц, дисперсности порошков, а также от природы и концентрации электролита.

Изменение условий проведения эксперимента (интервала и скорости развертки потенциала, времени накопления, состава и концентрации раствора, обработки системы ультразвуком, температуры и др.) приводит к изменению числа и формы максимумов тока на вольтамперограммах, что позволяет оценить интервал между контактами частиц или их агломератов с поверхностью электрода, стабильность поверхностного оксидного слоя в данной среде, относительное содержание окисленной фазы в НП, особенности распределения частиц по размерам в различных образцах НП.



Рис. 3. Циклическая вольтамперограмма суспензии 10 мг НП меди в 10 мл деаэрированного 0,1 М NaOH (рабочий электрод – Hg-капля, электрод сравнения – нас. х.с.э., 100 мB/c)

В табл. 4 приведены значения  $E_{\max}$  для суспензий НП меди, полученных в условиях электрического взрыва проводников (напряжение взрыва приведено в обозначении образца), при различных условиях регистрации вольтамперограмм.

Анализ полученных данных показывает, что в характере изменения значений  $E_{\rm max}$  в зависимости от условий регистрации вольтамперных зависимостей наблюдаются определенные закономерности. В щелочном фоновом электролите значения  $E_{\rm max}$  близки и практически не зависят от содержания НП в суспензии в отличие от суспензий на фоне NaClO<sub>4</sub>. Величина катодного тока  $i_{\rm max}$  при возрастании содержания НП в суспензии в среде NaOH изменяется в среднем от 0,8 до 100 мкА. В растворе NaClO<sub>4</sub> значения  $i_{\rm max}$  в среднем в два раза меньше, чем в щелочной среде. Наблюдаемые закономер-

ности согласуются с особенностями фазового состава поверхностного оксидного слоя данных образцов, с их дисперсностью, степенью агломерированности. Интересным является тот факт, что уменьшение размеров частиц дисперсной фазы приводит к сглаживанию вольтамперных кривых и приближению формы максимумов тока к таковым для истинных растворов [7].

| Таблица 4. | Потенциалы (     | (-Е <sub>тах</sub> , мВ | ) максимума | катодного  | TO- |
|------------|------------------|-------------------------|-------------|------------|-----|
|            | ка частиц НП і   | меди на с               | тационарной | ртутной ка | пле |
|            | (нас. х.с.э., 10 | 0 мВ/с, д               | еаэрировани | е азотом)  |     |

|                                             | Образец НП                    |                          |       |            |  |
|---------------------------------------------|-------------------------------|--------------------------|-------|------------|--|
|                                             | Cu-18                         | Cu-30                    | Cu-18 | Cu-30      |  |
| Параметр                                    | <i>-Е</i> <sub>тах</sub> , мВ |                          |       |            |  |
|                                             |                               | 0,1 M NaClO <sub>4</sub> |       | 0,1 M NaOH |  |
| Содержание НП в 10 мл суспензии, мг:        |                               |                          |       |            |  |
| 10                                          | 770                           | 830                      | 830   | 835        |  |
| 30                                          | 780                           | 825                      | 830   | 830        |  |
| 50                                          | 780                           | 825                      | 830   | 825        |  |
| Обработка суспензии ультразвуком<br>(5 мин) | 900                           | 1050                     | 850   | 1050       |  |
| Перемешивание суспензии                     | 765                           | 855                      | 840   | 840        |  |

Для НП ряда металлов (Ni, Mo, W) выраженного максимума катодного тока, как в случае с НП меди, на вольтамперных кривых не наблюдается. Осцилляции тока контактной природы здесь накладываются на процесс выделения водорода. Применение разных режимов регистрации вольтамперограмм позволило разграничить особенности электрохимического поведения частиц НП нанометрового и микрометрового диапазона.

Рассмотренное выше поведение суспензий наблюдается в случае низкой скорости химического взаимодействия оксидного слоя частиц НП с фоновым электролитом. При длительном времени контакта частиц НП с раствором, а также в присутствии в растворе специфически адсорбирующихся ионов электрохимическое поведение суспензий изменяется. Детальное исследование влияния этих условий позволило установить факторы, обусловливающие устойчивость наночастиц в среде различных электролитов.



Рис. 4. Катодные вольтамперограммы суспензий НП Си на фоне KCl: 1) 0,1 M; 2) 0,001 М (рабочий электрод – Hgкапля, 100 мB/с, нас. х.с.э., деаэрирование азотом)

На рис. 4 приведены катодные вольтамперные кривые суспензий НП меди в растворах КСl различных концентраций. Для раствора 0,1 M KCl на вольтамперограмме присутствует один главный максимум катодного тока, обусловленный восстановлением оксидного слоя частиц Си мелкой фракции, а также ряд малых максимумов в области отрицательных потенциалов, которые отображают контакты относительно крупных частиц меди с поверхностью электрода. Аналогичное поведение суспензий НП Си наблюдается в децимолярных растворах NaClO<sub>4</sub> и кривая NaOH. В миллимолярном растворе KCl (рис. 4, кривая 2) картина качественно меняется – катодный ток при Е<-0,7 В монотонно возрастает за счет непрерывного восстановления оксидного слоя частиц, контактирующих с поверхностью электрода.

Такое различие можно объяснить изменением структуры и толщины двойного электрического слоя электрода за счет изменения концентрации фонового электролита, а также значительным изменением состояния поверхности частиц НП. Наблюдаемое изменение электрохимического поведения суспензий, связанное с изменением состояния поверхностного слоя частиц дисперсной фазы, можно объяснить на основе расчетов активности конденсированных продуктов взаимодействия оксидов меди СиО и Си<sub>2</sub>О с растворами, содержащими Cl-ионы (рис. 5).

Из рис. 5 видно, что в миллимолярном растворе хлорида основной равновесной конденсированной фазой на поверхности частиц НП Си в нейтральной среде является Cu(OH)<sub>2</sub>, содержание фаз малорастворимого основного хлорида Cu (II) и хлорида Cu (I) на ~2 порядка меньше. В децимолярном растворе содержание малорастворимых хлоридов в поверхностном слое частиц увеличивается и превышает содержание гидроксида Cu (II). Кроме того, при возрастании концентрации Cl-ионов происходит изменение заряда поверхности частиц за счет значительного возрастания активности ионов CuCl<sub>2</sub><sup>-</sup> и CuCl<sub>3</sub><sup>2-</sup> (рис. 5), образующихся при взаимодействии оксидной оболочки с раствором. Таким образом, применение электрохимических методов позволяет получить ценную информацию о фазовом составе поверхностного слоя частиц НП, характере их взаимодействия с компонентами растворов, дать сравнительную оценку дисперсности НП, склонности к агломерированию, стабильности поверхностного слоя и его состояния в растворах различного состава.

# Термодинамические характеристики нанопорошков металлов

Электровзрывные нанопорошки, прошедшие пассивирование в мягких условиях отличаются от нанопорошков, полученных с помощью других методов, повышенной устойчивостью к окислению при обычных температурах (15...30 °C). Диспергирование твердых тел в массивном состоянии приводит к увеличению энергии поверхности (Е) и энергии объема ( $E_v$ ) за счет повышения концентрации дефектов. Анализ зависимости Е<sub>s</sub> дисперсных систем от диаметра сферических частиц показал, что принципиальным является достижение E<sub>s</sub> величины теплоты плавления ( $\Delta H_{\text{пл}}$ ). Если предположить, что характеристики металлов с уменьшением диаметра частиц изменяются монотонно, и структурно-энергетическое состояние металла в частице не сильно отличается от состояния металла в массивном состоянии, то при  $E_s \approx \Delta H_{\pi\pi}$ , металл в частице должен перейти в жидкое состояние.

Уменьшение числа структурных единиц в частице приводит к влиянию поверхности на объем. Теоретически, объем частицы неокисленного металла претерпевает растягивающее действие поверхности и понижение рентгеновской плотности. Реально, практически все металлы покрыты оксидно-гидроксидной оболочкой, и тогда действие поверхности обусловливается соотношением удельных объемов металла и оксида (критерий Бедворта-Пиллинга). Повышение кривизны поверхности увеличивает амплитуду колебаний атомов на поверхности частиц, что приводит к понижению температуры спекания: частицы диаметром менее 10...30 нм спекаются при температурах ниже комнатной.



**Рис. 5.** Расчетные зависимости равновесной активности продуктов взаимодействия смеси CuO+Cu<sub>2</sub>O (Iga<sub>Cu0</sub>=lga<sub>Cu0</sub>=0, t=25°C) с деаэрированным раствором: 1) 0,001 M Cl<sup>-</sup> (I=0,001 M); 2) 0,1 M Cl<sup>-</sup> (I=0,1 M)

За редким исключением, частицы металлов в воздухе окисляются. В системе «металл-оксид» металлическая составляющая наночастицы всегда имеет положительный заряд. Полная энергия зарядовой структуры двойного электрического слоя наночастицы металла определяется как сумма:

$$E = E_1 + E_2 + E_3 + E_4,$$

где  $E_1 = CU^2/2$ , C -ёмкость сферического конденсатора; U - напряжение;  $E_2 -$  энергия рекомбинации катионов и электронов  $M^++e$ ;  $E_3 -$  энергия сродства к электрону M+e;  $E_4 -$  энергия кристаллизации аморфных фаз.

Оценка энергетики зарядовых структур возможна и по величине окислительно-восстановительного потенциала, характерного для наночастиц по сравнению с таковым для массивного металла:

$$\Delta G = -nFE$$
,

где  $\Delta G$  — изменение изобарно-изотермического потенциала, *n* — число электронов, участвующих в электрохимическом процессе, *F* — число Фарадея, *E* — электрохимический потенциал. В то же время:

#### $\Delta G = \Delta H - T \Delta S.$

Без учета энтропийного фактора:

$$\Delta H \approx \Delta G, \Delta H = -nFE.$$

Так, при смещении потенциала на 0,6 В запасенная энергия двойного электрического слоя должна составлять 57,9 кДж/моль для одноэлектронного процесса. Необходимо отметить, что методики экспериментального определения термодина-

### СПИСОК ЛИТЕРАТУРЫ

- Ильин А.П., Громов А.А. Горение алюминия и бора в сверхтонком состоянии. – Томск: Изд-во ТГУ, 2002. – 155 с.
- Морохов И.Д., Трусов Л.И., Чижик С.П. Ультрадисперсные металлические среды. – М.: Атомиздат, 1977. – 264 с.
- Фролов Ю.Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы. М.: Химия, 1989. 464 с.
- Gleiter H. Nanocrystalline materials // Progress in Materials Science. 1989. V. 33. № 4. P. 223–315.
- Ильин А.П., Яблуновский Г.В., Громов А.А. Об активности порошков алюминия // Физика горения и взрыва. – 2001. – Т. 37. – № 4. – С. 58–62.

мических функций наночастиц и нанопорошков к настоящему времени не разработаны.

## Выводы

- Для объективной оценки свойств и характеристик нанопорошков металлов необходима разработка комплекса методов анализа, позволяющих определить наиболее значимые параметры системы «нанопорошок металла – газ»: фазовый и химический состав, параметры химической активности, окислительно-восстановительные потенциалы, энтальпию образования нанопорошков.
- В качестве параметров реакционной способности нанопорошков металлов предложены параметры химической активности: температура начала окисления при нагревании в воздухе, максимальная скорость окисления, степень окисленности и тепловой эффект окисления нанопорошка.
- Для оценки термодинамического состояния перспективным является исследование электрохимических характеристик дисперсных систем, содержащих наночастицы металлов, в частности, интегральным параметром является смещение потенциала окисления в область отрицательных значений. Это фактор повышения реакционной способности при переходе твердых веществ в наносостояние.

Работа выполнена при поддержке РФФИ, грант № 08-08-12077-офи.

- Коршунов А.В., Ильин А.П. Электрохимическое поведение электровзрывных ультрадисперсных порошков меди // Физика и химия обработки материалов. – 2007. – № 3. – С. 70–76.
- Korshunov A., Heyrovsky M., Bakardjieva S., Brabec L. Electrolytic processes in various degrees of dispersions // Langmuir. – 2007. – V. 23. – № 3. – P. 1523–1528.

Поступила 27.03.2009 г.