СПИСОК ЛИТЕРАТУРЫ

- Бочкарев И.В., Галбаев Ж.Т. Электродвигатели с встроенным электромеханическим тормозом для станков и роботов. – Бишкек: Изд-во «Илим», 2005. – 314 с.
- 2. Буль Б.К. Основы теории и расчета магнитных цепей. М.: Энергия, 1964. 464 с.
- 3. Гринченков В.П., Никитенко А.Г., Павленко А.В. Исследование динамических процессов в электромагнитах // Известия вузов. Электромеханика. 1982. № 12. С. 1432—1437.
- Колесников Э.В. Переходные режимы магнитопроводов // Известия вузов. Электромеханика. 1967. № 6. С. 625–647.
- Колесников Э.В. Переходные режимы магнитопроводов // Известия вузов. Электромеханика. 1967. № 7. С. 767–783.

- Гринченков В.П., Ершов Ю.К. Метод расчета динамических характеристик электромагнитов с массивным магнитопроводом // Известия вузов. Электромеханика. — 1989. — № 8. — С. 61–68.
- Никитенко А.Г., Бахвалов Ю.А., Никитенко Ю.А. и др. О проектировании электромагнитов с заданными динамическими свойствами // Электротехника. – 1998. – № 9. – С. 53–58.
- Бочкарев И.В., Гунина М.Г. Переходные процессы, протекающие в электромеханическом тормозном устройстве в режиме растормаживания // Электротехника. 2004. № 11. С. 34—38.

Поступила 16.04.2009 г.

УДК 621.3.01

МОДЕЛИРОВАНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ СТЕРЖНЕВОГО ЗАЗЕМЛИТЕЛЯ

Н.А. Макенова

Томский политехнический университет E-mail: mna@iao.ru

Разработана численная модель исследования электрического поля вертикального стержневого заземлителя. Показано, что напряжение поля на поверхности земли уменьшается с увеличением длины стержня или с увеличением его диаметра.

Ключевые слова:

Стержневой заземлитель, электрическое поле, электрод, ток, сопротивление, шаговое напряжение.

Введение

В настоящее время проблемам техники безопасности уделяется все большее внимание. Для защиты жилых построек предусматриваются молниеотводы, представляющие собой молниеприемник (металлический стержень), токоотводящий шнур и заземлитель [1]. Заземлитель может быть простым металлическим стержнем (чаще всего стальным) или сложным комплексом элементов специальной формы. Для заземления электрооборудования в жилых зданиях и сооружениях используют «горизонтальные» и «вертикальные» заземлители, в данном случае электроды располагают в грунте на нужной глубине, чтобы они не были повреждены при работе машин. Горизонтальные заземлители прокладывают на глубине 0,5 м, на пахотной земле – не менее 1 м. Они рациональны в тех случаях, когда электропроводность верхнего слоя грунта обеспечивает нужную проводимость. Однако верхние слои почвы часто имеют большее электрическое сопротивление, чем глубинные. Кроме того, близко к поверхности земли растекание тока не идет равномерно во все стороны, как на глубине. Следовательно, сопротивление горизонтальных электродов обычно больше, чем сопротивление вертикальных электродов такой же массы. Поэтому наибольшее распространение в качестве заземлителей получили именно вертикальные электроды. Глубинные вертикальные электроды наиболее экономичны, достигают хорошо проводящих слоев грунта [2]. Качество заземления определяется значением электрического сопротивления цепи заземления, которое можно снизить, увеличивая площадь контакта или проводимость среды — используя множество стержней, повышая содержание солей в земле и т. д.

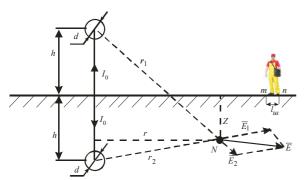
Проектированием заземлителей занимается большое количество проектных организаций, но это достаточно не дешевая услуга. Нами предложена простая и удобная в использовании программа численного моделирования стержневого заземлителя для бытовых или промышленных нужд. Программа написана на языке Visual C++ и построена как однодокументное приложение на основе приведенных ниже математических моделей.

1. Математическая модель заземлителя

Для расчета электрического поля сферического заземлителя диаметром d и с током I_0 , расположенного на глубине h (рис. 1), возможно использовать метод зеркальных изображений и наложения [3].

На месте зеркального изображения помещается электрод с тем же током I_0 , где $r_1 = \sqrt{r^2 + (h-Z)^2}$, $r_2 = \sqrt{r^2 + (h+Z)^2}$, причем $0 < r < \infty$ и $-\infty < Z \le 0$. Плотность тока в земле от уединенного шара без учета влияния поверхности земли будет равна при $r_1 > d/2$ (точка N)

$$\delta_1 = \frac{I_0}{4\pi r_1^2},$$


тогда согласно закона Ома напряженность электрического поля составит

$$E_1 = \frac{\delta_1}{\gamma} = \frac{I_0}{4\pi\gamma r_1^2},$$

и потенциал

$$\phi_1 = -\int E_1 dr_1 + C_1 = \frac{I_0}{4\pi \gamma r_1} + C_1,$$

где γ — удельная проводимость среды, зависящая от физических свойств проводящего материала и температуры. При условии, что ϕ_1 =0 при r_1 →∞, C_1 =0.

Рис. 1. Электрическое поле сферического заземлителя, определяемое по методу зеркальных изображений

Плотность тока, напряженность и потенциал от изображения заземлителя находятся как

$$\delta_2 = \frac{I_0}{4\pi r_2^2}; \quad E_2 = \frac{I_0}{4\pi \gamma r_2^2}; \quad \phi_2 = \frac{I_0}{4\pi \gamma r_2}.$$

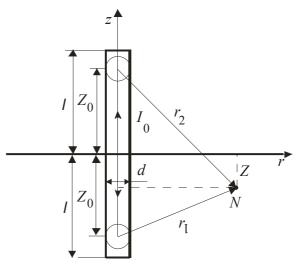
Результирующее поле с учетом влияния поверхности земли будет характеризоваться геометрической суммой векторов \vec{E}_1 и \vec{E}_2 , а также суммой потенциалов от каждого из шаров в отдельности

$$\phi = \phi_1 + \phi_2 = \frac{I_0}{4\pi\gamma} \left(\frac{1}{r_1} + \frac{1}{r_2} \right).$$

Затем находим потенциал заземлителя (r_1 =d/2; r_2 =2h-d/2)

$$\phi_0 = \frac{I_0}{4\pi\gamma} \left(\frac{2}{d} + \frac{1}{2h - d/2} \right),$$

сопротивление заземления


$$R_3 = \frac{\phi_0}{I_0} = \frac{1}{4\pi\gamma} \left(\frac{2}{d} + \frac{1}{2h - \frac{d}{2}} \right),$$

и шаговое напряжение (Z=0)

$$U_{uu} = \phi_{m} - \phi_{n} = \frac{I_{0}}{4\pi\gamma} \left[\frac{1}{\sqrt{h^{2} + r^{2}}} - \frac{1}{\sqrt{h^{2} + (r + l_{uu})^{2}}} \right],$$

где $l_{\mu} \approx 0.8 \text{ м} - длина шага человека.}$

Все приведенные выше формулы описывали сферический заземлитель [4], тогда как интерес представляет вычисление поля стержня (рис. 2).

Рис. 2. Стержневой заземлитель как набор сферических заземлителей, где $0 < Z_0 < I$

Для выполнения подобных расчетов стержневой заземлитель можно представить в виде совокупности сферических заземлителей, с каждого из которых стекает ток

$$dI = I_0 \left(1 - \frac{Z_0}{l} \right) \frac{dZ_0}{l},$$

тогда в точке N потенциал от сферического заземлителя и его зеркального изображения будет равен

$$d\phi = \frac{dI}{4\pi\gamma} \left(\frac{1}{r_1} + \frac{1}{r_2} \right),$$

где $r_1 = \sqrt{r^2 + (Z_0 - Z)^2}$, $r_2 = \sqrt{r^2 + (Z_0 + Z)^2}$, причем координаты точки N изменяются в пределах $0 \le r \le \infty$, $Z \le 0$.

В результате потенциал в точке N электрического поля стержневого заземлителя может быть найден следующим образом:

$$\phi = \int_{0}^{l} d\phi = \frac{I_{0}}{4\pi\gamma} \int_{0}^{l} \left(1 - \frac{Z_{0}}{l}\right) \left(\frac{1}{r_{1}} + \frac{1}{r_{2}}\right) dZ_{0}$$

или

$$\phi = \frac{I_0}{4\pi\gamma l^2} \{ (l-Z) \cdot \ln \left[\frac{(l-Z) + \sqrt{r^2 + (l-Z)^2}}{\sqrt{r^2 + Z^2} - Z} \right] + \\ + (l+Z) \cdot \ln \left[\frac{(l+Z) + \sqrt{r^2 + (l+Z)^2}}{\sqrt{r^2 + Z^2} + Z} \right] + \\ + 2\sqrt{r^2 + Z^2} - \sqrt{r^2 + (l-Z)^2} - \sqrt{r^2 + (l+Z)^2} \}.$$

причем шаговое напряжение составит ($l_{\omega} \approx 0.8$ м; $r \ge d/2$):

$$U_{m}(r) = \phi_{m} - \phi_{n} = \phi(Z = 0; r) - \phi(Z = 0; r + l_{m}).$$

При r=d/2 и Z=0 получаем максимальное значение потенциала заземлителя

$$\phi_0 = \frac{I_0}{2\pi\gamma l} \left[\ln(\kappa + \sqrt{1 + \kappa^2}) + \frac{1}{\kappa} - \sqrt{1 + \frac{1}{\kappa^2}} \right],$$

где $\kappa = 2l/d$ и, если $\kappa > 1$, то

$$\phi_0 \cong \frac{I_0}{2\pi\gamma l} \left[\ln \frac{4l}{d} - 1 \right],$$

тогда сопротивление заземления составит

$$R_3 = \frac{\phi_0}{I_0} \cong \frac{1}{2\pi\gamma l} \left[\ln \frac{4l}{d} - 1 \right]$$

2. Результаты моделирования электрического поля

На основе приведенного выше математического аппарата была построена программа расчета электростатического поля стержневого заземлителя, которая позволяет определить при заданных значениях проводимости грунта γ , токе заземлите-

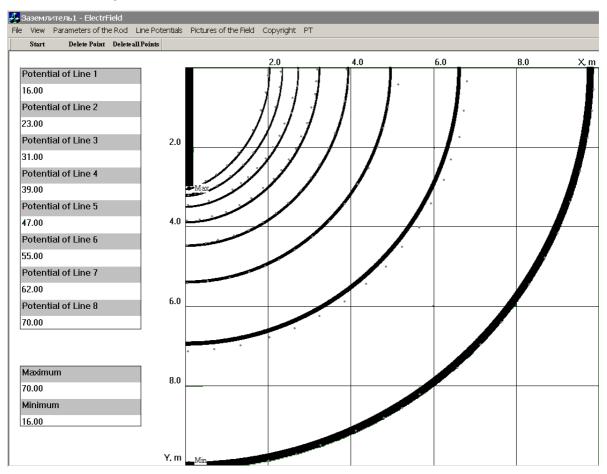
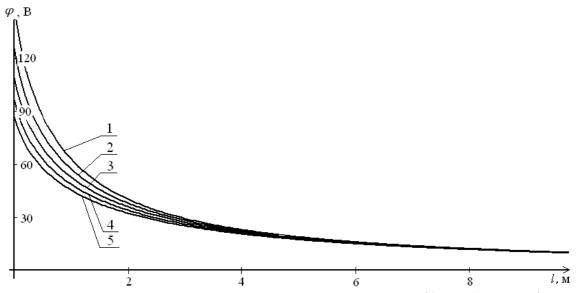
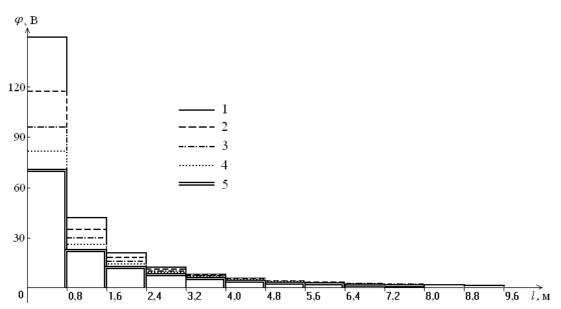



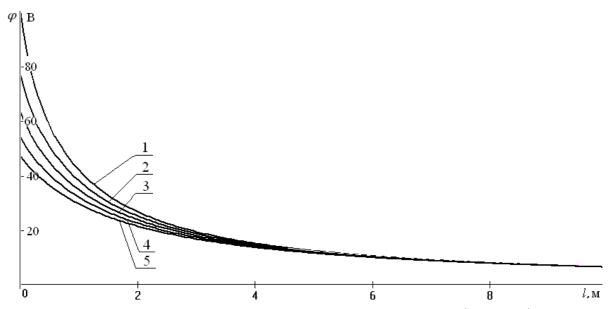
Рис. 3. Поле стержневого заземлителя

Рис. 4. Изменение напряжения на поверхности земли при увеличении длины стержня (d=0,2 м, l=3 м, l=20 A). Сопротивление: 1) 16,4; 2) 13,5; 3) 11,5; 4) 10,0; 5) 9,0 Ом

ля I_0 , его длине l и диаметре d сопротивление R_3 и максимальный потенциал ϕ_0 , а также распределение потенциала в грунте. В качестве примера распределение потенциала для стержня длиной 3 м и диаметром 0,2 м при токе I_0 =20 А показано на рис. 3. Значение потенциала уменьшается с увеличением расстояния до стержня.


Построенная модель дает возможность рассчитать потенциал на поверхности земли и шаговое напряжение. При варьировании длины стержня распределение поля и шаговое напряжение изменяются, в результате зависимости преобразуются к виду, показанному на рис. 4 и 5.

Аналогичное изменение зависимостей наблюдается при увеличении диаметра заземлителя (рис. 6).


Заключение

Разработана математическая модель, позволяющая построить электрическое поле вертикального стержневого заземлителя. Модель оформлена в виде программного приложения, имеет простой и удобный интерфейс и позволяет оперативно спроектировать стержневой заземлитель.

На основе методов численного эксперимента установлено, что с увеличением длины стержня заземлителя или его диаметра наблюдается уменьшение напряжение на поверхности земли и шагового напряжения. Шаговое напряжение возрастает при увеличении тока стекающего в заземлитель.

Рис. 5. Изменение шагового напряжения при удалении от заземлителя (d=0,2 м, l=3 м, l=20 A). Сопротивление: 1) 16,4; 2) 13,5; 3) 11,5; 4) 10,0; 5) 9,0 Ом

Рис. 6. Изменение напряжения на поверхности земли при увеличении длины и диаметра стержня (I=3 м, I=20 A). Диаметр стержня/сопротивление, м/Ом: 1) 0,2/16,4; 2) 0,4/13,5; 3) 0,6/11,5; 4) 0,8/10,0; 5) 1,0/9,0

СПИСОК ЛИТЕРАТУРЫ

- Пособие к «Инструкции по устройству молниезащиты зданий и сооружений». М.: Энергоатомиздат, 1989. 18 с.
- Ристхейн Э. Введение в энерготехнику. Таллин: Elektriajam, 2008. – 213 с.
- 3. Бессонов Л.А. Теоретические основы электротехники. Электромагнитное поле. М.: Гардарики УИЦ, 2003. 317 с.

Теоретические основы электротехники. Т. ІІ. Нелинейные цепи и основы электромагнитного поля / Под ред. П.А. Ионкина. – М.: Высшая школа, 1976. – 383 с.

Поступила 25.03.2009 г.

УДК 621.314

ИСПОЛЬЗОВАНИЕ ИНДУКТИВНОГО РАЗМЫКАТЕЛЯ ДЛЯ КОММУТАЦИИ СИЛЬНОТОЧНЫХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

С.В. Пустынников, Т.Е. Хохлова, Н.А. Макенова

Томский политехнический университет E-mail: xoxlova@tpu.ru; mna@iao.ru

Показана возможность использования индуктивного размыкателя для коммутации цепей постоянного тока с индуктивной нагрузкой. Разработана математическая модель расчета переходного процесса методом переменных состояния, позволяющая рассчитать ток в цепи нагрузки и перенапряжение на зажимах размыкающего ключа в слаботочной цепи по параметрам индуктивного размыкателя. Результаты расчета подтверждены экспериментально.

Ключевые слова:

Сильноточные и слаботочные цепи, постоянный ток, ток нагрузки, индуктивный размыкатель, переходный процесс, метод переменных состояния.

Коммутация сильноточных цепей постоянного тока, содержащих индуктивную нагрузку или имеющих внутреннюю индуктивность - линий электропередач, линий связи, цепей с генераторами и двигателями постоянного тока и т. д., осуществляется при помощи электромеханических устройств - пускателей, контакторов, имеющих конечное время срабатывания. В [1, 2] показано, что размыкание цепей постоянного тока с индуктивностью за время $\Delta t \rightarrow 0$ приводит к изменению потокосцепления индуктивности от начального значения $\Psi = L \cdot i_0$ до нуля. При этом теоретически в индуктивности возникает импульс перенапряжения $u_t = d\Psi/dt$ бесконечной величины. На практике $\Delta t \ge 0$, что сопровождается возникновением дуги на размыкающих контактах, а также скачком напряжения на индуктивности, в 5...7 раз превышающем напряжение источника питания, что приводит к выходу из строя коммутирующего оборудования.

Авторами была разработана и исследована модель бесконтактного размыкания сильноточной цепи постоянного тока с внутренней индуктивностью или с индуктивной нагрузкой с помощью индуктивного размыкателя. Схема предложенной модели показана на рис. 1.

Модель состоит из:

• сильноточной цепи, в которой последовательно включены постоянный источник ЭДС E_1 , активно-индуктивное сопротивление нагрузки $R_{\rm H}$, $L_{\rm H}$, тиристор VS;

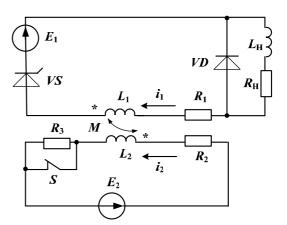


Рис. 1. Схема индуктивного размыкателя

• индуктивного размыкателя, содержащего две индуктивно-связанных катушки индуктивности R_1 , L_1 и R_2 , L_2 , включенные встречно, (причем, $L_1 \le L_2$ и $R_1 \le R_2$ благодаря чему ток в первой катушке i_1 в несколько раз превышает величину тока второй катушки i_2) и подключенное последовательно со второй катушкой индуктивности сопротивление $R_3 \rightarrow \infty$, зашунтированное ключом S, и постоянный источник ЭДС E_2 .

Предложенная модель позволяет осуществлять бесконтактное размыкание сильноточной цепи путем размыкания слаботочной цепи индуктивного размыкателя.