Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт ЭНИН

Направление подготовки <u>13.03.02 Электроэнергетика и электротехника</u> Кафедра <u>Электроэнергетических систем</u>

БАКА ПАВРСКАЯ РАБОТА

DANAJIADI CNAJI PADOTA		
Тема работы		
Расчет высоковольтного ввода наружной установки на 220 кВ.		

УДК 621.316.542.027

Студент

Группа	ФИО	Подпись	Дата
5A2B	Хасанов Ильдар Рафаильевич		

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры ЭЭС	Мытников А.В.	к.т.н.,доцент		

консультанты:

По разделу «Изоляция электротехнического оборудования высокого напряжения»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры ЭЭС	Мытников А.В.	к.т.н.		

По разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Старший преподаватель кафедры менеджмента	Потехина Н.В.			

По разделу «Социальная ответственность»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Старший преподаватель кафедры ЭБЖ	Романцов И.И.	к.т.н.		

допустить к защите:

Зав.кафедрой	ФИО	Ученая степень, звание	Подпись	Дата
ЭЭС	Сулайманов А.О.	к.т.н.,доцент		

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт ЭНИН Направление подготовки 13.03.02 Электроэнергетика и электротехника Кафедра Электроэнергетических систем (ЭЭС) УТВЕРЖДАЮ: Зав. кафедрой _Сулайманов А.О. (Подпись) **ЗАДАНИЕ** на выполнение выпускной квалификационной работы В форме: Бакалаврской работы Студенту: ФИО Группа 5A2B Хасанову Ильдару Рафаильевичу Тема работы: Расчет высоковольтного ввода наружной установки на 220 кВ Утверждена приказом директора (дата, номер) Приказ № 653/с от 02.02.2016 Срок сдачи студентом выполненной работы: ТЕХНИЧЕСКОЕ ЗАДАНИЕ: Исходные данные к работе В данной работе рассчитывается и проектируется высоковольтный ввод наружной установки с бумажно-масляной изоляцией вертикального исполнения с параметрами: Номинальное напряжение 220 кВ; Номинальный ток 2100 А; Механическая изгибающая нагрузка 600 кГс; Рабочая среда – "воздух-масло". 1. Расчет сечения токопровода. Перечень вопросов подлежащих 2. Расчет конденсаторной изоляции. исследованию, проектированию

Расчет покрышки ввода.
 Механический расчет.
 Тепловой расчет.

6. Выбор маслорасширителя.

Спецификация

Чертеж высоковольтного ввода.

разработке

Перечень графического материала

Консультанты по разделам выпускной квалификационной работы				
Раздел	Консультант			
Изоляция				
электротехнического	Мытников А.В.			
оборудования высокого	мытников А.Д.			
напряжения				
Финансовый менеджмент,				
ресурсоэффективность и	Потехина Н.В.			
ресурсосбережение				
Социальная ответственность	Романцов И.И.			

Дата	выдачи	задания	на	выполнение	выпускной	
квалификационной работы по линейному графику						

Задание выдал руководитель:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры ЭЭС	Мытников А.В.	к.т.н.		

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
5A2B	Хасанов Ильдар Рафаильевич		

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ»

Студенту:

Группа	ФИО
5A2B	Хасанову Ильдару Рафаильевичу

Институт	Энергетический	Кафедра	ЭЭС
Уровень образования	Бакалавр	Направление/специальность	Электроэнергетика и
			электротехника

Исходные данные к разделу «Финансовый менеджмент, ресурсоэффективность и					
ресурсосбережение»:					
1. Стоимость ресурсов научного исследования (НИ):	Стоимость материальных ресурсов определялась				
материально-технических, энергетических, финансовых,	по средней стоимости по г. Томску				
информационных и человеческих	Оклады в соответствии с окладами сотрудников				
	НИ ТПУ				
2. Нормы и нормативы расходования ресурсов	30 % премии				
	20 % надбавки				
	16% накладные расходы				
	30% районный коэффициент				
3. Используемая система налогообложения, ставки	27,1% отчисления на социальные нужды				
налогов, отчислений, дисконтирования и кредитования					
Перечень вопросов, подлежащих исследованию	, проектированию и разработке:				
1. Оценка коммерческого потенциала, перспективности и	Анализ конкурентных технических решений.				
альтернатив проведения НИ с позиции	Оценки перспективности проекта по технологии				
ресурсоэффективности и ресурсосбережения	QuaD.				
2. Планирование и формирование бюджета научных	Формирование плана и графика разработки:				
исследований	- определение структуры работ;				
	- определение трудоемкости работ;				
	- разработка графика Ганта;				
	- формирование бюджета затрат на НИ;				
	- материальные затраты;				
	- заработная плата (основная и дополнительная);				
	- отчисления на социальные цели;				
2 Owned a zawa nagymaya i (nagymaya fi ana agyayı 🚎	- накладные расходы.				
3. Определение ресурсной (ресурсосберегающей),	Определение ресурсной эффективности				
финансовой, бюджетной, социальной и экономической эффективности исследования	исследования.				
* *					
перечень графического материала (с точным указание	Перечень графического материала (с точным указанием обязательных чертежей):				

- 1. Оценочная карта для сравнения конкурентных технических решений
- Оценочная карта QuaD
 Календарный план-график проведения НИОКР (график Ганта)
- 4. Сравнительная оценка характеристик вариантов исполнения проекта

Д	ата выдачи задания для раздела по линейному графику	

Задание выдал консультант:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ст. преподаватель	Потехина Н.В.			

Задание принял к исполнению студент:

		<i>V</i> · ·		
Группа	a	ФИО	Подпись	Дата
5A2E)	Хасанов Ильдар Рафаильевич		

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ»

Студенту:

Группа	ФИО
5A2B	Хасанову Ильдару Рафаильевичу

Институт	НИНЄ	Кафедра	ЭЭC
Уровень	Бакалавр	Направление/специальность	«Электроэнергетика и
образования			Электротехника»

Исходные данные к разделу «Социальная ответственность»:

- 1. Описание рабочего места (рабочей зоны, технологического процесса, механического оборудования) на предмет возникновения:
 - вредных проявлений факторов производственной среды (освещение, шумы, вибрации, электромагнитные поля, ионизирующие излучения)
 - опасных проявлений факторов производственной среды (механической природы, термического характера, электрической, пожарной и взрывной природы)
 - негативного воздействия на окружающую природную среду (атмосферу, гидросферу, литосферу)
 - чрезвычайных ситуаций (техногенного, стихийного, экологического и социального характера)
- 2. Знакомство и отбор законодательных и нормативных документов по теме.

Помещение закрытого типа с естественной вентиляцией воздуха. Помещение имеет как искусственный, так и естественный источник освещения. Основное рабочее оборудование — ПЭВМ.

- Вредные факторы производственной среды: недостаточное освещение, повышения уровня шума, микроклимат, превышение электромагнитных и ионизирующих излучений; монотонный режим работы.
- Опасные факторы среды: электрический ток
- Негативное влияние на окружающую среду: бытовые отходы.
- Чрезвычайные ситуации: пожар.
- ГОСТ 12.0.003-74 (с измен. 1999 г.)
- ГОСТ 12.1.004 «Пожарная безопасность»
- ГОСТ 12.1.010-76 «Взрывобезопасность»
- Правила устройства электроустановок.
- ПОТ РМ-016-2001 РД 153-34.0-03.150-00
- СанПиН 2.2.2/2.4.1340-03 (с измен. 2010 г.)
- CH 2.2.4/2.1.8.562-96.
- CH 2.2.4/2.1.8.556–96.

Перечень вопросов, подлежащих исследованию, проектированию и разработке:

- 1. Анализ выявленных вредных факторов проектируемой производственной среды в следующей последовательности:
 - физико-химическая природа вредности, её связь с разрабатываемой темой;
 - действие фактора на организм человека;
 - приведение допустимых норм с необходимой размерностью (со ссылкой на соответствующий нормативно-технический документ);
- предлагаемые средства защиты (сначала коллективной защиты, затем индивидуальные защитные средства)

- Вредные факторы возникают из-за ПЭВМ.
- Негативные электромагнитное и ионизирующее излучения отрицательно влияют на иммунную, нервную, эндокринную и дыхательную системы. Шум негативно влияет на психофизиологическое состояние.
- СанПиН 2.2.2/2.4.1340-03. Напряженность электрического поля в диапазоне частот 5 Гц− 2 кГц не должна превышать 25 В/м, а в дипазоне частот 2 кГц − 400 кГц не больше 2,5 В/м.
- СанПиН 2.2.2/2.4.1340-03. При нахождении на рабочем месте в процессе трудовой деятельности на ПЭВМ уровень звукового давления не должен превышать 50 дБА.
- Уменьшение мощности блока питания компьютера, сокращение времени пребывания за компьютером, перерывы.

 Анализ выявленных опасных факторов проектируемой произведённой среды в следующей последовательности механические опасности (источники, средства защиты; термические опасности (источники, средства защиты); электробезопасность (в т.ч. статическое электричество, молниезащита — источники, средства защиты); пожаровзрывобезопасность (причины, профилактические мероприятия, первичные средства пожаротушения) 	— Поражение электрическим током
3. Охрана окружающей среды: — защита селитебной зоны — анализ воздействия объекта на атмосферу (выбросы); — анализ воздействия объекта на гидросферу (сбросы); — анализ воздействия объекта на литосферу (отходы); — разработать решения по обеспечению экологической безопасности со ссылками на НТД по охране окружающей среды.	– Бытовые отходы. Отходы, образующиеся при поломке ПЭВМ.
 4. Защита в чрезвычайных ситуациях: перечень возможных ЧС на объекте; выбор наиболее типичной ЧС; разработка превентивных мер по предупреждению ЧС; разработка мер по повышению устойчивости объекта к данной ЧС; разработка действий в результате возникшей ЧС и мер по ликвидации её последствий 	 Возможные ЧС:. Пожар. Возникновение КЗ в проводке. Устройства оповещения при пожаре, датчики дыма. План эвакуации. Средства пожаротушения
 5. Правовые и организационные вопросы обеспечения безопасности: – специальные (характерные для проектируемой рабочей зоны) правовые нормы трудового законодательства; – организационные мероприятия при компоновке рабочей зоны 	 Условия труда, отвечающие требованиям безопасности и гигиены. Использование оборудования и мебели согласно антропометрическим факторам.

Дата выдачи задания для раздела по линейному графику

Задание выдал консультант:

Эаданис выдал консульт	an .			
Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Старший преподаватель	Романцов И.И.	K.T.H.		

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
5A2B	Хасанов Ильдар Рафаильевич		

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт ЭНИН

Направление подготовки 13.03.02 Электроэнергетика и электротехника

Кафедра Электроэнергетических систем (ЭЭС)

Уровень образования бакалавр

Период выполнения Весенний семестр 2015/2016 учебного года

Форма представления работы:

Бакалаврская работа

КАЛЕНДАРНЫЙ РЕЙТИНГ-ПЛАН выполнения выпускной квалификационной работы

Срок сдачи студентом выполненной работы:

Дата	Название раздела (модуля) /	Максимальный
контроля	вид работы (исследования)	балл раздела (модуля)
24.03.2016 г.	Электрический расчет	3
03.04.2016 г.	Механический расчет	2
14.04.2016 г.	Расчет тепловой устойчивости ввода	5
21.04.2016 г.	Выбор маслорасширителя	3
23.04.2016 г.	Описание конструирования ввода	3
10.05.2016 г.	Построение сборочного чертежа	4
15.05.2016 г.	Финансовый менеджмент, ресурсоэффективность и ресурсосбережение	5
22.05.2016г.	Социальная ответственность	5
29.05.2016 г.	Оформление работы	10
11.06.2016 г.	Итог	40

Составил преподаватель:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры ЭЭС	Мытников А.В.	К.Т.Н.		

СОГЛАСОВАНО:

Зав. Кафедрой	ФИО	Ученая степень,	Подпись	Дата
		звание		
ЭЭС	Сулайманов А.О.	к.т.н.,доцент		

Реферат

Выпускная квалификационная работа содержит 88 листов, 21 рисунок, 22 таблицы, 18 используемых источника, 3 приложения.

Ключевые слова: высоковольтный ввод, конденсаторная изоляция, токоведущий стержень, фарфоровая покрышка, маслорасширитель.

Объектом исследования является высоковольтный ввод наружной установки на напряжение 220 кВ.

Цель работы – расчет высоковольтного ввода наружной установки с бумажно-масляной изоляцией вертикального расположения на напряжение 220 кВ.

В процессе исследования проводились электрический, механический расчеты ввода, а также расчет тепловой устойчивости и конструирование высоковольтного ввода.

Основные характеристики:

- Номинальное напряжение 220 кВ;
- Номинальный ток 2100 A;
- Механическая изгибающая нагрузка 600 кГс;

Расчет производился при помощи следующих программных продуктов: Microsoft Word, Excel, MathCAD, KOMПAC.

Сокращения

ЭИК – электроизоляционные конструкции

МБВ – маслобарьерные вводы

ББВ – бумажно-бакелитовые вводы

БЭВ – бумажно-эпоксидные вводы

БМВ – бумажно-масляные вводы

RIP – resin impregnated paper

ТВС – токоведущий стержень

БМИ – бумажно-масляная изоляция

ПИН – прибор для измерения напряжения

НТИ – научно-техническое исследование

ПЭВМ – персональная электронно-вычислительная машина

ЛЭП – линия электропередачи

Оглавление

Введение	12
1.Литературный обзор	13
1.1 Классификация и конструкция высоковольтных вводов	13
1.2 Маркировка вводов.	17
2. Расчет высоковольного ввода	19
2.1 Электрический расчет ввода	19
2.1.1 Расчет сухоразрядного расстояния	19
2.1.2 Выбор расчетных напряжений и напряженностей	21
2.1.3 Выбор токоведущего стержня.	22
2.1.4 Расчет внутренней изоляции ввода и геометрических размеров	
конденсаторных обкладок	24
2.1.5 Расчет и конструирование фарфоровой покрышки	33
2.2 Механический расчет ввода.	35
2.3 Расчет тепловой устойчивости конденсаторного ввода	36
2.4 Выбор маслорасширителя	45
2.5 Конструирование конденсаторного ввода	47
2.6 Результат проведенного исследования	50
3. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение	52
3.1 Анализ конкурентных технических решений	52
3.2 Планирование научно-исследовательских работ	55
3.2.1 Структура работ в рамках научного исследования	55
3.2.2 Определение трудоемкости выполнения работ	57
3.3 Бюджет научно-технического исследования (НТИ)	61
3.3.1 Расчет материальных затрат НТИ	61
3.3.2 Основная заработная плата исполнителей темы	61
3.3.3 Дополнительная заработная плата исполнителей темы	64
3.3.4 Отчисления во внебюджетные фонды (страховые отчисления	64
3.3.5 Амортизация	65
3.3.6 Накладные расходы	66

Введение

Различные электроизоляционные конструкции — ЭИК (конденсаторы, высоковольтные вводы, кабели, трансформаторы, электрические машины и др.) находят широкое применение в различных отраслях народного хозяйства для передачи преобразования и использования электроэнергии. От экономичности, надежности и качества этих ЭИК во многом зависит безаварийность и рентабельность производства.

Высоковольтные вводы являются неотъемлемыми элементами трансформаторов на подстанциях любого уровня напряжения. Они служат для изолирования и механического крепления токоведущих частей, проходящих через стены распределительных устройств, перегородки, сквозь заземленные крышки различных аппаратов и т.д. От их надежной и стабильной работы зависит бесперебойное снабжение электроэнергией всех важных объектов народного хозяйства. Важнейшей частью любого высоковольтного ввода является внутренняя изоляция, качество которой определяет его надежность и ресурс. В процессе эксплуатации внутренняя изоляция подвергается целому ряду воздействий, что приводит к её старению ухудшению её электрических и механических свойств. [1]

3. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение

3.1 Анализ конкурентных технических решений

Целью данного раздела ВКР является оценка конкурентоспособности и ресурсоэффективности научной разработки. В данном разделе будет определена конкурентоспособность выполненного проекта, трудоемкость проводимых работ, приведен график проведения работ, произведен расчет стоимости материальных затрат, а так же заработной платы и сформирован бюджет затрат на проектирование.

Необходимость проведения данного анализа обусловлена постоянной статичностью рынка, появлением новых различных разработок. Такой анализ так же позволяет увидеть новые перспективы, которые можно внести в научное исследование, чтобы сделать его успешнее как в техническом, так и в экономическом плане.

В ходе проведения анализа необходимо рассмотреть и оценить сильные и слабые стороны конкурентных разработок. Данный анализ проводится с помощью оценочной карты, для этого необходимо отобрать несколько конкурентных товаров и разработок.

Позиция разработки и конкурентов оценивается по каждому показателю экспертным путем по пятибалльной шкале, где 1 — наиболее слабая позиция, а 5 — наиболее сильная. Вес показателей, определяемый экспертным путем, в сумме должны составлять 1.

Анализ конкурентных технических решений определяется по формуле:

$$K = \sum B_i \cdot B_i$$

где К – конкурентоспособность научной разработки или конкурента;

 B_i – вес показателя (в долях единицы);

 \mathbf{b}_i – балл i-го показателя.

В настоящее время существует множество типов конструкций вводов, имеющих различные конструктивные и эксплуатационные особенности. Для

проведения анализа были выбраны такие конкурентные разработки как вводы с бумажно-бакелитовой (ББИ), маслобарьерной (МБИ) и бумажно-масляной изоляцией (БМИ).

Оценочная карта проведенного анализа представлена в таблице 10: Таблица 10 — Оценочная карта для сравнения конкурентных технических решений

	Bec		Баллы		Конкурентоспособность				
Критерии оценки	критерия	БМИ	ББИ	МБИ	БМИ	ББИ	МБИ		
Надежность работы	0,078	4	4	3	0,312	0,312	0,234		
Габаритные размеры	0,065	4	4	3	0,26	0,26	0,195		
Электрическая прочность изоляции	0,079	5	5	4	0,395	0,395	0,316		
Равномерность распределения ЭП	0,066	5	3	4	0,33	0,198	0,264		
Гигроскопичность изоляции	0,051	4	3	3	0,204	0,153	0,153		
Механическая прочность	0,078	4	4	5	0,312	0,312	0,39		
Трекингостойкость	0,085	4	3	4	0,34	0,255	0,34		
Простота изготовления	0,048	4	4	5	0,192	0,192	0,24		
Пожаробезопасность	0,083	4	5	4	0,332	0,415	0,332		
Эффективность системы охлаждения	0,079	5	4	5	0,395	0,316	0,395		
Простота обслуживания	0,065	4	3	5	0,26	0,195	0,325		
Цена	0,065	5	4	4	0,325	0,26	0,26		
Предполагаемый срок эксплуатации	0,063	5	4	4	0,315	0,252	0,252		
Затраты на послепродажное обслуживание	0,047	4	4	4	0,188	0,188	0,188		
Финансирование научной разработки	0,048	4	4	1	0,192	0,192	0,048		
	1				4,352	3,895	3,932		

По результатам проведенного анализа делаем вывод, что в данный момент проектируемая разработка, а именно конденсаторный ввод с бумажно-

масляной изоляцией, является наиболее конкурентоспособной. Однако, не смотря на широкое распространение таких вводов, следует учесть факт, что эксплуатация маслонаполненных вводов всегда связана с потенциальной опасностью пробоя ввода, из-за возможной утечки масла, и последующего пожара.

Другой метод оценки перспективности проекта это технология QuaD. Представляет собой гибкий инструмент измерения характеристик, описывающих качество новой разработки и ее перспективность на рынке. Позволяет принимать решение целесообразности вложения денежных средств в научно-исследовательский проект.

Показатели оценки качества и перспективности новой разработки подбираются исходя из выбранного объекта исследования с учетом его технических и экономических особенностей, создания и коммерциализации.

В соответствии с технологией QuaD каждый показатель оценивается экспертным путем по стобалльной шкале, где 1 — наиболее слабая позиция, а 100 — наиболее сильная. Вес показателей, определяемый экспертным путем, в сумме должны составлять 1. [6]

Таблица 11 – Оценочная карта QuaD

Критерии оценки 1	Вес критер ия	Б аллы	Макси- мальный балл	Относите льное значение (3/4) 5	Средневзвеше нное значение (5x2)
Пока	затели оц	енки каче	ц Ства разработ	гки	
Надежность работы	0,092	90	100	0,9	0,0828
Габаритные размеры	0,069	70	100	0,7	0,0483
Уровень материалоемкости разработки	0,073	70	100	0,7	0,0511
Технические характеристики	0,089	95	100	0,95	0,0845
Ремонтопригодность	0,092	75	100	0,75	0,069
Простота изготовления	0,075	55	100	0,55	0,0412

Продолжение таблицы 11

Пожаробезопасность	0,095	80	100	0,8	0,076						
Простота обслуживания	0,068	60	100	0,6	0,0408						
Показатели оценки коммерческого потенциала разработки											
Цена	0,071	70	100	0,7	0,0497						
Предполагаемый срок эксплуатации	0,065	90	100	0,9	0,0585						
Затраты на послепродажное обслуживание	0,058	65	100	0,65	0,0377						
Финансирование научной разработки	0,075	60	100	0,6	0,045						
Конкурентоспособность продукта	0,078	70	100	0,7	0,0546						
Итого	1				81,5						

Оценка качества и перспективности по технологии QuaD определяется по формуле:

$$\Pi_{\rm cp} = \sum B_i \cdot B_i,$$

где Π_{cp} – средневзвешенное значение показателя качества и перспективности научной разработки;

 B_i – вес показателя (в долях единицы);

 \mathbf{F}_i – средневзвешенное значение i-го показателя.

3.2 Планирование научно-исследовательских работ

3.2.1 Структура работ в рамках научного исследования

Планирование комплекса предполагаемых работ производится в следующем порядке:

- определение структуры работ в рамках научного исследования;
- определение участников каждой работы;
- установление продолжительности работ;

- построение графика проведения научных исследований.

Для выполнения работ по проектированию формируется группа, в состав которой могут входить научные сотрудники и преподаватели, инженеры и лаборанты, численность групп может варьироваться.[7]

Примерный порядок составления этапов и работ, распределение исполнителей по данным видам работ приведен в табл. 12.

Таблица 12 – Перечень этапов, работ и распределение исполнителей

Основные этапы	№ paб	Содержание работ	Должность исполнителя
Разработка технического задания	1	Составление и утверждение технического задания	Руководитель
D 5	2	Подбор и изучение материалов по теме	Инженер
Выбор направления исследований	3	Выбор направления исследований	Инженер
песледовании	4	Календарное планирование работ по теме	Руководитель
	5	Проведение теоретических расчетов и обоснований	Инженер
T	6	Электрический расчет	Инженер
Теоретические и экспериментальные	7	Механический расчет	Инженер
исследования	8	Расчет тепловой устойчивости ввода	Инженер
	9	Выбор маслорасширителя	Инженер
	10	Описание конструирования ввода	Инженер
Обобщение и оценка результатов	11	Анализ и оценка эффективности полученных результатов	Руководитель
Разработка технической документации и проектирование	12	Построение сборочного чертежа	Инженер
Оформление отчета ВКР	13	Составление пояснительной записки (эксплуатационно-технической документации)	Инженер

Для выполнения работ по проектированию была сформирована группа в состав которой входят руководитель и инженер.

3.2.2 Определение трудоемкости выполнения работ

Трудовые затраты образуют основную часть стоимости разработки, поэтому важным моментом является определение трудоемкости работ каждого из участников научного исследования.

Для определения ожидаемого (среднего) значения трудоемкости $t_{\text{ож}i}$ используется следующая формула:

$$t_{\text{ожi}} = \frac{3t_{\min i} + 2t_{\max i}}{5},$$

где $t_{\text{ож}i}$ – ожидаемая трудоемкость выполнения i-ой работы чел.-дн.;

 $t_{\min i}$ — минимально возможная трудоемкость выполнения заданной і-ой работы (оптимистическая оценка: в предположении наиболее благоприятного стечения обстоятельств), чел.-дн.;

 $t_{\max i}$ — максимально возможная трудоемкость выполнения заданной і-ой работы (пессимистическая оценка: в предположении наиболее неблагоприятного стечения обстоятельств), чел.-дн.

Исходя из ожидаемой трудоемкости работ, определяется продолжительность каждой работы в рабочих днях Тр.

$$T_{\mathbf{p}_i} = \frac{t_{\text{ожi}}}{\mathbf{q}_i},$$

где T_{pi} – продолжительность одной работы, раб.дн.;

 $t_{\text{ож}i}$ – ожидаемая трудоемкость выполнения одной работы, чел.-дн.

 \mathbf{q}_{i} — численность исполнителей, выполняющих одновременно одну и ту же работу на данном этапе, чел.

Пример расчета (составление и утверждение технического задания), для остальных работ расчет проводится аналогично:

$$t_{osc}=rac{3\cdot t_{\min}+2\cdot t_{\max}}{5}=rac{3\cdot 3+2\cdot 5}{5}=4$$
 чел-дней;
$$T_{p}=rac{t_{ose}}{V}=rac{4}{1}=4$$
 дня;

3.2.3 Разработка графика проведения научного исследования

Диаграмма Ганта — горизонтальный ленточный график, на котором работы по теме представляются протяженными во времени отрезками, характеризующимися датами начала и окончания выполнения работ. [7]

Для удобства построения графика, длительность каждого из этапов работ из рабочих дней следует перевести в календарные дни. Для этого необходимо воспользоваться следующей формулой:

$$T_{{}_{\mathbf{k}i}}=T_{{}_{\mathbf{p}i}}\cdot k_{{}_{\mathbf{K}\mathbf{a}\mathbf{J}}},$$

где $T_{\kappa i}$ — продолжительность выполнения і-й работы в календарных днях; T_{pi} — продолжительность выполнения і-й работы в рабочих днях;

 $\frac{k}{\kappa a \pi}$ –коэффициент календарности.

Коэффициент календарности определяется по следующей формуле:

$$k_{\text{\tiny KAJ}} = \frac{T_{\text{\tiny KAJ}}}{T_{\text{\tiny KAJ}} - T_{\text{\tiny BBIX}} - T_{\text{\tiny IID}}},$$

где $T_{\text{кал}}$ – количество календарных дней в году;

 $T_{\text{вых}}$ — количество выходных дней в году;

 $T_{\text{пр}}$ — количество праздничных дней в году.

$$k_{_{\mathit{KAT}.\mathit{UH}>\mathcal{K}}} = \frac{T_{_{\mathit{KAT}}}}{T_{_{\mathit{KAT}}} - T_{_{\mathit{np}}}} = \frac{366}{366 - 118} = 1,475;$$

$$k_{\text{кал.рук}} = \frac{T_{\text{кал}}}{T_{\text{кал}} - T_{\text{вых}} - T_{nn}} = \frac{366}{366 - 66} = 1,22;$$

Рассчитанные значения в календарных днях по каждой работе $T_{\kappa i}$ округляем до целого числа. Все рассчитанные значения сводим в таблицу 13.

Таблица 13 – Временные показатели проведения научного исследования

		Труд	доёмк	ость р	абот		Длител	пьность	Длительность			
Шаралууа	<i>t_m</i> чел-	<i>in</i> , ∙ДНИ	<i>t_m</i> . чел-	<i>ах</i> , -ДНИ		жі, -ДНИ	чих Т	работ в рабо- чих днях Т pi		в кален- х днях к <i>i</i>		
Название работы	Руководитель	Инженер	Руководитель	Инженер	Руководитель	Инженер	Руководитель	Инженер	Руководитель	Инженер		
Составление и утверж- дение технического задания	3		5		4		4		5			
Подбор и изучение ма- териалов по теме		3		5		4		4		6		
Выбор направления исследований		3		7		5		5		8		
Календарное планиро- вание работ по теме	5		9		7		7		9			
Проведение теоретиче- ских расчетов и обосно- ваний		4		6		5		5		8		
Электрический расчет		4		8		6		6		9		
Механический расчет		2		5		3		3		5		
Расчет тепловой устой- чивости ввода		4		6		5		5		8		
Выбор маслорасшири- теля		2		4		3		3		5		
Описание конструиро- вания ввода		1		2		2		2		3		
Оценка эффективности полученных результатов	4		8		6		6		8			
Построение сборочного чертежа		3		9		6		6		9		
Составление поясни тельной записки (эксплуатационно- технической документации)		3		5		4		4		6		

Пример расчета (составление и утверждение технического задания), для остальных работ расчет проводится аналогично:

$$T_{_{\it K}} = T_{_{\it p}} \cdot k_{_{\it KA7}} = 4 \cdot 1,22 = 4,88 \approx 5$$
 дней.

На основе таблицы построим календарный план-график. Полученный график представлен в виде таблицы 14.

Таблица 14 – Календарный план-график проведения НИОКР

No॒		Исполнител	$T_{\kappa i}$,		Про	дол	жи	гелі	ьно	сть	вып	ЮЛІ	нени	ия р	або	Γ
работ	Вид работ	И	кал.дн.	фе			мар		—	пре.			май			ЭНЬ
1	Составление и утверждение технического задания	Руководите ль	5	2	3	1	2	3	1	2	3	1	2	3	1	2
2	Подбор и изучение материалов по теме	Инженер	6													
3	Выбор направления исследований	Инженер	8													
4	Календарное планирование работ по теме	Руководите ль	9													
5	Проведение теоретических расчетов и обоснований	Инженер	8													
6	Электрический расчет	Инженер	9													
7	Механический расчет	Инженер	5													
8	Расчет тепловой устойчивости ввода	Инженер	8													
9	Выбор маслорас- ширителя	Инженер	5													
10	Описание кон- струирования ввода	Инженер	3													
11	Оценка эффективности тивности полученных результатов	Руководите ль	8													
12	Построение сборочного чертежа	Инженер	9													
13	Составление по- яснительной за- писки (эксплуа- тационно-техни- ческой докумен- тации)	Инженер	6													

Итого длительность работ в календарных днях руководителя составляет 22 дня, а инженера 67 дня.

3.3 Бюджет научно-технического исследования (НТИ)

3.3.1 Расчет материальных затрат НТИ

Материальные затраты, необходимые для данной разработки, заносим в таблицу 15.

Таблица 15 – Материальные затраты

Наименование	Единица измерения	Количество	Цена за ед., руб.	Затраты на материалы $(3_{\scriptscriptstyle M})$, руб.
Бумага	Пачка	1	300	300
Картридж для принтера	Шт	1	2000	2000
Блокнот А4 80 л.		1	80	80
Карандаш мех. НВ		1	10	10
Ручка шар.	Шт	1	20	20
Степлер руч. INDEX		1	130	130
Папка- скоросшиватель		1	15	15
			Итого:	2555

Данная статья включает стоимость всех материалов, используемых при разработке проекта.

3.3.2 Основная заработная плата исполнителей темы

В данную статью включается основная заработная плата научных и инженерно-технических работников, рабочих макетных мастерских и опытных производств, непосредственно участвующих в выполнении работ по данной теме. Величина расходов по заработной плате определяется исходя из трудоемкости выполняемых работ и действующей системы окладов и тарифных ставок. В состав основной заработной платы включается премия,

выплачиваемая ежемесячно из фонда заработной платы в размере 20 –30 % от тарифа или оклада.

Месячный должностной оклад для руководителя:

$$3_{M} = 3_{mc} \cdot (1 + k_{np} + k_{o}) \cdot k_{p} = 23284 \cdot (1 + 0, 3 + 0, 2) \cdot 1, 3 = 45403$$
 руб.

Месячный должностной оклад для инженера:

$$3_{M} = 3_{mc} \cdot (1 + k_{np} + k_{o}) \cdot k_{p} = 14584 \cdot (1 + 0.3 + 0.2) \cdot 1.3 = 28438 \text{ py}6.$$

где 3_{mc} – заработная плата по тарифной ставке, руб.;

 $k_{\rm np}$ – премиальный коэффициент, равный 0,3;

 $k_{\rm д}$ – коэффициент доплат и надбавок составляет 0,2;

 $k_{\rm p}$ – районный коэффициент, равный 1,3 (для города Томска);

Среднедневная заработная плата рассчитывается по формуле:

$$3_{_{\mathrm{JH}}} = \frac{3_{_{\mathrm{M}}} \cdot \mathrm{M}}{F_{_{\mathrm{J}}}}$$

где $3_{\rm M}$ – месячный должностной оклад работника, руб.;

М – количество месяцев работы без отпуска в течение года:

при отпуске в 48 раб. дней М=10,4 месяца;

 F_{π} – действительный годовой фонд рабочего времени, раб. дн. (табл.16).

Таблица 16 – Баланс рабочего времени

Показатели рабочего времени	Руководитель	Инженер
Календарное число дней	366	366
Количество нерабочих дней:		
• выходные дни	52	104
• праздничные дни	14	14
Потери рабочего времени:		
• отпуск	48	48
• невыходы по болезни	7	7
Действительный годовой фонд рабочего времени	245	193

Таким образом, для руководителя и инженера соответственно:

$$3_{\partial H} = \frac{3_{M} \cdot M}{F_{\partial A}} = \frac{45403 \cdot 10, 4}{245} = 1927 \text{ py6.},$$

$$3_{\partial H} = \frac{3_{M} \cdot M}{F_{\partial I}} = \frac{28438 \cdot 10,4}{193} = 1532 \text{ py6.},$$

Основная заработная плата (3_{och}) от предприятия рассчитывается по следующей формуле:

$$3_{\text{och}} = 3_{\text{ii}} \cdot T_{p}$$

где 3_{осн} – основная заработная плата одного работника;

 $T_{\rm p}$ — продолжительность работ, выполняемых научно-техническим работником, раб. дн. (табл. 8);

 $3_{\rm дн}$ – среднедневная заработная плата работника, руб.

Для руководителя и инженера соответственно:

$$3_{OCH} = 3_{\partial H} \cdot T_p = 1927 \cdot 22 = 42394 \text{ py6}$$

$$3_{och} = 3_{\partial H} \cdot T_p = 1532 \cdot 67 = 102644$$
 руб

где $3_{\it och}$ – основная заработная плата одного работника;

 T_p — продолжительность работ, выполняемых научно-техническим работником, раб. дн.

 $3_{\partial H}$ – среднедневная заработная плата работника, руб.

Таблица 17 – Расчёт основной заработной платы

Исполнители	3 _{тс} , руб.	$k_{ m np}$	$k_{\scriptscriptstyle m I\!I}$	$k_{ m p}$	3 _м , руб	3 _{дн} , руб.	Т _{р,} раб. дн.	3 _{осн,} руб.
Руководитель	23284	0,3	0,2	1,3	45403	1927	22	42394
Инженер	14584	0,3	0,2	1,3	28438	1532	67	102644
						Итого	3 _{осн} , руб	145038

В данной таблице приведена основная заработная плата исполнителей.

3.3.3 Дополнительная заработная плата исполнителей темы

Затраты по дополнительной заработной плате исполнителей учитывают величину предусмотренных Трудовым кодексом РФ доплат за отклонение от нормальных условий труда, а также выплат, связанных с обеспечением гарантий и компенсаций.[7]

Расчет дополнительной заработной платы ведется по следующей формуле:

$$3_{\partial on} = k_{\partial on} \cdot 3_{och}$$

где $k_{\text{доп}}$ – коэффициент дополнительной заработной платы (на стадии проектирования принимается равным 0,12-0,15).

Тогда для руководителя и инженера соответственно:

$$3_{oon} = k_{oon} \cdot 3_{och} = 0.15 \cdot 42394 = 6359 \text{ py6.};$$

$$3_{\partial on} = k_{\partial on} \cdot 3_{och} = 0.15 \cdot 102644 = 15397 \text{ py6.};$$

где $k_{\text{доп}}$ – коэффициент дополнительной заработной платы, равный 0,15.

3.3.4 Отчисления во внебюджетные фонды (страховые отчисления)

Отчисления во внебюджетные фонды являются обязательными по установленным законодательством Российской Федерации нормам органам государственного социального страхования (ФСС), пенсионного фонда (ПФ) и медицинского страхования (ФФОМС) от затрат на оплату труда работников. Величина отчислений во внебюджетные фонды определяется исходя из следующей формулы:

$$3_{\text{ene}\delta} = k_{\text{ene}\delta} \cdot (3_{\text{och}} + 3_{\text{don}}),$$

где $k_{\text{внеб}}$ – коэффициент отчислений на уплату во внебюджетные фонды (пенсионный фонд, фонд обязательного медицинского страхования и пр.).

На 2016 г. в соответствии с Федеральным законом от 24.07.2009 №212-ФЗ установлен размер страховых взносов равный 30%. На основании пункта 1 ст.58 закона №212-ФЗ для учреждений осуществляющих образовательную и научную деятельность в 2014 году водится пониженная ставка – 27,1%.

Отчисления во внебюджетные фонды представлены в таблице 18. Таблица 18 – Отчисления во внебюджетные фонды

Исполнитель	Основная заработная плата, руб.	Дополнительная заработная плата, руб.			
Руководитель	42394	6359			
Инженер	102644	15397			
Коэффициент отчислений во внебюджетные фонды	0,271				
Итого					
Руководитель		13212			
Инженер		31989			

В данной таблице приведены отчисления во внебюджетные фонды исполнителей проекта.

3.3.5 Амортизация

Расчет амортизационных отчислений, на полное восстановление основных средств, производится по нормативам амортизации утвержденном в установленным действующим законодательством порядке, и определенным в зависимости от балансовой стоимости оборудования. Для проектирования необходимы следующее оборудорвание:

- компьютер 35 000 рублей.
- принтер 5 000 рублей.

 $C_{Obop} = 35000 + 5000 = 40000$ рублей

$$A=rac{T_{
m \scriptscriptstyle UC\Pi}}{T_{\Gamma}}\cdotrac{1}{T_{
m \scriptscriptstyle C\pi}}\cdot {
m C}_{
m of op}=rac{4}{12}\cdotrac{1}{3}\cdot 40000=4444$$
 рублей

где Т_{ИСП.} - время использования оборудования;

 T_{Γ} - количество использования в год;

Собор. - стоимость оборудования;

Т_{СЛ.} - срок службы оборудования .

3.3.6 Накладные расходы

Накладные расходы учитывают прочие затраты организации, не попавшие в предыдущие статьи расходов: печать и ксерокопирование материалов исследования, оплата услуг связи, электроэнергии, почтовые и телеграфные расходы, размножение материалов и т.д. Их величина определяется по следующей формуле:

$$3_{\text{накл}} = (\text{сумма статей } 1 \div 5) \cdot \mathbf{k}_{\text{нр}},$$

где $k_{\rm HD}$ – коэффициент, учитывающий накладные расходы.

Величину коэффициента накладных расходов берем в размере 16%.

$$3_{\text{накл}} = (\text{сумма статей } 1 \div 5) \cdot k_{\text{нp}} = (3_{\text{м}} + 3_{\text{осн}} + 3_{\text{оон}} + 3_{\text{внеб}} + A) \cdot 0,16 =$$

= $(2555 + 4444 + 145038 + 21756 + 45201) \cdot 0,16 = 35039 \text{ руб.},$

3.3.7 Формирование бюджета затрат научно-исследовательского проекта

Рассчитанная величина затрат научно-исследовательской работы является основой для формирования бюджета затрат проекта, который при формировании договора с заказчиком защищается научной организацией в качестве нижнего предела затрат на разработку научно-технической продукции.

Определение бюджета затрат на научно-исследовательский проект по каждому варианту исполнения приведен в таблице 19.

Таблица 19 – Расчет бюджета затрат НТИ

Наименование статьи	Сумма, руб.	%
1. Материальные затраты НТИ	2555	1
2. Амортизация	4444	1,74

Продолжение таблицы 19

3. Затраты по основной заработной плате исполнителей	145038	57,09
4. Затраты по дополнительной заработной плате исполнителей	21756	8,56
5. Отчисления во внебюджетные фонды	45201	17,79
6. Накладные расходы	35039	13,79
7. Бюджет затрат НТИ	254033	100

В результате проведения расчетов по основным статьям, составляющим бюджет научно-исследовательского проекта, была составлена итоговая таблица, где наглядно представлено, что сумма бюджета затрат НТИ составила 254033 рублей, причем наибольшая часть затрат приходится на выплату основной заработной платы исполнителям (57,09 %).

3.4 Определение ресурсной эффективности исследования

Произведем оценку ресурсоэффективности научной разработки.

Интегральный показатель ресурсоэффективности вариантов исполнения объекта исследования можно определить следующим образом:

$$I_{pi} = \sum a_i \cdot b_i,$$

где I_{pi} — интегральный показатель ресурсоэффективности для і-го варианта исполнения разработки;

 a_i — весовой коэффициент і-го варианта исполнения разработки;

 b_i^a, b_i^p — бальная оценка і-го варианта исполнения разработки, устанавливается экспертным путем по выбранной шкале оценивания;

n – число параметров сравнения.

Расчет интегрального показателя ресурсоэффективности представлены в форме таблицы (табл. 20).

Таблица 20 – Сравнительная оценка характеристик вариантов исполнения проекта

Объект исследования Критерии	Весовой коэффициент параметра	БМИ	ББИ	МБИ
Надежность работы	0,139	4	4	4
.Габаритные размеры	0,111	5	5	3
Уровень материалоемкости разработки	0,111	4	5	5
Технические характеристики	0,139	5	5	3
Ремонтопригодность	0,139	5	4	3
Простота изготовления	0,111	4	3	3
Пожаробезопасность	0,139	4	4	4
Простота обслуживания	0,111	4	4	5
ИТОГО	1	4,38	4,25	3,75

3.5 Вывод

В результате выполнения заданий данного раздела была произведена оценка конкурентоспособности, значение расчетного показателя выбранного варианта исполнения НТИ является наибольшим и составляет 4,352. Значение показателя перспективности (П_{ср}) составляет 81,5 - это говорит о том, что перспективность НТИ выше среднего. По результатам расчетов было установлено, что длительность работ в календарных днях для руководителя составляет 22 дня, а для инженера 67 дня. Сумма бюджета затрат НТИ составила 254033 рублей. С точки зрения ресурсной эффективности, для решения поставленной в бакалаврской работе технической задачи был выбран наиболее подходящий и выгодный вариант, так как именно он имеет наибольший интегральный показатель ресурсоэффективности 4,38.