Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт ЭНИН

Направление подготовки 13.03.02 Электроэнергетика и электротехника Кафедра ЭЭС

БАКАЛАВРСКАЯ РАБОТА

Тема работы				
Проектирование высоковольтного импульсного конденсатора наружной установки на				
напряжение 50 кВ				

УДК 621.319.4

Студент

Группа	ФИО	Подпись	Дата
5A2B	Рябикова Ирина Сергеевна		

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ст. преподаватель кафедры ЭЭС	Старцева Е.В.			

консультанты:

По разделу «Изоляция электротехнического оборудования высокого напряжения»

1 ' 1		1 7 ' '		
Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры ЭЭС	Важов В.Ф.	д.т.н.		

По разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»

	1 '	<u> </u>	1 1	1 /1 1	
	Должность	ФИО	Ученая степень, звание	Подпись	Дата
пре	Старший еподаватель кафедры	Потехина Н.В.			
	менеджмента				

По разделу «Социальная ответственность»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры ЭБЖ	Романцов И.И.	К.Т.Н.		

допустить к защите:

7 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
Зав. Кафедрой	ФИО	Ученая степень, звание	Подпись	Дата
ЭЭС	Сулайманов А.О.	к.т.н.		

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт ЭНИН

Направление подготовки <u>13.03.02 Электроэнергетика и электротехника</u> Кафедра <u>Электроэнергетических систем (ЭЭС)</u>

УТВЕРЖДАЮ:	
Зав. кафедрой	
	Сулайманов А.О.
(Подпись) (Дата)	

01.06.2016

проектируется

импульсный

работе

ЗАДАНИЕ на выполнение выпускной квалификационной работы

na Dbin	ominime bomy ennon Rousin	фикационной рассты	
В форме:			
	Бакалаврской раб	оты	
Студенту:			
Группа	Группа ФИО		
5A2B	5А2В Рябиковой Ирине Сергеевне		
Тема работы:			
Проектирование высок	овольтного импульсного к	сонденсатора наружной установки на	
	напряжение 50	кВ	
Утверждена приказом директора (дата, номер) 12.04.2016 г, № 2817/С			
		•	

В

данной

ТЕХНИЧЕСКОЕ ЗАДАНИЕ:

Исходные данные к работе

Срок сдачи студентом выполненной работы:

	конденсатор наружной установки с бумажно-масляной		
	изоляцией, металлическим корпусом:		
	• U _н = 50 кB;		
	• $C = 0.5 \cdot 10^{-6} \Phi$;		
	• Масло минеральное;		
	• Напряжение апериодическое 1,2/50;		
	 Время жизни 10⁵ имп.; 		
	• Частота 1 имп/с.		
Перечень вопросов подлежащих			
исследованию, проектированию и	Выбор и расчет основной изоляции. Расчет секции и		
разработке	всего конденсатора. Определение конструктивных и		
Puspussing	удельных характеристик. Тепловой расчет.		
	К дополнительным вопросам относятся раздел		
	«Финансовый менеджмент, ресурсоэффективность и		
	ресурсосбережение», в котором производится технико-		
	экономическое обоснование исследовательской		
	работы, а также раздел «Социальная ответственность»,		
	в котором рассматриваются проблемы обеспечения		
	безопасности жизнедеятельности.		

Перечень графического мате			
	Электрическая схема конденсатора. Спецификация.		
Консультанты по разделам выпускной квалификационной работы			
Раздел	Консультант		
Изоляция			
электротехнического оборудования высокого	Важов В.Ф.		
напряжения			
Финансовый менеджмент, ресурсоэффективность и ресурсосбережение	Потехина Н.В.		
Социальная ответственность	Романцов И.И.		
Названия разделов, которы языках:	не должны быть написаны на русском и иностранном		

Дата выдачи задания на выполнение выпускной	
квалификационной работы по линейному графику	

Задание выдал руководитель:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ст. преподаватель кафедры ЭЭС	Старцева Е.В.	-		

Задание принял к исполнению студент:

	-	Jri		
Группа		ФИО	Подпись	Дата
5A2B		Рябикова И.С.		

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ»

Студенту:

Группа	ФИО
5A2B	Рябиковой Ирине Сергеевне

Институт	нине	Кафедра	Электроэнергетических систем
Уровень образования	Бакалавриат	Направление/специальность	Электроэнергетика и электротехника

Исходные данные к разделу «Финансовый ме ресурсосбережение»:	неджмент, ресурсоэффективность и
1. Стоимость ресурсов научного исследования (НИ): материально-технических, энергетических, финансовых, информационных и человеческих	Стоимость материальных ресурсов определялась по средней стоимости по г. Томску Оклады в соответствии с окладами сотрудников НИ ТПУ
2. Нормы и нормативы расходования ресурсов	30 % премии 20 % надбавки 16% накладные расходы 30% районный коэффициент
3. Используемая система налогообложения, ставки налогов, отчислений, дисконтирования и кредитования	Отчисления во внебюджетные фонды 27,1 %
Перечень вопросов, подлежащих исследо	ванию, проектированию и разработке:
1. Оценка коммерческого потенциала, перспективности и альтернатив проведения НИ с позиции ресурсоэффективности и ресурсосбережения	Провести анализ конкурентных технических решений (разработок); провести оценку перспективности научного исследования, используя технологию QuaD.
2. Планирование и формирование бюджета научных исследований	Составить перечень этапов работ и распределение исполнителей, определить трудоемкость работ, разработать календарный план-график (график Ганта); Рассчитать бюджет, необходимый для проектирования импульсного конденсатора.
3. Определение ресурсной (ресурсосберегающей), финансовой, бюджетной, социальной и экономической эффективности исследования	Определить ресурсную эффективность проводимого проекта с помощью интегрального показателя.

Перечень графического материала (с точным указанием обязательных чертежей):

- 1. Оценка конкурентоспособности технических решений
- 2. Календарный план-график проведения работ по НИ
- 3. Бюджет НИ
- 4. Оценка ресурсной эффективности НИ

Дата выдачи задания для раздела по линейному графику

Задание выдал консультант:

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Ст. преподаватель каф.	Потехина Н. В.			
менеджмента	Hotexina II. B.			

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
5A2B	Рябикова И.С.		

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ»

Студенту:

Группа	ФИО
5A2B	Рябиковой Ирине Сергеевне

Институт	Энергетический	Кафедра	Электроэнергетических систем
Уровень образования	Бакалавриат	Направление/специальность	Электроэнергетика и электротехника

Исходные данные к разделу «Социальная ответственность»:

- 1. Описание рабочего места (рабочей зоны, технологического процесса, механического оборудования) на предмет возникновения:
 - вредных проявлений факторов производственной среды (метеоусловия, вредные вещества, освещение, шумы, вибрации, электромагнитные поля, ионизирующие излучения)
 - опасных проявлений факторов производственной среды (механической природы, термического характера, электрической, пожарной и взрывной природы)
 - негативного воздействия на окружающую природную среду (атмосферу, гидросферу, литосферу)
 - чрезвычайных ситуаций (техногенного, стихийного, экологического и социального характера)

- Помещение закрытого типа с естественной вентиляцией воздуха. Помещение имеет как искусственный, так и естественный источник освещения. Основное рабочее оборудование -ПЭВМ.
- Физические вредные факторы: отклонение показателей микроклимата в помещении, повышения уровня шума, превышение электромагнитных и ионизирующих излучений
- Психофизиологические вредные факторы: монотонный режим работы.
- -Физические опасные факторы: электрический
- Негативное влияние на окружающую среду: бытовые отходы.
- 2. Знакомство и отбор законодательных и нормативных документов по теме.

-Чрезвычайные ситуации: пожар. ГОСТ 12.0.003-74 (с измен. 1999 г.), СанПиН 2.2.2/2.4.1340-03,CH 2.2.4/2.1.8.562-96, CH 2.2.4/2.1.8.556-96.

Перечень вопросов, подлежащих исследованию, проектированию и разработке:

- 1. Анализ выявленных вредных факторов проектируемой производственной среды в следующей последовательности:
 - физико-химическая природа вредности, её связь с разрабатываемой темой;
 - действие фактора на организм человека;
 - размерностью (со ссылкой на соответствующий нормативно-технический документ);
 - приведение допустимых норм с необходимой
 - индивидуальные защитные средства)
 - предлагаемые средства защиты (сначала коллективной защиты, затем -
- 2. Анализ выявленных опасных факторов проектируемой произведённой среды в следующей последовательности
 - механические опасности (источники, средства защиты;

- Вредные факторы возникают из-за ПЭВМ.
- Негативное влияние электромагнитного и ионизирующего излучения отрицательно влияет на иммунную, нервную, эндокринную и дыхательную системы. Шум негативно влияют на психофизиологическое состояние.
- СанПиН 2.2.2/2.4.1340-03. Напряженность электрического поля в диапозоне частот 5 Ги-2 кГц не должна превышать 25 В/м, а в дипазоне частот $2 \ \kappa \Gamma_{\rm II} - 400 \ \kappa \Gamma_{\rm II}$ не больше 2,5
- -СанПиН 2.2.2/2.4.1340-03. При конструирование и проектирование уровень звукового давления не должен превышать 50 дБА.
- -Уменьшение мощности блока питания компьютера, сокращение времени пребывания за компьютером, перерывы.
- Механические опасности отсутствуют.
- Термические опасности отсутствуют.

	T
– термические опасности (источники, средства	- Установлены удлинители в розетках (эл. сеть
защиты);	перегружена)
– электробезопасность (в т.ч. статическое	-Физические опасные факторы: электрический
электричество, молниезащита – источники, средства	ток.
защиты);	
– пожаровзрывобезопасность (причины,	- Возможные причины пожара: возникновение
профилактические мероприятия, первичные средства	КЗ в проводке.
пожаротушения)	
3. Охрана окружающей среды:	
– защита селитебной зоны	
– анализ воздействия объекта на атмосферу (выбросы);	
– анализ воздействия объекта на гидросферу (сбросы);	
– анализ воздействия объекта на литосферу (отходы);	- Бытовые отходы. Отходы, образующиеся при
 разработать решения по обеспечению экологической 	поломке ПЭВМ.
безопасности со ссылками на НТД по охране	
окружающей среды.	
4. Защита в чрезвычайных ситуациях:	
 перечень возможных ЧС на объекте; 	- Возможные ЧС: пожар.
– выбор наиболее типичной ЧС;	- Пожар.
– разработка превентивных мер по предупреждению	- Устройства оповещения при пожаре, датчики
ЧС;	дыма.
– разработка мер по повышению устойчивости объекта	- Соблюдения техники безопасности
к данной ЧС;	- Следовать плану эвакуации, вызвать
 разработка действий в результате возникшей ЧС и 	пожарных.
мер по ликвидации её последствий	
5. Правовые и организационные вопросы обеспечения	- Право на условие труда, отвечающие
безопасности:	требованиям безопасности и гигиены.
– специальные (характерные для проектируемой	
рабочейзоны) правовые нормы трудового	- Использовать оборудования и мебель
законодательства;	согласно антрометрическим данным.
– организационные мероприятия при компоновке рабочей	1 1 ''
30ны	

Дата выдачи задания для раздела по линейному графику

Задание выдал консультант:

Suguinie Beigun none,				
Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
доцент	Романцов И.И.	к.т.н.		

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
5A2B	Рябикова И.С.		

Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт ЭНИН

Направление подготовки (специальность) <u>13.03.02</u> «Электроэнергетика и электротехника»

Уровень образования бакалавр

Кафедра ЭЭС

Период выполнения весенний семестр 2015/2016 учебного года

Форма представления работы:

Бакалаврская работа

КАЛЕНДАРНЫЙ РЕЙТИНГ-ПЛАН выполнения выпускной квалификационной работы

	Срок сдачи студентом выполненной работы:	
--	--	--

Дата контроля	Название раздела (модуля) / вид работы (исследования)	Максимальный балл раздела (модуля)
25.03.2016 г.	Выбор основных изоляционных материалов и выбор рабочей и испытательной напряженностей	3
2.04.2016 г.	Расчет секции конденсатора	2
18.04.2016 г.	Расчет корпусной изоляции	5
21.04.2016 г.	Расчет выводов конденсатора	3
25.04.2016 г.	Тепловой расчет конденсатора	3
15.05.2016 г.	Расчет удельных характеристик конденсатора	4
22.05.2016 г.	Финансовый менеджмент, ресурсоэффективность и ресурсосбережение	5
30.05.2016 г.	Социальная ответственность	5
8.06.2016 г.	Оформление работы	10
9.06.2016 г.	Итог	40

Составил преподаватель:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ст. преподаватель кафедры ЭЭС	Старцева Е.В.			

СОГЛАСОВАНО:

COTTILICODI III CO				
Зав. Кафедрой	ФИО	Ученая	Подпись	Дата
		степень,		
		звание		
ЭЭС	Сулайманов А.О.	К.Т.Н.		

Реферат

Выпускная квалификационная работа, состоящая из $\underline{77}$ страниц, $\underline{9}$ рисунков, $\underline{17}$ таблиц, $\underline{15}$ источников, $\underline{4}$ приложений.

Ключевые слова: импульсный конденсатор, бумажно-масляная изоляция, секции конденсатора, металлический корпус.

Актуальность данной работы заключается в том, что импульсные конденсаторы широко применяются в установках для высоковольтных импульсных испытаний силовых трансформаторов, аппаратов. Импульсные конденсаторы используется для ряда технологических целей — бурение, дробления пород, получения и исследования высокотемпературной плазмы, создания сверхсильных импульсных токов,.

Структура работы: в работе произведен электрический расчет импульсного конденсатора, выбран материал диэлектрика и схема соединения секций. Произведен тепловой расчет, так же в работе выполнено сравнение выбранной конструкции по удельным характеристикам с другими видами импульсных конденсаторов. Был выполнен расчет стоимости ресурсов научного исследования, норм и нормативов расходования ресурсов, ставки налогов, отчислений, а также произведено описание рабочего места и использованных законодательных и нормативных документов по теме выпускной квалификационной работы по данной теме.

Выпускная квалификационная работа выполнена в текстовом редакторе MicrosoftWord и представлена на CD-R диске (в конверте на обороте обложки), также использовались программы MathCad, КОМПАС.

Термины и сокращения

БМКИ - бумажно-масляная конденсаторная изоляция является неоднородным слоистым диэлектриком, представляющим собой слон бумаги, пропитанной минеральным маслом, и масляные прослойки, заполняющие зазоры между слоями бумаги.

Диэлектрические потери - это энергия, которая рассеивается в электроизоляционном материале под воздействием на него электрического поля.

Проходные изоляторы – изоляторы, которые используют при переходе токопроводов сквозь стены или для ввода напряжения внутрь металлических баков трансформаторов, конденсаторов, выключателей и других аппаратов.

Конденсатор — это элемент электрической цепи, который состоит из проводящих электродов (обкладок), разделенных диэлектриком, и предназначенный для использования его электрической емкости.

Импульсные конденсаторы - это конденсаторы, работающие в режиме заряд - разряд. Накопленную, в конденсаторе в процессе заряда, электрическую энергию используют для получения мощных кратковременных импульсов тока и напряжения большой амплитуды.

Конденсаторная бумага - представляет собой тончайшую бумагу из сульфатной древесной целлюлозы после тщательной очистки волокон от инородных тел, в частности, металла, благодаря чему она приобретает электроизоляционные свойства. Обладает высокой прозрачностью и равномерным характером просвета.

КОН - конденсаторная бумага для изготовления малогабаритных электрических конденсаторов промышленной и бытовой техники. Разные марки конденсаторной бумаги (КОН 2, КОН 1) отличаются между собой различными показателями электрической прочности (зависящей от материала пропитки) и диэлектрических потерь.

СКОН - специальная конденсаторная бумага повышенной надежности. должна быть изготовлена из целлюлозы по ГОСТ 5186.

МКОН - конденсаторная бумага с малыми диэлектрическими потерями. должна быть изготовлена из электроизоляционной целлюлозы с малыми диэлектрическими потерями.

ЭМКОН - конденсаторная бумага высокой электрической прочности с малыми диэлектрическими потерями. должна быть изготовлена из электроизоляционной целлюлозы с малыми диэлектрическими потерями.

Оглавление

Введение	13
1. Литературный обзор	14
1.1. Типы высоковольтных конденсаторов	14
1.2. Элементы конструкции силовых конденсаторов	16
1.3. Импульсные конденсаторы	18
1.4. Изоляционные материалы, используемые в импульсных	
конденсаторах	21
2. Электрический расчет импульсного конденсатора	23
2.1. Выбор материалов. Расчет диэлектрической проницаемости и	
тангенса угла диэлектрических потерь изоляции	23
2.2. Выбор рабочей и испытательной напряженностей в диэлектрике	
конденсатора	27
2.3. Расчет секции конденсатора	30
2.4. Конструирование пакета секций. Расчет корпусной изоляции	34
2.5. Расчет проходных изоляторов	37
3. Тепловой расчет импульсного конденсатора	39
3.1. Расчет потерь в диэлектрике	40
3.2. Расчет максимальной температуры внутри конденсатора	42
4. Удельные характеристики конденсатора	45
4.1. Расчет удельной энергии конденсатора	45
5. Финансовый менеджмент, ресурсоэффективность и ресурсосбережени	e47
5.1. Оценка коммерческого потенциала и перспективности проведения	
научных исследований с позиции ресурсоэффективности	
и ресурсосбережения	47
5.1.1 Анализ конкурентных технических решений	47
5.1.2. Технология QuaD	5(
5.2. Планирование научно-исследовательских работ	52

5.2.1. Структура работ в рамках научного исследования	52
5.2.2. Определение трудоемкости выполнения работ	53
5.2.3. Разработка графика проведения научного исследования	54
5.3 Бюджет научно-технического исследования (НТИ)	58
5.3.1 Расчет материальных затрат НТИ	58
5.3.2 Основная заработная плата исполнителей темы	59
5.3.3. Дополнительная заработная плата исполнителей темы	61
5.3.4. Отчисления во внебюджетные фонды (страховые отчисления)	62
5.3.5. Накладные расходы	63
5.3.6. Формирование бюджета затрат научно-исследовательского	
проекта	63
5.4. Определение ресурсной (ресурсосберегающей) эффективности	
исследования	64
6. Социальная ответственность	66
6.1. Анализ выявленных вредных факторов проектируемой	
производственной среды	66
6.1.1. Освещение	67
6.1.2.Шум.	68
6.1.3. Параметры микроклимата	69
6.2. Опасные факторы проектируемой производственной среды	71
6.3. Охрана окружающей среды	72
6.4. Защита в чрезвычайных ситуациях	73
Заключение	75
Список используемой литературы	76
Приложение А	
Приложение Б	
Приложение В	
Приложение Г	
CD-R диск (в конверте на обороте обложки)	

Введение

Целью выполнения данной дипломной работы является проектирование высоковольтного импульсного конденсатора внутренней установки. В качестве исходных параметров заданы номинальные значения емкости, напряжения, требуемые виды жидких и твердых диэлектриков, частота импульса.

В связи с широким использованием импульсных конденсаторов в испытательных установках для получения импульсных токов и напряжений, в электротехнологических и электрофизических установках, в лазерной и локационной технике, в мощных источниках света их проектирование и производство становится все более актуальной.

К импульсным конденсаторам предъявляются высокие требования. Они должны обладать большим запасом энергии в единице объема, иметь малую внутреннюю индуктивность, хорошую добротность и высокую динамическую устойчивость. Кроме того, они должны иметь большой срок службы. Расчет конденсатора заключается в том, чтобы по заданным параметрам определить наиболее оптимальные характеристики конденсатора.

5. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение

В рамках данного раздела выпускной квалификационной работы (ВКР) необходимо провести оценку коммерческого потенциала, перспективности и альтернатив проведения данного проекта с позиции ресурсоэффективности и ресурсосбережения. Будет проведено планирование и формирование бюджета научных исследований, а также определим ресурсную эффективность проводимого исследования.

5.1. Оценка коммерческого потенциала и перспективности проведения научных исследований с позиции ресурсоэффективности и ресурсосбережения

5.1.1 Анализ конкурентных технических решений

Данная дипломная работа посвящена проектированию импульсного конденсатора наружной установки 50 кВ с бумажно-масляной изоляцией.

Импульсные конденсаторы используются в испытательных установках для получения импульсных токов и напряжений, в электротехнологических и электрофизических установках, в лазерной и локационной технике, в мощных источниках света.

В высоковольтных импульсных конденсаторах помимо бумажно-масляной изоляции используется также бумажно-пленочно-масляная изоляция и пленочно - масляная. Исходя из этого можно провести анализ конкурентных технических решений с целью убедиться в том, что проектируемая разработка не уступает по качеству конкурентной и после реализации проекта будет отвечать всем требованиям эффективности и надежности при эксплуатации.

Целесообразно проводить данный анализ с помощью оценочной карты (таблица 11). Сравниваем две разновидности:

- 1) Для изготовления конденсаторов повышенной добротности, предназначенных для работы при частотах от 10^6 гц и выше, применяются пленки из синтетических неполярных диэлектриков. В процессе производства на диэлектрическую пленку (П) напыляется металлическая пленка либо напрессовывается фольга. Важным преимуществом пленочных конденсаторов является способность к самовосстановлению. Если при перенапряжении произошел пробой диэлектрика, то через место пробоя начинает протекать ток, который будет разогревать металлическую пленку около места пробоя. Постепенно разогреваясь, металл расплавляется и испаряется. В результате диэлектрическая прочность восстанавливается.
- 2) Наиболее распространенным диэлектриком, применяемым в высоковольтных конденсаторах, является электроизоляционная конденсаторная бумага (Б). В отдельных случаях применяется более дешевая кабельная бумага. Изоляционная бумага является полярным диэлектриком, что определяется наличием гидроксильных групп ОН в молекулах клетчатки, tg8 которой при температуре 20° С и частоте 50 гц равен (6-7)·10-3. Изоляционная бумага имеет высокую электрическую прочность.
- 3) В наиболее силовых конденсаторах часто применяют комбинированную бумажно-пленочную (БП) изоляцию, в которой слои конденсаторной бумаги перемежаются со слоями полимерной пленки. В этом бумага обладающий случае используется как диэлектрик, высокой электрической прочностью, и как фитиль, втягивающий пропитывающую жидкость в прослойки между пленками и обеспечивающий хорошую пропитку в отсутствии газовых включений в изоляции.

Критерии для сравнения и оценки ресурсоэффективности и ресурсосбережения, приведены в таблице 4. Позиция разработки и конкурентов оценивается по каждому показателю экспертным путем по пятибалльной шкале, где 1 — наиболее слабая позиция, а 5 — наиболее сильная (баллы заносятся в столбцы 3,4,5). Веса показателей (столбец 2), определяемые экспертным путем, в сумме должны составлять 1. В столбцы 6,7 и 8 заносятся

оценки с учетом весовых коэффициентов по каждому критерию. В последней строчке пишется итоговая оценка конкурентоспособности

Анализ конкурентных технических решений определяется по формуле:

$$K = \sum B_i \cdot B_i ,$$

где K – конкурентоспособность научной разработки или конкурента;

 B_i – вес показателя (в долях единицы);

 E_i – балл i-го показателя.

Таблица 4 - Оценочная карта для сравнения конкурентных технических решений (разработок)

	Bec		Баллы		Конкурентоспособно сть			
Критерии оценки	крите- рия	$F_{\!\scriptscriptstyle{igophi}}$	$\mathbf{F}_{\kappa 1}$	Б _{к2}	Кф	$K_{\kappa 1}$	$K_{\kappa 2}$	
	рии	Б	БП	П	Б	БП	П	
1	2	3	4	5	6	7	8	
Технические к	ритерии ог	ценки р	есурсоэ	ффекти	вности			
1. Надежность работы	0,092 (5)	4	4	4	0,370	0,370	0,370	
2. Удобство в эксплуатации (габаритные размеры)	0,074 (4)	4	4	5	0,296	0,296	0,370	
3. Электрическая прочность изоляции	0,092 (5)	4	5	4	0,370	0,462	0,370	
4. Гигроскопичность изоляции	0,074 (4)	4	4	4	0,296	0,296	0,296	
5. Температурная стабильность	0,092 (5)	5	4	4	0,462	0,370	0,370	
6. Простота изготовления	0,055 (3)	5	4	5	0,277	0,222	0,277	
7. Пожаро- и взрывобезопасность	0,092 (5)	4	4	4	0,370	0,370	0,370	
8. Потери в диэлектрике	0,092 (5)	3	4	4	0,277	0,370	0,370	
9. Простота обслуживания	0,074 (4)	5	5	5	0,370	0,370	0,370	
Экономичес	кие критер	оии оце	нки эфф	ективн	ости			
1. Стоимость продукта	0,074 (4)	5	4	3	0,370	0,296	0,222	
2. Предполагаемый срок эксплуатации	0,074 (4)	4	4	5	0,296	0,296	0,370	
3. Затраты на послепродажное обслуживание	0,055 (3)	4	4	4	0,222	0,222	0,222	
4. Финансирование научной разработки	0,055 (3)	3	3	4	0,166	0,166	0,222	
Итого	1 (54)				4,148	4,111	4,203	

По результатам проведенного анализа видно, что проектируемый в данной работе импульсный конденсатор не уступает своим аналогам.

Выбранный конденсатор не уступает своим конкурентам, благодаря высокой надежности и электрической прочности, также данный конденсатор с бумажномасляной изоляцией при высоком напряжении имеет достаточно высокую емкость и низкую утечку тока.

5.1.2. Технология QuaD

Технология QuaD (QUality ADvisor) представляет собой гибкий инструмент измерения характеристик, описывающих качество разработки и ее перспективность на рынке и позволяющие принимать решение целесообразности вложения денежных средств в научно-исследовательский проект.

В основе технологии QuaD лежит нахождение средневзвешенной величины следующих групп показателей:

- 1) Показатели оценки коммерческого потенциала разработки;
- 2) Показатели оценки качества разработки.

В соответствии с технологией QuaD каждый показатель оценивается экспертным путем по стобалльной шкале, где 1 — наиболее слабая позиция, а 100 — наиболее сильная. Веса показателей, определяемые экспертным путем, в сумме должны составлять 1.

Оценочная карта качества и перспективности разработки по технологии QuaD представлена в таблице 5.

Таблица 5 - Оценочная карта качества и перспективности разработки по технологии QuaD

Критерии оценки	Вес критер ия	Баллы	Макси- мальный балл	Относите ль-ное значение (3/4)	Средневзве шен-ное значение (5x2)						
1	2	3	4	5							
Показатели оценки качества разработки											
1. Надежность работы	0,089 (5)	80	100	0,8	7,14						

Продолжение таблицы 5

2.Габаритные размеры	0,071 (4)	50	100	0,5	3,57		
3. Уровень материалоемкости	0,071 (4)	80	100	0,8	5,71		
4. Технические характеристики	0,089 (5)	75	100	0,75	6,69		
5.Ремонтопригодность	0,089 (5)	90	100	0,9	8,03		
6.Простота изготовления	0,053 (3)	90	100	0,9	4,82		
7.Пожаробезопасность	0,089 (5)	65	100	0,65	5,80		
8.Простота обслуживания	0,071 (4)	80	100	0,8	5,71		
Показатели о	Показатели оценки коммерческого потенциала разработки						
9.Цена	0,089 (5)	80	100	0,8	7,14		
10.Предполагаемый срок эксплуатации	0,071 (4)	80	100	0,8	5,71		
11.Затраты на послепродажное обслуживание	0,071 (4)	70	100	0,7	5		
12. Финансирование научной разработки	0,071 (4)	60	100	0,6	4,28		
13.Конкурентоспособность продукта	0,071 (4)	70	100	0,7	5		
Итого	1 (56)				74,64		

Оценка качества и перспективности по технологии QuaD определяется по формуле:

$$\Pi_{cp} = \sum B_i \cdot B_i,$$

где Π_{cp} — средневзвешенное значение показателя качества и перспективности научной разработки; B_i — вес показателя (в долях единицы); E_i — средневзвешенное значение i-го показателя.

Значение Π_{cp} позволяет говорить о перспективах разработки и качестве проведенного исследования. Если значение показателя Π_{cp} получилось от 100 до 80, то такая разработка считается перспективной. Если от 79 до 60 — то перспективность выше среднего. Если от 69 до 40 — то перспективность средняя. Если от 39 до 20 — то перспективность ниже среднего. Если 19 и ниже — то перспективность крайне низкая.

По результатам оценки качества и перспективности значение показателя Π_{cp} получилось равным 74,64, что говорит о том, что перспективность спроектированного конденсатора выше среднего значения, а значит необходимо инвестировать средства в данную разработку и определять пути ее дальнейшего улучшения.

5.2. Планирование научно-исследовательских работ

5.2.1. Структура работ в рамках научного исследования

Планирование комплекса предполагаемых работ производится в следующем порядке:

- определение структуры работ в рамках проектирования;
- определение участников каждой работы;
- установление продолжительности работ;
- построение графика проведения проектирования.

Для проектирования высоковольтного ввода была сформирована группа, в состав которой входят руководитель и студент-дипломник (инженер). Перечень этапов и работ в рамках проведения научного исследования, а также распределение исполнителей по видам работ приведены в таблице 6.

Таблица 6 - Перечень этапов работ и распределение исполнителей

Основные этапы	№ раб	Содержание работ	Должность исполнителя
Разработка технического задания	1	Составление и утверждение технического задания	Руководитель
	2	Подбор и изучение материалов по теме	Инженер
Выбор направления	3	Выбор направления исследований	Инженер
исследований	4	Календарное планирование работ по теме	Руководитель

Продолжение таблицы 6

	5	Проведение теоретических расчетов и обоснований	Инженер
	6	Электрический расчет ввода	Инженер
Теоретические и экспериментальные исследования	7	Механический расчет фарфоровой покрышки	Инженер
	8	Расчет тепловой устойчивости ввода	Инженер
	9	Выбор маслорасширителя	Инженер
	10	Описание конструирования ввода	Инженер
Обобщение и оценка	11	Анализ полученных результатов	Руководитель
результатов	12	Оценка эффективности полученных результатов	Инженер
Разработка технической документации и проектирование	13	Построение сборочного чертежа	Инженер
Оформление отчета но НИР (комплекта документации по ОКР)	14	Составление пояснительной записки (эксплуатационно-технической документации)	Инженер

5.2.2. Определение трудоемкости выполнения работ

Трудовые затраты в большинстве случаях образуют основную часть стоимости разработки, поэтому важным моментом является определение трудоемкости работ каждого из участников научного исследования.

Трудоемкость выполнения научного исследования оценивается экспертным путем в человеко-днях и носит вероятностный характер, т.к. зависит от множества трудно учитываемых факторов. Для определения ожидаемого (среднего) значения трудоемкости $t_{\text{ож}i}$ используется следующая формула:

$$t_{\text{ожi}} = \frac{3t_{\min i} + 2t_{\max i}}{5} \,,$$

где $t_{\text{ож}i}$ — ожидаемая трудоемкость выполнения i-ой работы чел.-дн.;

 $t_{\min i}$ — минимально возможная трудоемкость выполнения заданной i-ой работы (оптимистическая оценка: в предположении наиболее благоприятного стечения обстоятельств), чел.-дн.;

 $t_{\max i}$ — максимально возможная трудоемкость выполнения заданной i-ой работы (пессимистическая оценка: в предположении наиболее неблагоприятного стечения обстоятельств), чел.-дн.

Исходя из ожидаемой трудоемкости работ, определяется продолжительность каждой работы в рабочих днях $T_{\rm p}$, учитывающая параллельность выполнения работ несколькими исполнителями. Такое вычисление необходимо для обоснованного расчета заработной платы, так как удельный вес зарплаты в общей сметной стоимости научных исследований составляет около 65 %.

$$T_{\mathbf{p}_i} = \frac{t_{\text{ожi}}}{\mathbf{q}_i},$$

где T_{pi} — продолжительность одной работы, раб. дн.;

 $t_{{
m o}{\it k}i}$ — ожидаемая трудоемкость выполнения одной работы, чел.-дн.;

 Ψ_i — численность исполнителей, выполняющих одновременно одну и ту же работу на данном этапе, чел.

5.2.3. Разработка графика проведения научного исследования

Наиболее удобным и наглядным представлением графиком проведения работ является построение ленточного графика проведения научных работ в форме диаграммы Ганта.

Диаграмма Ганта — горизонтальный ленточный график, на котором работы по теме представляются протяженными во времени отрезками, характеризующимися датами начала и окончания выполнения данных работ.

Для удобства построения графика, длительность каждого из этапов работ из рабочих дней следует перевести в календарные дни. Для этого необходимо воспользоваться следующей формулой:

$$T_{{}_{\mathrm{K}i}} = T_{{}_{\mathrm{p}i}} \cdot k_{{}_{\mathrm{KAJI}}},$$

где $T_{\kappa i}$ — продолжительность выполнения i-й работы в календарных днях;

 $T_{\rm pi}$ – продолжительность выполнения *i*-й работы в рабочих днях;

 $k_{\text{кал}}$ – коэффициент календарности.

Коэффициент календарности определяется по следующей формуле:

$$k_{\text{\tiny KAJI}} = \frac{T_{\text{\tiny KAJI}}}{T_{\text{\tiny KAJI}} - T_{\text{\tiny BMX}} - T_{\text{\tiny IID}}},$$

где $T_{\text{кал}}$ – количество календарных дней в году;

 $T_{\text{вых}}$ — количество выходных дней в году;

 $T_{\rm np}$ – количество праздничных дней в году.

Рассчитанные значения в календарных днях по каждой работе $T_{{
m K}i}$ округляем до целого числа.

Пример расчета (для пункта «составление и утверждение технического задания»):

$$t_{_{\!\mathcal{O}\!\!\mathcal{H}}}=rac{3\cdot t_{_{\!\! ext{min}}}+2\cdot t_{_{\!\! ext{max}}}}{5}=rac{3\cdot 2+2\cdot 5}{5}=3$$
 чел. — дн;
$$T_p=rac{t_{_{\!\! ext{O}\!\!\mathcal{H}}}}{7}=rac{3}{1}=3$$
 дня;
$$k_{_{\!{\scriptscriptstyle{K\!A\!\Pi}}}}=rac{T_{_{\!{\scriptscriptstyle{K\!A\!\Pi}}}}}{T_{_{\!{\scriptscriptstyle{K\!A\!\Pi}}}}-T_{_{\!{\scriptscriptstyle{B\!A\!\Pi}}}}}=rac{366}{366-116-14}=1,551;$$

$$T_{_{\!{\scriptscriptstyle{K\!A\!\Pi}}}}=T_{_{\!{\scriptscriptstyle{P}}}}\cdot k_{_{\!{\scriptscriptstyle{K\!A\!\Pi}}}}=3\cdot 1,551=4,653\approx 5$$
 дней.

Все рассчитанные значения сводим в таблицу 7.

Таблица 7 - Временные показатели проведения научного исследования

		Трудоёмкость работ						льность	Длительность		
		<i>t_{min}</i> , чел-дни		<i>t_{max}</i> , чел-дни		<i>t_{ожі}</i> , чел-дни		работ в рабочих днях Т pi		работ в кален- дарных днях Т кі	
Название работы	Руководитель	Инженер	Руководитель	Инженер	Руководитель	Инженер	Руководитель	Инженер	Руководитель	Инженер	
Составление и утверждение технического задания	2		5		3		3		5		
Подбор и изучение материалов по теме		4		7		5		5		9	
Выбор направления исследований		3		5		4		4		8	
Календарное планиро- вание работ по теме	4		6		5		5		8		
Проведение теоретических расчетов и обоснований		5		8		6		6		9	
Электрический расчет		7		9		8		8		12	
Расчет тепловой устой- чивости конденсатора		9		14		11		11		17	
Удельные характеристики конденсатора		2		4		3		3		5	
Описание конструиро- вания конденсатора		1		3		2		2		3	
Анализ полученных результатов	3	4	5	6	4	5	2	3	3	5	
Оценка эффективности полученных результатов	6	7	10	11	8	9	4	5	6	8	
Построение сборочного чертежа		7		10		8		8		12	
Составление пояснительной записки (эксплуатационно-											
технической документации)		8		10		9		9		14	

На основе таблицы 7 построим календарный план-график (см. таблица 8).

Таблица 8. Календарный план-график проведения НИОКР по теме

			Т Продолжительность выполнения работ													
№	Вид работ	Исполнители	к <i>і</i> кал.д	фе	вр.		мар	Г	a	прел	ΙЬ		май	İ	ИЮ	онь
работ			н.	2	3	1	2	3	1	2	3	1	2	3	1	2
1	Составление и утверждение тех- нического задания	Руководитель	5													
2	Подбор и изучение материалов по теме	Инженер	8													
3	Выбор направления исследований	Инженер	6													
4	Календарное планирование работ по теме	Руководитель	8													
5	Проведение теоретических расчетов и обоснований	Инженер	9													
6	Электрический расчет	Инженер	12													
7	Механический расчет	Инженер	3													
8	Расчет тепловой устойчивости конденсатора	Инженер	17													
9	Удельные характеристики конденсатора	Инженер	5													
10	Описание кон- струирования ввода	Инженер	3													
11	Анализ полученных результатов	Руководитель, инженер	5													
12	Оценка эффек- тивности полу- ченных результатов	Руководитель, инженер	8													
13	Построение сбо- рочного чертежа	Инженер	12													
14	Составление по- яснительной за- писки (эксплуа- тационно-техни- ческой докумен- тации)	Инженер	14													

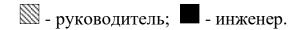


График строится для максимального по длительности исполнения работ в рамках научно-исследовательского проекта с разбивкой по месяцам и декадам (10 дней) за период времени дипломирования.

Таким образом, видим, что длительность работ в календарных днях руководителя составляет 26 дней, инженера — 102 дня. Планирование работ по НИОКР проведено рационально, поскольку до защиты ВКР остается время в запасе около 7 дней.

5.3 Бюджет научно-технического исследования (НТИ)

Планируя бюджет НТИ, мы должны обеспечить полное и достоверное отражение всех видов расходов, связанных с его выполнением. При расчете и формировании бюджета НТИ будет использоваться следующая группировка затрат по статьям:

- материальные затраты НТИ;
- основная заработная плата исполнителей темы;
- дополнительная заработная плата исполнителей темы;
- отчисления во внебюджетные фонды (страховые отчисления);
- накладные расходы.

5.3.1 Расчет материальных затрат НТИ

Данная статья включает стоимость всех материалов, используемых при разработке проекта.

Материальные затраты указаны в таблице 9.

Таблица 9. Материальные затраты

	Единица		Цена за ед.,	Затраты на		
Наименование	измерения	Количество	руб.	материалы $(3_{\scriptscriptstyle M})$,		
	измерения		pyo.	руб.		
Бумага для принтера	Пачка	1	300	300		
Набор настольный	Шт	1	300	300		
канцелярский	1111	1	300	300		
Калькулятор инженерный	Шт	1	300	300		
Картридж для принтера	Шт	1	2000	2000		
Папка-скоросшиватель	Шт	1	30	30		
			Итого	2930		

5.3.2 Основная заработная плата исполнителей темы

На данном этапе работы рассчитывается основная заработная плата научных и инженерно-технических работников, рабочих макетных мастерских и опытных производств, непосредственно участвующих в выполнении работ по данной теме. Величина расходов по заработной плате определяется исходя из трудоемкости выполняемых работ и действующей системы окладов и тарифных ставок. В состав основной заработной платы включается премия, выплачиваемая ежемесячно из фонда заработной платы в размере 20 –30 % от тарифа или оклада.

Месячный должностной оклад работников:

• Руководитель

$$3_{M} = 3_{mc} \cdot (1 + k_{np} + k_{\partial}) \cdot k_{p} = 16751,29 \cdot (1 + 0,3 + 0,2) \cdot 1,3 = 32665 \text{ py6.},$$

• Инженер

$$3_{M} = 3_{mc} \cdot (1 + k_{np} + k_{\partial}) \cdot k_{p} = 15500 \cdot (1 + 0.3 + 0.2) \cdot 1.3 = 30225 \text{ py6.},$$

где 3_{mc} — заработная плата по тарифной ставке, руб.; $k_{пp}$ — премиальный коэффициент, равный 0,3; $k_{д}$ — коэффициент доплат и надбавок составляет 0,2; k_{p} — районный коэффициент, равный 1,3 (для города Томска);

Среднедневная заработная плата рассчитывается по формуле:

• Руководитель

$$3_{\partial H} = \frac{3_{M} \cdot M}{F_{\partial}} = \frac{32665 \cdot 10,4}{245} = 1385,6 \text{ py6.},$$

• Инженер

$$3_{\partial H} = \frac{3_{M} \cdot M}{F_{\partial}} = \frac{30225 \cdot 10,4}{245} = 1283 \text{ py6.},$$

где 3_{M} – месячный должностной оклад работника, руб.:

M — количество месяцев работы без отпуска в течение года: при отпуске в 48 раб. дней M=10,4 месяца, 6-дневная неделя;

 $F_{\rm д}$ — действительный годовой фонд рабочего времени научнотехнического персонала, раб. дн.

Баланс рабочего времени показан в таблице 10.

Таблица 10. Баланс рабочего времени

Показатели рабочего времени	Руководитель	Инженер
Календарное число дней	366	366
Количество нерабочих дней:	52 14	52 14
Потери рабочего времени:	48 7	48 7
Действительный годовой фонд рабочего времени	245	245

Основная заработная плата (3_{och}) от предприятия рассчитывается по следующей формуле:

• Руководитель

$$3_{och} = 3_{\partial H} \cdot T_p = 1385, 6 \cdot 26 = 36025, 6$$
руб

• Инженер

$$3_{och} = 3_{\partial H} \cdot T_{p} = 1283 \cdot 102 = 130886$$
py6

где 3_{och} — основная заработная плата одного работника;

 T_p — продолжительность работ, выполняемых научно-техническим работником, раб. дн.

 $3_{\partial H}$ – среднедневная заработная плата работника, руб.

Расчет основной заработной платы указан в таблице 11.

Таблица 11. Расчёт основной заработной платы

Исполнители	3 _{те} , руб.	$k_{\Pi extsf{p}}$	$k_{\scriptscriptstyle m J}$	$k_{ m p}$	3 _м , руб	3 _{дн} , руб.	Т _р , раб. дн.	3 _{осн,} руб.
Руководитель	16751,29	0,3	0,2	1,3	32665	1385,6	26	36025,6
Инженер	15500	0,3	0,2	1,3	30225	1283	102	130886
							Итого	166891,6

5.3.3. Дополнительная заработная плата исполнителей темы

Затраты по дополнительной заработной плате исполнителей темы учитывают величину предусмотренных Трудовым кодексом РФ доплат за отклонение от нормальных условий труда, а также выплат, связанных с обеспечением гарантий и компенсаций (при исполнении государственных и общественных обязанностей, при совмещении работы с обучением, при предоставлении ежегодного оплачиваемого отпуска и т.д.).

Расчет дополнительной заработной платы ведется по следующей формуле:

$$3_{\partial on} = k_{\partial on} \cdot 3_{och}$$

где $k_{\text{доп}}$ — коэффициент дополнительной заработной платы (на стадии проектирования принимается равным 0,12-0,15).

• Руководитель

$$3_{\alpha on} = k_{\alpha on} \cdot 3_{\alpha cH} = 0.14 \cdot 36025, 6 = 5043, 6 \text{ py6.};$$

• Инженер

$$3_{\partial on} = k_{\partial on} \cdot 3_{OCH} = 0.14 \cdot 130886 = 18324 \text{ py6.};$$

где $k_{\text{доп}}$ – коэффициент дополнительной заработной платы, равный 0,14.

5.3.4. Отчисления во внебюджетные фонды (страховые отчисления)

Отчисления во внебюджетные фонды: государственного социального страхования (ФСС), пенсионного фонда (ПФ) и медицинского страхования (ФФОМС) - являются обязательными по законодательству Российской Федерации.

Величина отчислений во внебюджетные фонды определяется исходя из следующей формулы:

$$3_{\text{\tiny BHE}\delta} = k_{\text{\tiny BHE}\delta} \cdot (3_{\text{\tiny OCH}} + 3_{\text{\tiny OON}}),$$

где $k_{\text{внеб}}$ — коэффициент отчислений на уплату во внебюджетные фонды (пенсионный фонд, фонд обязательного медицинского страхования и пр.).

На 2016 г. в соответствии с Федеральным законом от 24.07.2009 №212-ФЗ установлен размер страховых взносов равный 30%. На основании пункта 1 ст.58 закона №212-ФЗ для учреждений осуществляющих образовательную и научную деятельность в 2016 году водится пониженная ставка – 27,1%.

Отчисления во внебюджетные фонды представлены в таблице 12.

Таблица 12 - Отчисления во внебюджетные фонды

Исполнитель	Основная заработная плата, руб.	Дополнительная заработная плата, руб.		
Руководитель	36025,6	5043,6		
Инженер	130886	18324		
Коэффициент отчислений во внебюджетные фонды	0,271			
	Итого			
Руководитель	11129,7			
Инженер	40435,9			

5.3.5. Накладные расходы

Накладные расходы учитывают прочие затраты организации, не попавшие в предыдущие статьи расходов: печать и ксерокопирование материалов исследования, оплата услуг связи, электроэнергии, почтовые и телеграфные расходы, размножение материалов и т.д. Их величина определяется по следующей формуле:

$$3_{\text{накл}} = (\text{сумма статей } 1 \div 4) \cdot k_{\text{нp}} = (3_{\text{м}} + 3_{\text{осн}} + 3_{\text{доп}} + 3_{\text{внеб}}) \cdot 0,16 =$$

= $(2930 + 166891,6 + 23367,6 + 40435,9) \cdot 0,16 = 37380 \text{ руб.},$

где $k_{\rm Hp}$ – коэффициент, учитывающий накладные расходы.

Величину коэффициента накладных расходов можно взять в размере 16%.

5.3.6. Формирование бюджета затрат научно-исследовательского проекта

Основой для формирования бюджета затрат проекта является рассчитанная величина затрат научно-исследовательской работы. В свою очередь, бюджет, в процессе формирования договора с заказчиком, защищается научной организацией в качестве нижнего предела затрат на разработку научно-технической продукции.

Определение бюджета затрат на научно-исследовательский проект по каждому варианту исполнения приведен в таблице 13.

Таблица 13 - Расчет бюджета затрат НТИ

Наименование статьи	Сумма, руб.	%
1. Материальные затраты НТИ	2930	1,1
2. Затраты по основной заработной плате исполнителей темы	166892	61,6
3. Затраты по дополнительной заработной плате исполнителей темы	23368	8,6
4. Отчисления во внебюджетные фонды	40436	14,9
5. Накладные расходы	37380	13,8
6. Бюджет затрат НТИ	271006	100

Таким образом, было рассчитано минимальное количество денежных средств, необходимых для проектирования импульсного конденсатора на напряжение 50кВ. Полученная сумма составляет 271006 рублей. Данная цифра является вполне удовлетворительна и оптимальна, так как для расчёта конденсатора не требуется специального испытательного дорогостоящего оборудования. Большая часть затрат приходится на основную заработную плату исполнителей темы (61,6%).

5.4. Определение ресурсной (ресурсосберегающей) эффективности исследования

Определение эффективности происходит на основе расчета интегрального показателя ресурсоэффективности научного исследования.

Интегральный показатель ресурсоэффективности вариантов исполнения объекта исследования можно определить следующим образом:

$$I_{pi} = \sum a_i \cdot b_i,$$

где I_{pi} — интегральный показатель ресурсоэффективности для і-го варианта исполнения разработки;

 a_i — весовой коэффициент *i*-го варианта исполнения разработки;

 b_i — бальная оценка *i*-го варианта исполнения разработки, устанавливается экспертным путем по выбранной шкале оценивания.

Расчет интегрального показателя ресурсоэффективности приведен в форме таблицы 14.

В качестве возможных исполнений проекта условно были приняты: исполнение 1 – конденсатор с бумажно-масляной изоляцией, исполнение 2 – конденсатор с бумажной-пленочной изоляцией, исполнение 3 – конденсатор с пленочной изоляцией.

Таблица 14 - Сравнительная оценка характеристик вариантов исполнения проекта

Объект исследования Критерии	Весовой коэффициент параметра	Исп.1 Б	Исп.2 Б - П	Исп.3 П
1. Уровень технологических показателей	0,172	4	4	5
2. Удобство в эксплуатации (соответствует требованиям установки на ПС)	0,138	4	4	3
3. Ремонтопригодность	0,138	4	4	4
4. Предполагаемый срок эксплуатации	0,138	4	4	5
5. Надежность	0,172	5	4	5
6. Материалоемкость	0,103	5	4	5
7.Затраты на послепродажное обслуживание	0,138	5	4	4
Итого	1	4,409	3,996	4,443

$$\begin{split} I_{p\text{-}ucn1} &= 4 \cdot 0,172 + 4 \cdot 0,138 + 4 \cdot 0,138 + 4 \cdot 0,138 + 5 \cdot 0,172 + 5 \cdot 0,103 + 5 \cdot 0,138 = 4,409 \ ; \\ I_{p\text{-}ucn2} &= 4 \cdot 0,179 + 4 \cdot 0,143 + 4 \cdot 0,143 + 4 \cdot 0,143 + 4 \cdot 0,179 + 4 \cdot 0,107 + 4 \cdot 0,107 = 3,996 \ ; \\ I_{p\text{-}ucn3} &= 5 \cdot 0,179 + 3 \cdot 0,143 + 4 \cdot 0,143 + 5 \cdot 0,143 + 5 \cdot 0,179 + 5 \cdot 0,107 + 4 \cdot 0,107 = 4,443 \ . \end{split}$$

Сравнив значения интегральных показателей ресурсоэффективности можно сделать вывод, что реализация технологии в первом исполнении ничуть не уступает остальным вариантам с позиции ресурсосбережения.