Реферат

Выпускная квалификационная работа: 77с., 2 рис., 22 табл., 21 источник, 2 прил., 5 листов графического материала.

Ключевые слова: переходная, секция крепи механизированной, сборочная единица, приспособление сборочное, сварочное оборудование, роботизация, смесь газов, производительность, промышленный робот, экономическая эффективность.

Объектом исследования является переходная секция КСКр.381.34.

Цель работы - разработать технологию, спроектировать оснастку и участок сборки-сварки переходной секции КСКр.381.34.

В итоге работы необходимо провести анализ конструкции и технологического процесса изготовления переходной секции и предложить мероприятия по совершенствованию базового технологического процесса.

Основные конструктивные, технологические и техникоэксплуатационные характеристики: для удобства сборки переходной секции разработано приспособление.

Область применения: участок сборки-сварки переходной секции КСКр.381.34.

Экономическая эффективность/значимость работы: разработка участка сборки-сварки, модернизация оборудования путем внедрения портального промышленного робота позволяет получать высокое качество сварных швов, при наименьшем времени, робот обслуживает два места. При работе сборщика и робота производиться одновременно два изделия.

2 Объект и методы исследования

2.1 Описание изделия, назначение, область применения

Секция переходная является незаменимой частью механизированной крепи. Механизированная крепь в основном состоит из основания которое опирается на землю, верхнего перекрытия поддерживающая породы кровли ,оградительной части, гидравлических стоек, домкрата, а так же дополнительные части. Применяется в горно-шахтной промышленности.

Секция служит для предотвращения попадания в рабочие поверхности, механизм обрушившихся пород.

Данная секция состоит из боковин в количестве 4 штук, днища в количестве 4 штук, направляющих в количестве 10 штук, пробок в количестве 3 штук и платик в количестве 4 штук.

Для изготовления изделия посчитаны режимы сварки, техническое нормирование операций, выбрано современной оборудование, рассчитаны основные элементы производства, построена технологическая схема сборки, разработан план участка.

2.2 Расчет режимов сварки

Рассчитаем тавровое соединение Т1 которое показано на рисунке 1.1:

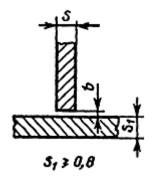


Рисунок 2.1 Тавровое соединение Т1

Диаметр электродной проволоки рассчитываем по следующей формуле [8]:

$$d_{3.\Pi} = K_d \cdot F_{Hi}^{0,625},$$
 (2.1)

Расчетное значение $d_{9.п.} = 2.84$, принимаем значение диаметра сварочной проволоки 1.2 в зависимости от положения шва и способа сварки.

Коэффициент K_d выбираем в зависимости от положения шва и способа сварки по уравнению автоматизации K_d =0,149.

Площадь поперечного сечения наплавленного металла шва $F_{\text{но}}$ =112мм². Площадь корневого шва $F_{\text{нк}}$ = 12мм², площадь заполняющих швов $F_{\text{нз}}$ =20мм², число проходов корневого и запоняющих n=5.

Скорость сварки для корневого и заполняющего шва в «лодочку» и нижнее положение определяем по формуле:

$$V_{ci}^{HI} \le (15.9 \cdot d_{3.\Pi}^2 + 67.4 \cdot d_{3.\Pi}^{1.5}) / F_H$$
 (2.2)

Ограничения V_c в зависимости от уровня автоматизации процесса должны находиться 4...20~мм/c для автоматической сварки и 4...10~мм/c для механизированной.

Скорость сварки для корневого шва:

$$V_{ck}^{B} \le (15.9 \cdot 1.2^{2} + 67.4 \cdot 1.2^{1.5}) / 12 = 9.3 \text{ mm/c},$$

Скорость сварки для заполняющих швов:

$$V_{c_3}^{B} \le (15.9 \cdot 1.2^2 + 67.4 \cdot 1.2^{1.5}) / 20 = 5.6 \text{ mm/c}.$$

При известных площадях наплавленного металла , диаметрах электродных проволок и скоростях сварки рассчитываем скорости подачи электродной проволоки по формуле:

$$V_{9.\Pi} = (4 \cdot F_{Hi} \cdot V_{ci}) / (\pi \cdot d_{9.\Pi}^2 \cdot (1 - \psi_p)).$$
 (2.3)

Скорость подачи для корневого шва:

$$V_{3.K} = (4.112.9,3)/(3,14.1,2.(1-0,1)) = 109,64 \text{ mm/c}.$$

Скорость подачи для заполняющего шва:

$$V_{9.K} = (4.112.5,6)/(3,14.1,2.(1-0,1)) = 110,03 \text{ MM/c}.$$

Рассчитываем сварочный ток по формуле:

$$I_{c\kappa} = d_{\eta \Pi} \cdot (\sqrt{1450} \cdot d_{\eta \Pi} \cdot V_{\eta,\Pi}) + 145150 - 382).$$
 (2.4)

Сварочный ток для корневого шва:

$$I_{c\kappa} = 1.2 \cdot (\sqrt{1450} \cdot 1.2 \cdot 109.64 + 145150 - 382) = 237.11 \text{ A},$$

Сварочный ток для заполняющего шва:

$$I_{c3} = 1.2 \cdot (\sqrt{1450} \cdot 1.2 \cdot 110.03 + 145150 - 382) = 237.81 \text{ A},$$

Расчетное значение сварочного тока не выходит за пределы ограничений для нижнего положения $I_c \le 510 A$.

Напряжение сварки U_c определяем по формуле:

$$U_c = 14 + 0.05 \cdot I_c \,, \tag{2.5}$$

Напряжения для корневого:

$$U_c = 14+0.05\cdot237.11=26 B;$$

Напряжения для заполняющего:

$$U_c = 14 + 0.05 \cdot 237.81 = 26B.$$

Расход защитного газа СО2:

$$q_{3r}=3,3\cdot10^{-3}\cdot I_c;$$
 (2.6)

Расход защитного газа для корневого шва:

$$q_{3\Gamma}=3,3\cdot10^{-3}\cdot237,11=0,199 \text{ л/c}, 12,08 \text{ л/мин};$$

Расход защитного газа для заполняющих швов:

$$q_{3\Gamma}$$
=3,3·10⁻³·237,81=0,200 л/с, 12,11 л/мин.

Таблица 2.1 Режимы сварки в СО₂ для Т1 соединения.

Толщина	Диаметр	Срофоницій	Цопрамонно	Скорость	Расход
металла,	проволоки,	Сварочный	Напряжение,	сварки,	CO_2 ,
MM.	MM.	ток, А	D.	м/ч.	л/мин.
40	1,2	237	26	9,9	6,3

Сведенные табличные параметры режима сварки по ГОСТ 14771-76 приведены в таблице 2.2 [2]:

Таблица 2.2 Режимы сварки по ГОСТ 14771-76 [2]

Толщина	Диаметр	Сварочный	Цапражанца	Скорость	Расход
металла,	проволоки,	ток, А	Напряжение, В.	сварки,	CO ₂ ,
MM.	MM.	TOK, A	D.	м/ч.	л/мин.
40	1,2	120-250	19-26	10-16	8-10

Для таврового соединения №1 T1-Δ15 ГОСТ 14771-76. Сварку проводим без скоса кромок.

Площадь поперечного сечения шва Fно=112 мм².

Для стыкового соединения №2 С8 ГОСТ 14771-76.

Площадь поперечного сечения шва Fнo=214 мм².

Для таврового соединения №3 Т1 ГОСТ 23518-79. Сварку проводим без скоса кромок.

Площадь поперечного сечения шва $Fho=180 \text{ мм}^2$.

Для таврового соединения №4 Т2 ГОСТ 23518-79. Сварку проводим без скоса кромок.

Площадь поперечного сечения шва Fно=158 мм²,

Для нестандартного шва №5 применяется тип таврового соединения.

Площадь поперечного сечения шва Fнo=440 мм², тип шва T6.

Для нестандартного шва №6 применяется тип углового соединения.

Площадь поперечного сечения шва Fно=742 мм², тип шва У6.

Для нестандартного шва №7 применяется тип таврового соединения.

Площадь поперечного сечения шва Fнo=440 мм², тип шва T6.

Для нестандартного шва №8 применяется тип таврового соединения.

Площадь поперечного сечения шва Fнo=162 мм², тип шва T6.

Для нестандартного шва №9 применяется тип углового соединения.

Площадь поперечного сечения шва Fнo=176 мм², тип шва У6.

Для нестандартного шва №10 применяется тип углового соединения.

Площадь поперечного сечения шва Fнo=176 мм², тип шва У6.

Для нестандартного шва №11 применяется тип углового соединения.

Площадь поперечного сечения шва Fнo=176 мм², тип шва У6.

Для углового соединения №12 У6 ГОСТ 14771-76.

Площадь поперечного сечения шва Fно=98 мм².

Для таврового соединения №13 Т6 ГОСТ 14771-76.

Площадь поперечного сечения шва Fно=80 мм².

Для нестандартного шва №14 таврового соединения выбираем тип шва Т2 ГОСТ 23518-79. Характер производства шва двухсторонний.

Площадь поперечного сечения шва Fнo=163 мм², тип шва Т8.

Для нестандартного шва №15 таврового соединения выбираем тип шва ТЗ ГОСТ 14771-76. Характер производства шва двухсторонний.

Площадь поперечного сечения шва Fно=92 мм².

Табличные параметры режима сварки приведены в таблице 2.3 [2].

Таблица 2.3 – Параметры режима сварки.[2]

Номер шва, тип содинения	Диаметр проволоки, мм.	Свароч ный ток, А	Напряжение, В.	Скорость сварки, м/ч.	Расход СО ₂ , л/мин.
1	2	3	4	5	6
№1, T1-Δ15 ГОСТ 14771-76	1,2	120- 250	19-26	10-16	8-10
№2, C8 ГОСТ 14771-76	1,2	120- 250	19-26	10-16	8-10
№3, Т1 ГОСТ 23518-79	1,2	120- 250	19-26	10-16	8-10
№4, Т2 ГОСТ 23518-79	1,2	120- 250	19-26	10-16	8-10
№5, Т6 нестандартный шов	1,2	120- 250	19-26	10-16	8-10
№6 нестандартный шов У6	1,2	120- 250	19-26	10-16	8-10
№7 нестандартный шов Т6	1,2	120- 250	19-26	10-16	8-10

Продолжение таблицы 2.3

1	2	3	4	5	6
№8 нестандартный шов Т6	1,2	120- 250	19-26	10-16	8-10
№9 нестандартный шов У6	1,2	120- 250	19-26	10-16	8-10
№10 нестандартный шов У6	1,2	120- 250	19-26	10-16	8-10
№11 нестандартный шов У6	1,2	120- 250	19-26	10-16	8-10
№12 У6 ГОСТ 14771-76.	1,2	120- 250	19-26	10-16	8-10
№13, T6 ГОСТ 14771-76	1,2	120- 250	19-26	10-16	8-10
№14 , Т2 ГОСТ 23518-79	1,2	120- 250	19-26	10-16	8-10
№15 , T3 ГОСТ 14771-76	1,2	120- 250	19-26	10-16	8-10

Швы устремляются выбирать с минимальной численностью проходов, с меньшими расходами на скос кромок, либо без скоса кромок, и кантовку изделия (односторонний шов), с формированием шва в большей степени из-за проплавления основного металла.

Механизированную сварку плавящимся электродом в защитном газе выполняем проволокой Св-08Г2С (ГОСТ 2246-70). Проволока Св-08Г2С применяется для сварки в защитных газах углеродистых и низкоуглеродистых конструкционных сталей.

2.3 Техническое нормирование операций

Цель технического нормирования — введение для определенных организационно—технических критериев затрат времени нужного для исполнения заданной работы.

Техническое нормирование имеет огромный смысл, так как считается основой всех расчетов при организации и планировании изготовления.

Норма штучного времени для всех видов дуговой сварки [9]:

$$T_{III} = T_{HIII-K} \cdot L + t_{BH}, \qquad (2.7)$$

где, $T_{\text{н.ш-к}}$ -неполное штучно-калькуляционное время;

L – длина сварного шва по чертежу;

 $t_{{\scriptscriptstyle B},{\scriptscriptstyle H}}-$ вспомогательное время, зависящее от изделия и типа оборудования.

Неполное штучно-калькуляционное время на 1 метр шва:

$$T_{\text{H.III-K}} = (T_{\text{O}} + t_{\text{B.III}}) \cdot (1 + \frac{a_{\text{ofc.}} + a_{\text{orm.}} + a_{\text{n-3}}}{100}), \qquad (2.8)$$

где, То-основное время сварки;

 $t_{\mbox{\tiny B.III}}$ –вспомогательное время, зависящее от длинны сварного шва.

$$To = \frac{F\gamma \cdot 60}{I \cdot \alpha H},\tag{2.9}$$

Время сварки для шва №1 Т1 ГОСТ14771-76:

$$T_o = (112 \cdot 7, 8 \cdot 60)/(237 \cdot 15) = 14,74$$
 мин.

Время сварки для шва №2 С8 ГОСТ14771-76 Т3:

$$T_o = (214 \cdot 7, 8 \cdot 60)/(237 \cdot 15) = 28,17$$
 мин.

Время сварки для шва №3 Т1 ГОСТ 23518-79 :

$$T_o = (180 \cdot 7, 8 \cdot 60)/(237 \cdot 15) = 23,8$$
 мин.

Время сварки для шва №4 Т2 ГОСТ 23518-79:

$$T_0 = (158 \cdot 7, 8 \cdot 60)/(237 \cdot 15) = 20,8$$
 мин.

Время сварки для шва №5 Т6 ГОСТ14771-76 Т3:

$$T_0 = (433 \cdot 7, 8 \cdot 60)/(237 \cdot 15) = 57 \text{ мин.}$$

Время сварки для шва №6 У6 ГОСТ14771-76 Т3:

 $T_o = (742 \cdot 7, 8 \cdot 60)/(237 \cdot 15) = 97$ мин.

Время сварки для шва №7 Т6 ГОСТ14771-76 Т3:

$$T_0 = (440 \cdot 7, 8 \cdot 60)/(237 \cdot 15) = 57$$
 мин.

Время сварки для шва №8 Т6 ГОСТ14771-76 Т3:

$$T_o = (162 \cdot 7, 8 \cdot 60)/(237 \cdot 15) = 21,32 \text{ мин.}$$

Время сварки для шва №9 У6 ГОСТ 14771-76:

$$T_o = (176 \cdot 7, 8 \cdot 60)/(237 \cdot 15) = 23,16$$
 мин.

Время сварки для шва №10 176 ГОСТ 14771-76:

$$T_o = (176 \cdot 7, 8 \cdot 60)/(237 \cdot 15) = 23,16$$
 мин.

Время сварки для шва №11 У6 ГОСТ 14771-76:

$$T_o = (176 \cdot 7, 8 \cdot 60)/(237 \cdot 15) = 23,16$$
 мин.

Время сварки для шва №12 У6 ГОСТ 14771-76 :

$$T_o = (98 \cdot 7, 8 \cdot 60)/(237 \cdot 15) = 12,09$$
 мин.

Время сварки для шва №13 Т6 ГОСТ 23518-79:

$$T_o = (80.7, 8.60)/(237.15) = 10,53$$
 мин.

Время сварки для шва №14 Т2 ГОСТ 23518-79:

$$T_0 = (163 \cdot 7, 8 \cdot 60) / (237 \cdot 15) = 21,45$$
 мин.

Время сварки для шва №15 ТЗ ГОСТ 14771-76:

$$T_o = (92 \cdot 7, 8 \cdot 60)/(237 \cdot 15) = 12,11$$
 мин.

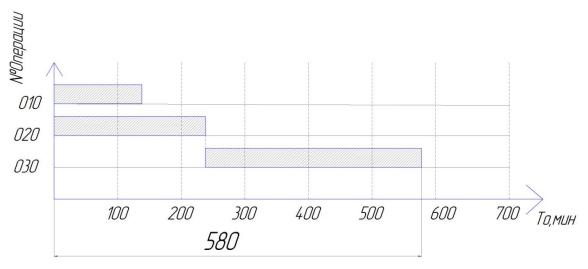


Рисунок 2.2 График загруженности операций

2.4 Выбор оборудования

Для сварки в среде защитного газа плавящимся электродом было выбрано современное оборудование, обеспечивающее необходимый сварочный ток сварки I_c = 190 - 280 A, и напряжение сварки U=27 - 29B. Исходя из условий, выбрали механизм подачи проволоки для полуавтоматической сварки LINC FEED-24M PRO; Источник сварочного тока POWERTEC 505S , который будет обеспечивать локальные и подготовительные сварочные работы как прихватки и т.д.

В данной работе был выбран промышленный робот в целях автоматизации и получение как можно качественного и производительней сварочных работ и возможность производить сборку-сварку более одного изделия при меньших затратах времени.

Промышленный портальный робот на рельсах, находящихся на полу. Обеспечивает досягаемость и сварку в труднодоступных местах 2000мм. FANUC R-2000iB/200T. Контроллер для управления роботом и задачи программ работы R-30iB.

Промышленный робот эффективен на протяженные швы за счет подвижности на рельсах, для труднодоступных мест сварки при шести степенях свободы, значительном снижении времени сварки так как не нуждается в перерывах, не устает.

2.5 Расчет основных элементов производства

К основным элементам производства относятся рабочие ИТР, контролеры, оборудование, материалы и энергетические затраты [10].

Определение количества необходимого числа оборудования

$$n_{p} = \frac{T_{r}}{\Phi_{\pi}}, \qquad (2.10)$$

где, T_r – время необходимое для выполнения годовой программы продукции,

 $\Phi_{\text{Д}}$ — действительный фонд рабочего времени на 2016 3572 ч.;

$$T_r = N \cdot T, \tag{2.11}$$

где, N— годовая программа выпуска продукции, N =500 шт.;

Т— длительность одной операции, мин.

- для операции 010, 020, 030

$$T_r = 500 \cdot (138 + 580/60) = 5983 \text{ ч.}$$

Ф_н— номинальный фонд рабочего времени в одну смену на 2016 равен 1975 час, найдем действительный отняв от номинального процент потерь времени:

$$\Phi_{\text{Д}} = \Phi_{\text{H}}$$
 -5% = 1975-5% = 1876,25 ч.,
$$n_{\text{p}} = 5983/1876,25 = 3,18,$$

округляем n_p и принимаем n_P ' =1.

Найдем коэффициент загруженности оборудования:

$$K_3 = n_p / n_p = 3,18/1 = 3,18.$$

– для операции 010;

$$T_r$$
=500·(138/60)=1150 ч.,
 n_p =1150/1876,25= 0.61,

округляем n_p и принимаем n_{P} =1.

Найдем коэффициент загруженности оборудования:

$$K_3 = n_p / n_p = 0.61/1 = 0.61.$$

– для операции 020;

$$T_r$$
=500·(340/60)=2833 ч.,
 n_p =2833/1876,25= 1,50,

округляем n_p и принимаем n_{P} ' =1.

Найдем коэффициент загруженности оборудования:

$$K_3 = n_p / n_p = 1,50/1 = 1,50.$$

– для операции 030;

$$T_r$$
=500·(240/60)=2000 ч.,
 n_p =2000/1876,25= 1,06,

округляем n_p и принимаем n_P ' =1.

Найдем коэффициент загруженности оборудования:

$$K_3 = n_p / n_p = 1,06/1 = 1,06.$$

округляем n_p и принимаем n_{P} ' =2.

Найдем коэффициент загруженности оборудования:

$$K_3 = n_p / n_p = 1,06/2 = 0,53.$$

2.6 Определение состава и численности рабочих

Определим общее время необходимое для выполнения годовой программы продукции, ч.[10]

$$\Sigma T_r = 1150 + 2000 + 2833 = 5983$$
 ч.

 $\Phi_{\rm H}$ — номинальный фонд рабочего времени равен 1975 часов, найдем действительный, отняв от номинального процент потерь времени:

$$\Phi_{\text{Д}} = \Phi_{\text{H}}$$
-12% = 1975-12% = 1738 ч.,

Определим количество рабочих явочных:

$$P_{\text{MB}} = T_{\text{r}} / \Phi_{\text{H}} = 5983/1975 = 3.$$
 (2.12)

Примем число рабочих равным $P_{AB} = 3$.

Определим количество рабочих списочных:

$$P_{c\pi} = T_r / \Phi_{\pi} = 5983/1738 = 3,44.$$
 (2.13)

Примем число рабочих равным $P_{CII} = 4$.

Вспомогательных рабочих (30% от количества основных рабочих)—1;

ИТР (8% от суммы основных и вспомогательных рабочих) — 1;

Счетно-конторская служба (3% от суммы основных и вспомогательных рабочих) — 1;

МОП (2% от суммы основных и вспомогательных рабочих) — 1;

Контроль качества продукции (1% от суммы основных и вспомогательных рабочих) — 1.

2.7 Состав сборочно-сварочного цеха

Рациональное размещение в пространстве запроектированного производственного процесса и всех основных элементов производства, необходимых для осуществления этого процесса требует разработка чертежей плана и разрезов проектируемого цеха. Для этого, прежде всего, необходимо установить состав последнего.

Независимо от принадлежности к какой-либо разновидности сварочного производства сборочно-сварочные цехи при полном их составе могут включать следующие отделения и помещения.

Производственные отделения. Заготовительное отделение включает производственные участки: правки и наметки металла, резки, станочной обработки, слесарно-механический и очистки металла. Сборочно-сварочное отделение, подразделяющееся на узловую и общую сборку-сварку, с производственными участками сборки, сварки, термообработки, механической обработки, испытания готовой продукции и исправления пороков, нанесения поверхностных покрытий и отделки продукции. Участки механической обработки, нанесения покрытий и отделки продукции не входят в состав проектируемого сборочно-сварочного цеха, если сваренные в нем конструкции подлежат передаче в механосборочный цех для монтажа механизмов, окончательной сборки, отделки и выпуска изделий завода.

Вспомогательные отделения. Цеховой склад сплава с разгрузочносортировочной площадкой и участком подготовки сплава, промежуточный склад деталей и полуфабрикатов с участком их сортировки и комплектации, межоперационные складочные участки и места, склад готовой продукции цеха с контрольным и упакованным отделениями и погрузочной площадкой. Кладовые сварные проволоки, баллоны с защитными газами, инструмента, приспособлений, запасных частей и вспомогательных материалов. Мастерские: изготовления шаблонов, ремонтная, электромеханическая и другое. Отделения: электромашинное, ацетилено-компрессорное. Цеховые трансформаторные подстанции.

Административно-конторские и бытовые помещения. Контора цеха, гардероб, уборные, умывальные, душевые, буфет, комната для отдыха и приема пищи, медпункт.

2.8 Выбор типовой схемы компоновки сборочно-сварочного цеха

Расположение цеха - всех его производственных отделений и участков, а также запасных, административно-конторских и бытовых помещений обязано вполне удовлетворять всем специфическим требованиям процессов, подлежащих выполнению в любом из этих отделений. В этом заключается одна из главных задач рационального проектирования промышленных предприятий.

В соответствии с различными типами сварочных производств и разновидностями их организации в практике проектирования одноэтажных сборочно-сварочных цехов установились определенные типовые схемы взаимного расположения. Каждая типовая схема удовлетворяет требованиям организации отдельных разновидностей сварочных производств.

В данном проекте применена типовая схема со смешанным направлением производственного потока. Перемещение обрабатываемого металла и изготовляемых деталей, сборочных единиц и изделий выполняется кран - балкой. Специализация пролетов в заготовительном отделении осуществляется по группам сортамента обрабатываемого металла, а в отделениях узловой и общей сборки – сварки - по типоразмерам изготовляемых изделий. [11,12]

2.9 Планировка сборочно-сварочных отделений и участков

При разработке плана отделений узловой и общей сборки и сварки основным является определение требуемого числа пролетов и необходимых размеров каждого из них – длины, ширины и высоты.

При проектировании уточнения детальном основным методом отделений сборки указанных параметров плана сварки служит последовательное размещение на плане принятого по расчету количества оборудования, сборочно-сварочных стендов и других рабочих мест. При этом обеспечить стремятся только точность производства наиболее рациональную специализацию работ в каждом пролете, но также достигнуть наилучшего использования грузоподъемности транспортных средств. Число наиболее рациональной пролетов уточняют на основе специализации располагаемых в них сборочно- сварочных работ.

Отдаления между рабочим местом или ограждением сварочной кабины и складочным местом для прибывающих деталей и сборочных единиц, а также для сборочных единиц, отправляемых с данного рабочего места на следующие рабочие места рассматриваемой линии, принимают в пределах 1-1,6 м.

Ширину проезда между двумя линиями рабочих мест, расположенными в одном пролете, принимают в пределах 2-3 м (в случае, если ширина участка составляет не менее 18 м). Такая ширина необходима для обеспечения свободного проезда средств внутрицехового напольного транспорта. Также ширина проходов составляет по 1м с каждой стороны сборочно—сварочного устройства. Эти проходы необходимы для перемещения рабочих в процессе выполнения ими работ на данном рабочем месте.

Согласно нормам технологического проектирования, высота производственных помещений от пола до потолка составляет не менее 4,5 м. [11,12].

На сварочном участке расположены: Источник сварочного тока POWERTEC 505S, механизм подачи проволоки для полуавтоматической сварки LINC FEED-24M PRO, промышленный сварочный робот FANUC R-

2000iB/200T, контроллер FANUC R-30iB, источник S-RoboMIG, плита слесарная, сборочно-сварочное приспособление с вращателем. Перемещение, установка деталей производится краном.

2.10 Степень и уровень механизации и автоматизации производственного процесса

Итоги исследования и введения в план сборочно-сварочного цеха комплексной механизации и автоматизации производственных процессов оценивают особенными признаками, характерезующими допустимые степень и уровень механизации и автоматизации предусмотренных работ по изготовлению данных к выпуску изделий.

Количественный уровень механизации сварочных работ определяют по формуле [11,12]:

$$C_{M} = \frac{\sum (k \cdot T_{M})_{i}}{\sum (T_{HM} + k \cdot T_{M})_{i}} \cdot 100\%, \qquad (2.14)$$

где $T_{\text{м}}$ - трудоемкость сварочных работ, выполняемых автоматизированным способом, нормо-час;

Т_{нм}- тоже, выполняемых механизированным способом;

k— коэффициент повышения производительности труда на данном рабочем месте, равный отношению трудоемкости выполняемых на нем операций до механизации к их трудоемкости после механизации:

$$C_{M} = (2.340/244 + 2.340) \cdot 100\% = 73,59\%.$$

Качественный уровень Ум производственного процесса определяют по формуле, [11,12]:

$$Y_{M} = C_{M} \cdot (1 - \frac{1}{k_{cp}}),$$
 (2.15)

где Ум- выражается в процентах;

$$k_{cp} = \frac{\sum (k \times T_M)_i}{\sum (T_M)_i}.$$
 (2.16)

$$k_{cp} = \frac{2.3510}{3510} = 2,$$
 $y_{M} = 73,59 \cdot (1-1/2) = 36,79\%$

Для полуавтоматической и автоматической сварки в защитных газах k=2, [11,12], следовательно, Ум=36,79%.

2.11 Планировка административно-конторских и бытовых помещений

При любом сборочно-сварочном цехе или в отдельном здании обязаны быть учтены необходимые адмистративно-конторские и бытовые помещения. Исключение составляют сборочно-сварочные цеха маленькой производительности, размещаемые в едином, здании с иными цехами завода.

Правила проектирования административно-конторских и бытовых помещений, сооружаемых при цехах промышленных предприятий, изложены в «Санитарных нормах проектирования промышленных предприятий».

Перечень этих помещений, составленный применительно к проекту сборочно-сварочного цеха средней либо большой мощности представлен ниже.

Административно-конторские помещения: контора цеха, контора сменного технологического персонала. Бытовые помещения: гардеробные, уборные, умывальные, душевые, помещения для приема пищи, цеховой здравпункт.

Все бытовые и конторские отделения часто размещают в особой пристройке к основной производственной части здания цеха. Местоположение и общую компоновку этой пристройки с остальной частью здания цеха выбирают таким образом, чтобы при увеличении масштабов производства бытовые помещения не могли служить препятствием для расширения производственной части здания.

Взаимное расположение отдельных помещений пристройки определяется целесообразностью и удобством эксплуатации их в соответствии с местными условиями, вытекающими из общей планировки всего цеха в

целом. Поэтому планировка бытовых и административно-конторских помещений зависит от следующих положений:

- при многоэтажном расположении, на первом этаже должны находиться и комната сменного технического персонала, и гардеробные, уборные, умывальные и душевые;
- в целях сокращения пути, гардеробные следует располагать, возможно, ближе к выходам;
- в непосредственной близости от прохода в цех, рядом с гардеробными должны находиться уборные, умывальные и душевые.
- контора цеха должна быть расположена по соседству с кабинетом начальника цеха.

Заключение

В настоящей выпускной квалификационной работе в целях интенсификации производства, повышения качества изготавливаемой продукции, повышения качества сварных соединений разработан участок сборки-сварки переходной секции КСКр.381.34.

Для сборки и последующей сварки разработано сборочно-сварочное приспособление, устанавливаемое на участок в количестве 2 штук.

Предложена модернизация оборудования путем применения промышленного портального сварочного робота FANUC 2000ib/200T, тем самым обеспечивая высокое качество сварных швов, уменьшения затрат времени на контроль и времени сварки.

В результате нововведений время на сварку значительно сократилось изза автоматизации процесса.

Разработаны мероприятия по безопасности жизнедеятельности, охране труда и совершенствованию организации труда. Посчитан экономический эффект от перечисленных нововведений, что позволяет судить о выгодности предлагаемого технологического процесса.

Годовая производственная программа 500 изделий.

Площадь спроектированного участка — 181 m^2 ;

Средний коэффициент загрузки оборудования – 86,66 %;

Экономический эффект на годовую программу – 1020 рублей.