Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт физики высоких технологий

Направление Энерго- и ресурсосберегающие процессы в химической технологии,

нефтехимии и биотехнологии

кафедры ЭБЖ

ИНК

И. о. зав. кафедрой

Доцент

Кафедра Общей химии и химической технологии

ФИО

Тихонов В.В.

БАКАЛАВРСКАЯ РАБОТА

Тема проекта

Проектиров	ание нефтегазосепарато	ра на участке подгот	овки нефти на	Вахском
	мес	торождении		
УДК				
Студент				
Группа	ФИС)	Подпись	Дата
2K22	Курмель Гермаі	н Валериевич		
Руководитель				
Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент	Семакина О.К.	к.т.н., доцент		
	консу	ЛЬТАНТЫ:		
По разделу «Фина	ансовый менеджмент, рес	урсоэффективность и	ресурсосбереже	ние»
Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент	Сечина А.А.	к.х.н., доцент		
По разделу «Соци	иальная ответственность»			1
Должность	ФИО	Ученая степень, звание	Подпись	Дата
Профессор	Ахмеджанов Р.Р.	д.б.н.,		

Томск – 2016 г

ДОПУСТИТЬ К ЗАЩИТЕ:

Ученая степень, звание

к.т.н., доцент

профессор

Дата

Подпись

Перечень результатов обучения (профессиональных и универсальных компетенций), запланированных к достижению выпускниками данной образовательной программы

Код	Результат обучения	Требования ФГОС ВПО, критериев и/или	
результата	(выпускник должен быть готов)	заинтересованных сторон	
	Профессиональные компетенции		
P1	Применять базовые математические,	Требования ФГОС	
	естественнонаучные, социально-экономические и	(ПК-1,2,3,19,20),	
	специальные знания в профессиональной	Критерий 5 АИОР	
	деятельности	(п.1.1)	
P2	Применять знания в области энерго-и	Требования ФГОС	
	ресурсосберегающих процессов и оборудования	(ПК-4,5,9,15 ОК-7),	
	химической технологии, нефтехимии и	Критерий 5 АИОР	
	биотехнологии для решения производственных	(пп.1.1,1.2)	
P.2	задач	T	
Р3	Ставить и решать задачи производственного	Требования ФГОС	
	анализа, связанные с созданием и переработкой	(ПК-4,5,8,11, ОК-2,4),	
	материалов с использованием моделирования	Критерий 5 АИОР	
	объектов и процессов химической технологии,	(пп.1.2	
P4	нефтехимии и биотехнологии.	Требования ФГОС	
Γ4	Проектировать и использовать новое энерго-и ресурсосберегающее оборудование химической	(ПК-8,11,23,24),	
	технологии, нефтехимии и биотехнологии	Критерий 5 АИОР	
	технологии, пефтехными и опотехнологии	(п.1.3)	
P5	Проводить теоретические и	Требования ФГОС	
	экспериментальные исследования в области	(ПК-1,4,5,19-22, ОК-	
	энерго-и ресурсосберегающих процессов	7,10), Критерий 5	
	химической технологии, нефтехимии и	АИОР (п.1.4)	
	биотехнологии		
P6	Осваивать и эксплуатировать современное	Требования ФГОС	
	высокотехнологичное оборудование,	(ПК-6,12,13,14,17,	
	обеспечивать его высокую эффективность и	ОК-3,4,8), Критерий 5	
	надежность, соблюдать правила охраны здоровья	АИОР (п.1.5)	
	и безопасности труда на производстве, выполнять		
70.7	требования по защите окружающей среды.	T (*F00	
P7	Применять знания по проектному	Требования ФГОС	
	менеджменту для ведения инновационной	(ПК-3, 8, 9, 10, 11, 12, 13), Критерий 5	
	инженерной деятельности с учетом юридических аспектов защиты интеллектуальной	АИОР (п. 2.1),	
	собственности	согласованный с	
	- Coordinating	требованиями	
		международных	
		стандартов EUR-ACE	
		и <i>FEANI</i>	
P8	Использовать современные компьютерные	Требования ФГОС	
	методы вычисления, основанные на применении	$(\Pi K-4, 5, 9, 10, 11, 14)$	
	современных эффективных программных		
	продуктов при расчете свойств материалов,		

Код результата	Результат обучения (выпускник должен быть готов)	Требования ФГОС ВПО, критериев и/или заинтересованных сторон
	процессов, аппаратов и систем, характерных для профессиональной области деятельности;	
	находить необходимую литературу, использовать компьютерные базы данных и другие источники информации	
	Общекультурные компетенции	
P9	Демонстрировать знания социальных, этических и культурных аспектов профессиональной деятельности.	Требования ФГОС (ОК-1,2,6-10), Критерий 5 АИОР (пп.2.4,2.5)
P10	Самостоятельно учиться и непрерывно повышать квалификацию в течение всего периода профессиональной деятельности.	Требования ФГОС (ОК-6,7,8), Критерий 5 АИОР (2.6)
P11	Владеть иностранным языком на уровне, позволяющем разрабатывать документацию, презентовать результаты профессиональной деятельности.	Требования ФГОС (ОК-11), Критерий 5 АИОР (п.2.2)
P12	Эффективно работать индивидуально и в коллективе, демонстрировать ответственность за результаты работы и готовность следовать корпоративной культуре организации.	Требования ФГОС (ОК-3,4,5,12), Критерий 5 АИОР (пп.1.6, 2.3)

	Цели образовательной	программы
Код цели	Формулировка цели	Требования ФГОС ВПО и (или) заинтересованных работодателей
Ц1	Подготовка выпускников к производственно-технологической деятельности в области энерго- и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии, конкурентоспособных на мировом рынке.	Требования ФГОС ВПО, критерии АИОР, соответствующие международным стандартам EUR-ACE и FEANI. Требования к выпускникам предприятий химического комплекса России (ООО СИБУР «Томскнефтехим», ОАО «Тоскгазпром», ОАО «КИНЕФ», г. Кириши, Ангарский нефтеперерабатывающий комбинат, ПО «Азот», г. Кемерово, ООО «ЭльПласт», ООО «Сибметахим, ОАО «Фармстандарт—Томскхимфарм», и др.).
Ц2	Подготовка выпускников к проектной деятельности в области энерго- и ресурсосберегающих процессов в химической технологии, нефтехимии и биотехнологии.	Требования ФГОС ВПО, критерии АИОР, соответствующие международным стандартам EUR-ACE и FEANI. Требования к выпускникам предприятий химического комплекса России (ОАО «ТомскНИПИнефть, ОАО НК

	Цели образовательной	программы
Код цели	Формулировка цели	Требования ФГОС ВПО и (или) заинтересованных работодателей
		«РОСНефть», г. Краснодар, ОАО «Самаранефтехимпроект, ЭЛЕСИ и др.).
ЦЗ	Подготовка выпускников к научным исследованиям для решения задач, связанных с разработкой новых методов создания процессов, материалов и оборудования, обеспечивающих энергоресурсосбережение, экологическую безопасность технологи.	Требования ФГОС ВПО, критерии АИОР, соответствующие международным стандартам EUR-АСЕ и FEANI. Потребности научно-исследовательских центров РАН, СО РАН (ТПУ, ТГУ, Институт химии нефти СО РАН, Институт катализа СО РАН, г. Новосибирск, НИОСТ, ООО НПЦ «НООСФЕРА», г. Надым и др).
Ц4	Подготовка выпускников к организационно-управленческой деятельности.	Требования ФГОС ВПО, критерии АИОР, соответствующие международным стандартам EUR-ACE и FEANI, запросы отечественных предприятий и НИИ.
Ц5	Подготовка выпускников к самообучению и непрерывному профессиональному самосовершенствованию.	Требования ФГОС ВПО, критерии АИОР, соответствующие международным стандартам EUR-ACE и FEANI, запросы отечественных предприятий и НИИ

ОБЩЕКУЛЬТУРНЫЕ, ОБЩЕПРОФЕССИОНАЛЬНЫЕ И ПРОФЕССИОНАЛЬНЫЕ КОМПЕТЕНЦИИ.

- 1. Выпускник, освоивший программу бакалавриата, должен обладать следующими общекультурными компетенциями (ОК):
 - способностью использовать основы философских знаний для формирования мировоззренческой позиции (ОК-1);
 - способностью анализировать основные этапы и закономерности исторического развития общества для формирования гражданской позиции (ОК-2);

- ➤ способностью использовать основы экономических знаний в различных сферах жизнедеятельности (ОК-3);
- способностью использовать основы правовых знаний в различных сферах жизнедеятельности (ОК-4):
- ➤ способностью к коммуникации в устной и письменной формах на русском и иностранном языках для решения задач межличностного и межкультурного взаимодействия (ОК-5);
- ➤ способностью работать в коллективе, толерантно воспринимать социальные, этнические, конфессиональные и культурные различия (ОК-6);
- способностью к самоорганизации и самообразованию (ОК-7);
- способностью использовать методы и средства физической культуры для обеспечения полноценной социальной и профессиональной деятельности (ОК-8);
- способностью использовать приемы первой помощи, методы защиты в условиях чрезвычайных ситуаций (ОК-9).
- 2. Выпускник, освоивший программу бакалавриата, должен обладать следующими общепрофессиональными компетенциями (ОПК):
 - ➤ способностью решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности (ОПК-1);
 - ➤ способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применяет методы математического анализа и моделирования, теоретического и экспериментального исследования (ОПК-2);
 - способностью использовать основные естественнонаучные законы для понимания окружающего мира и явлений природы (ОПК-3);

3. Выпускник, освоивший программу бакалавриата, должен обладать **профессиональными компетенциями (ПК),** соответствующими виду (видам) профессиональной деятельности, на который (которые) ориентирована программа бакалавриата:

Производственно-технологическая деятельность:

- ➤ способностью осуществлять технологический процесс в соответствии с регламентом и использовать технические средства для измерения основных параметров технологического процесса, свойств сырья и продукции (ПК-1);
- ➤ способностью участвовать в совершенствовании технологических процессов с позиций энерго- и ресурсосбережения, минимизации воздействия на окружающую среду (ПК-2);
- ➤ способностью использовать современные информационные технологии, проводить обработку информации с использованием прикладных программ и баз данных для расчета технологических параметров оборудования и мониторинга природных сред (ПК- 3);
- ➤ способностью использовать нормативные документы по качеству, стандартизации и сертификации продуктов и изделий (ПК- 4);
- ▶ готовностью обосновывать конкретные технические решения при разработке технологических процессов; выбирать технические средства и технологии, направленные на минимизацию антропогенного воздействия на окружающую среду (ПК-5);
- ➤ способностью следить за выполнением правил техники безопасности, производственной санитарии, пожарной безопасности и норм охраны труда на предприятиях (ПК-6);
- ▶ готовностью осваивать и эксплуатировать новое оборудование, принимать участие в налаживании, технических осмотрах, текущих ремонтах, проверке технического состояния оборудования и программных средств (ПК-7);

➤ способностью использовать элементы эколого-экономического анализа в создании энерго- и ресурсосберегающих технологий (ПК-8).

Организационно-управленческая деятельность:

- ➤ способностью анализировать технологический процесс как объект управления (ПК-9);
- ▶ способностью проводить стоимостную оценку основных производственных ресурсов (ПК-10);
- ➤ способностью организовывать работу исполнителей, находить и принимать управленческие решения в области организации труда и осуществлении природоохранных мероприятий (ПК-11);
- ▶ способностью систематизировать и обобщать информацию по формированию и использованию ресурсов предприятия (ПК-12).

Научно-исследовательская деятельность:

- готовностью изучать научно-техническую информацию, анализировать отечественный и зарубежный опыт по тематике исследований (ПК-13);
- ➤ способностью применять современные методы исследования технологических процессов и природных сред, использовать компьютерные средства в научно-исследовательской работе (ПК-14);
- ➤ способностью планировать экспериментальные исследования, получать, обрабатывать и анализировать полученные результаты (ПК-15);
- **у** способностью моделировать энерго- и ресурсосберегающие процессы в промышленности (ПК-16).

Проектная деятельность:

- ➤ способностью участвовать в проектировании отдельных стадий технологических процессов с использованием современных информационных технологий (ПК-17);
- ➤ способностью проектировать отдельные узлы (аппараты) с использованием автоматизированных прикладных систем (ПК-18).

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт физики высог	chy tavijanaruŭ			
7 1				×
-	ки Энерго- и ресурсосберега	ющие процесс	ы в хими	ческои
технологии, нефтехими	и и оиотехнологии			
Кафедра ОХХТ				
		УТВЕРЖ <i>Д</i>	,	
		И. о. зав. к	афедрой	
		(Подпись)	(Дата)	(Ф.И.О.)
	ЗАДАНИЕ			
на выг	олнение выпускной квалі	ификационної	й работы	Ī
В форме:				
	бакалаврской ра	боты		
(бакалавро Студенту:	ской работы, дипломного проекта/раб	боты, магистерской	диссертации	4)
Группа		ФИО		
2K22	Курме.	ль Герман Вал	ериевич	
Тема работы:				
Проектирование не	ефтегазосепаратора на уча	стке подготов	ки нефт	и на Вахском
	месторожден	ии		
Утверждена приказом д	директора (дата, номер)		23.03.16 1	г., 2270/с
Срок сдачи студентом выполненной работы: 01.06.16г.		.16г.		

ТЕХНИЧЕСКОЕ ЗАДАНИЕ:

Исходные данные к работе		Нефтегазосепаратор для разделения нефтегазовой	
(наименование объекта исследования или пров производительность или нагрузка; режим раб		смеси на фракции: нефть и газ.	
(непрерывный, периодический, циклический и п		Производительность по сырью, содержащей до	
сырья или материал изделия; требования к пр		50 % пластовой воды: 450 т/ч;	
изделию или процессу; особые требования к об функционирования (эксплуатации) объекта из		Давление в НГС: 0,25 МПа;	
плане безопасности эксплуатации, влияния на		Исполнение по материалу: Кожух – 09Г2С,	
окружающую среду, энергозатратам; эконом анализ и т. д.).	ическии	Фланцы – 09Г2С, 16ГС.	
,		Режим работы: непрерывный;	
Перечень подлежащих исслед	дованию,	Введение.	
проектированию и разработь	æ	Описание технологической схемы.	
вопросов		Технологический расчет НГС.	
(аналитический обзор по литературным исто		Конструктивный расчет НГС.	
целью выяснения достижений мировой науки рассматриваемой области; постановка задач		Механический расчет НГС.	
исследования, проектирования, конструирова	ния;	Финансовый менеджмент, ресурсоэффективность и ресурсосбережение; Социальная ответственность;	
содержание процедуры исследования, проект конструирования; обсуждение результатов в			
работы; наименование дополнительных разд	елов,		
подлежащих разработке; заключение по рабо	me).	Заключение.	
Перечень графического мате	риала	Лист 1. Технологическая схема;	
(с точным указанием обязательных чертеже		Лист 2. Общий вид НГС;	
		Лист 3. Выносные элементы НГС.	
TC			
Консультанты по разделам в (с указанием разделов)	ыпускнои	квалификационнои раооты	
Раздел		Консультант	
Социальная ответственность	Ахмеджанов Рафик Равильевич		
		The second of th	
Финансовый менеджмент,			
ресурсоэффективность и		Сечина Ася Александровна	
ресурсосбережение			

Названия	разделов,	которые	должны	быть	написаны	на	русском	И	иностранном
языках:									
				Рефера	Т				

Дата выдачи задания на выполнение выпускной	02.02.16г.
квалификационной работы по линейному графику	

Задание выдал руководитель:

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Доцент	Семакина Ольга Константиновна	К.Т.Н.		

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
2K22	Курмель Герман Валериевич		

РЕФЕРАТ

Выпускная квалификационная работа состоит из пояснительной записки, содержащей 125 страниц, 20 рисунков, 16 таблиц, 23 источников литературы, 1 приложение, и 4 листа графического материала формата A1.

Ключевые слова: нефтегазосепаратор, нефтяная эмульсия, нефть, газ, фланец, опора.

Цель работы – рассчитать и подобрать нефтегазовый сепаратор.

Проведен технологический, конструктивный и прочностной расчеты.

Проведены расчеты толщины стенки корпуса и крышек, фланцевых соединений, укрепление отверстий, седлообразных опор.

Экономическая эффективность/значимость работы: осуществлен расчет общих затрат на проектирование отдельных узлов, их приобретение и установку.

PAPER

Final qualifying work consists of explanatory note, containing 125 pages, 20 figures, 16 tables, 23 literature sources, 1 application, and 4 sheets of A1 format graphic material.

Keywords: oil and gas separator, oil emulsion, oil, gas, footing.

Purpose - to calculate and collect the oil and gas separator.

Spend technological, structural and strength analysis.

The calculations of the housing wall thickness and covers, flanges, strengthening hole, saddle supports.

Cost-effectiveness / value of the work: carried out the calculation of total costs for the design of individual components, their acquisition and installation.

ОГЛАВЛЕНИЕ

Введение
1. Описание технологической схемы
2. Расчет нефтегазового сепаратора
2.1. Технологический расчет НГС
2.2. Конструктивный расчет НГС
2.3. Механический расчет НГС
2.3.1. Исходные данные
2.3.2. Прибавки к расчетным толщинам конструктивных
элементов
2.3.3. Определение расчетных давлений
2.3.4. Расчет толщины стенок
2.3.4.1. Расчет толщины стенки цилиндрической обечайки
(кожуха)
2.3.4.2. Расчет эллиптического днища
2.3.5. Расчет и подбор фланцев
2.3.5.1. Прочностной расчет фланцевого соединения для входа
нефтегазовой смеси
2.3.6. Укрепление отверстий патрубков штуцеров
2.3.7. Выбор стандартного люк-лаза
2.3.7.1. Расчет и выбор стандартной крышки люк-лаза 47
2.3.8. Подбор и расчет стандартной опоры аппарата
2.3.8.1. Подбор стандартных опор аппарата 50
2.3.8.2. Расчет опор аппарата
2.3.8.2.1. Определение допускаемых осевых
сжимающих усилий
2.3.8.2.2. Проверка несущей способности обечайки,
неукреплённой кольцами жесткости в области опорного узла 56

3.	Финансовыи менеджмент, ресурсоэффективность и	
	ресурсосбережение	. 69
	3.1. Расчет годовой производственной мощности	. 69
	3.2. Расчет годового фонда заработной платы	. 70
	3.3. Организация оплаты труда	. 73
	3.4. Определение потребности в инвестициях	. 75
	3.5. Итоговые затраты	76
4.	Социальная ответственность.	78
	4.1. Анализ вредных и опасных факторов на УПН «ВАХ»	78
	4.2. Промышленная санитария	80
	4.3. Метеорологические условия	81
	4.4. Средства защиты работающих	83
	4.4.1. Средства коллективной защиты	83
	4.4.2. Индивидуальные средства защиты	84
	4.5. Освещение	86
	4.6. Шумы и вибрация	89
	4.7. Техника безопасности технологического процесса	93
	4.8. Безопасность технологического оборудования	94
	4.9. Электробезопасность	95
	4.9.1. Категории опасности помещений	97
	4.9.2. Первичные критерии электробезопасности	98
	4.10. Молниезащита	. 98
	4.11. Пожаровзрывоопасность	. 98
	4.11.1 Характеристика технологического процесса по	
	взырвопожароопасности и вредности применяемого сырья, продукт	гов и
	материалов	. 99
	4.11.2. Система азотного пожаротушения	. 108
	4.12. Охрана окружающей среды	. 108
	4.12.1. Мероприятия по охране атмосферного воздуха от	
	загрязнений	.110

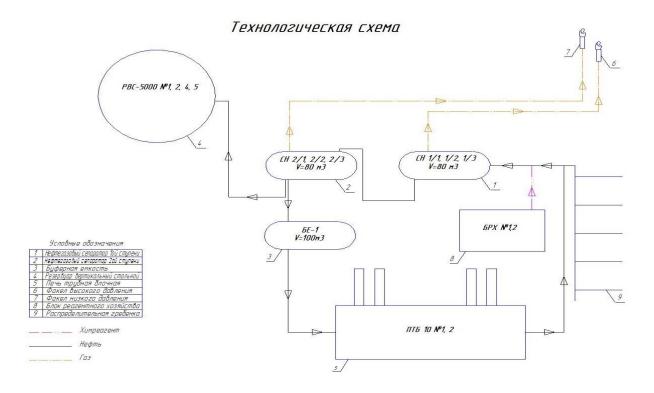
4.12.2. Способ утилизации легких горючих	111
4.12.3. Мероприятия по рациональному использова	анию и охране
водных ресурсов	112
4.13. Чрезвычайные ситуации	113
4.13.1. Производственные аварии	113
4.13.2. Стихийные бедствия	114
Заключение	116
Список использованных источников	117
Приложение А	119

ВВЕДЕНИЕ

Одним из наиболее распространенных видов аппаратуры в объектах промыслового сбора, подготовки нефти и газа к транспорту, являются сепараторы. Предназначаются эти аппараты для отделения газа от жидкости, жидкости от газа, а в некоторых случаях оба процесса могут сопровождаться с разделением жидких фаз, отличающихся своими плотностями (нефть-вода, бензин-вода).

В системах подготовки нефти и газа сепараторы используются:

- На ступенях концевой, горячей и вакуумной сепарации, а также в качестве специальных секций или встроенных узлов в аппаратах, совмещающих нагрев, обезвоживание и обессоливание нефти с ее сепарацией;
- Перед компрессорными машинами и после них для уменьшения содержания капельной жидкости и механических примесей в поступающем и выходящем газах;
- После колонн для предотвращения механического уноса жидкой фазы (отстойники).
 - В зависимости от места расположения и назначения к сепараторам предъявляются следующие основные требования:
- достижение равновесия фаз жидкость-газ;
- максимальное отделение он нефти газовой фазы и механических примесей;
- очистка уходящего газа от капельной жидкости;
- предотвращение образования пены или разрушение её;
- снижение влияния пульсации газонефтяного потока;
- четкое разделение жидких фаз (многофазные разделители).


1. ОПИСАНИЕ Т.С.

Водонефтяная эмульсия, в которую на входной гребенке блоком реагентного хозяйства БР-2,5 подается деэмульгатор для обезвоживания нефти, подается на вход сепараторов СН 1/1...1/3.

Водонефтяная эмульсия из сепараторов первой ступени, подается на сепараторы второй ступени СН 2/1...2/3, где происходит конечная сепарация нефти. Отделившийся газ сбрасывается на факел низкого давления и сжигается.

На выходе из сепараторов второй ступени, нефть разделяется на два потока:

- первый подается в резервуарный парк в РВС 5000 № 1, 2, 4, 5, откуда отстоявшаяся нефть попадает на узел учета нефти и перекачивается на ЦППН-1.
- второй подается в буферную емкость БЕ-1, откуда подается на печи ПТБ-10. Нефть нагревается до температуры 50°С, т.к. оптимальное отделение оставшейся воды под действием деэмульгаторов происходит именно при этой температуре, подается на вход сепараторов 1 ступени.

2. РАСЧЕТ НЕФТЕГАЗОВОГО СЕПАРАТОРА

2.1 Технологический расчет НГС

Расчет проводим согласно [1]

По формуле находим:

$$f_{.0} := \frac{701.8}{\Gamma_{.T} \cdot (N_{.CH4} - 0.8 \cdot N_{.A})}$$
 (2.1)

где Гт - газонасыщенность пластовой нефти в м3/т, объём газа приведён к

H.y.
$$\Gamma_T := 80 \frac{M^3}{T}$$

Nch4, Na - молярная доля метана и азота соответственно, в газе однократного разгазирования нефти до атмосферного давления при 20°C,

$$N_{CH4} := 0.5203$$
 $N_A := 0.021$

$$f_0 := \frac{701.8}{80 \cdot (0.5203 - 0.8 \cdot 0.021)} = 17.423 \tag{2.2}$$

Находим давление насыщения нефти газом при 20°C:

$$P_{S20} := P_S + \frac{20 - t_{\Pi\Pi}}{9.157 + f_0} M \Pi a$$
 (2.3)

Где Ps - давление насыщения нефти газом при пластовой температуре, МПа,

$$P_S := 10.2 \text{ M}\Pi a$$

tпл - пластовая температура, °С

$$t_{\Pi\Pi} := 54 \, ^{\circ}\text{C}$$

$$P_{S20} := 10.2 + \frac{20 - 54}{9.157 + 17.423} = 8.921 \, \text{M}\Pi\text{a}$$

Рассчитываем вспомогательные коэффициенты:

$$R := \frac{\log\left(\frac{P}{P_{S20}}\right)}{\log\left(10 \cdot P_{S20}\right)}$$
(2.5)

$$D_1 := 4.06 \cdot \left(\overline{\rho_{\mathsf{H}}} \cdot \overline{\rho_{\mathsf{\Gamma}}} - 1.045 \right) \tag{2.6}$$

$$\frac{}{\rho_{\mathsf{H}}} := \frac{\rho_{\mathsf{H}}}{1000} \tag{2.7}$$

где Р - рабочее давление, МПа

P := 0.25 MΠa

 ρ_{Γ} - относительная (по воздуху) плотность газа однократного разгазирования нефти,

$$\rho_{\Gamma} := 1.09 \frac{\kappa \Gamma}{M^3}$$

Р_Н- плотность дегазированной нефти при 20°С и атмосферном давлении,

$$\rho_{H} := 850.1 \qquad \frac{\kappa \Gamma}{M^{3}}$$

$$R := \frac{\log\left(\frac{0.25}{8.921}\right)}{\log(10 \cdot 8.921)} = -0.796$$

$$\rho_{H.} := \frac{850.1}{1000} = 0.85$$
(2.8)

$$D_1 := 4.06 \cdot (0.856 \cdot 1.09 - 1.045) = -0.455$$
 (2.10)

Зная вспомогательные коэффициенты, находим количество газа, выделяющееся из каждой тонны нефти при условиях в аппарате:

Так как нагрузка (объемный расход) по нефтяной эмульсии составляет 11664м3/сут, то соответствующая нагрузка по газу составит:

$$Q_{\Gamma} := 11664 \cdot \rho_{H} \cdot 10^{-3} \cdot G = 6.9 \times 10^{5} \frac{M^{3}}{\text{cyr}}$$

$$Q_{\Gamma} := 7.99 \frac{M^{3}}{\text{c}}$$
(2.13)

Производительность сепаратора по газу для двухфазного сепаратора, определяется максимальной скоростью газа, при которой капли нефти успеют осесть в газовой среде. Данную скорость можно вычислить на основании уравнения Саудер-Брауна:

K = 6.4 - константа

$$U_{\text{max}} := K \cdot \sqrt{\frac{\left(\rho_{\text{H}} - \rho_{\Gamma}\right)}{\rho_{\Gamma}}} \frac{M}{c}$$
(2.14)

Обычно значение коэффициента уравнения Саудер-Брауна при горизонтальной ориентации сепаратора и наличии лопастного каплеотбойника принимаем равным:

K = 0.12 - константа

$$U_{\text{max}} = 0.12 \cdot \sqrt{\frac{(850.1 - 1.09)}{1.09}} = 3.349 \frac{M}{c}$$

Таким образом, зная скорость и расход газа, мы можем посчитать минимальную площадь сечения, необходимую для газовой фазы.

$$A_{min} := \frac{Q_{\Gamma}}{U_{max}} = 2.386 \text{ m}^2$$
 (2.15)

Максимальное заполнение аппарата нефтью составляет 60%, тогда диаметр аппарата определяется по формуле:

$$D := \sqrt{\frac{4 \cdot A_{min} \cdot 100}{\pi \cdot (100 - 60)}} \quad M$$

$$D := \sqrt{\frac{4 \cdot 2.386 \cdot 100}{3.14 \cdot (100 - 60)}} = 2.757 \quad M$$
(2.16)

D - Минимальный диаметр аппарата.

Отношение длины сепаратора к диаметру называется коэффициентом стройности сепаратора (SR-Slenderness Ratio). Для стандартных сепараторов данное соотношение обычно остается постоянным и равно: s := 4.5

Таким образом, минимальная длина сепаратора равна:

Объем сепаратора равен:

$$\chi := \frac{\pi \cdot D^{2} \cdot L}{4} M^{3}$$

$$\chi := \frac{3.14 \cdot 2.757 \cdot 12.407}{4} = 74.0 M^{3}$$

Рассчитаем уровни раздела фаз, расположение уровней показано на рис.2.1

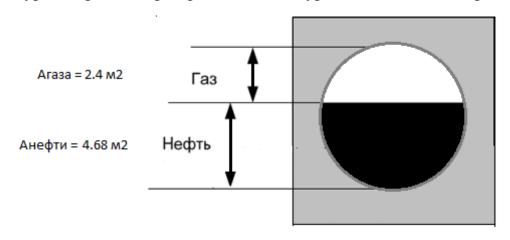


Рисунок 2.1 - Уровни раздела фаз

Слой газа занимает 2/5от общей площади сечения в ее верхней части, следовательно, уровень раздела фаз равен:

$$h_{\text{rasa}} := 0.4 \cdot D \text{ M}$$
 (2.19)
 $h_{\text{rasa}} := 0.4 \cdot 2.757 = 1.103 \text{ M}$

Высоту слоя нефти можно рассчитать, как разницу между диаметром сепаратора и толщиной слоя газа:

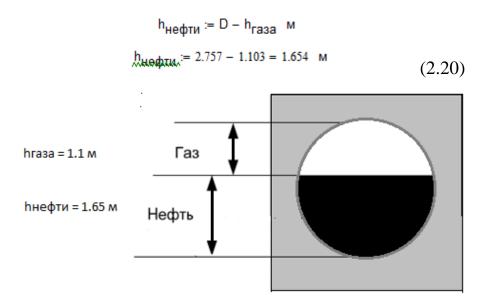


Рисунок 2.2 - Высоты раздела фаз

По полученным данным, согласно [2] выбираем нефтегазовый сепаратор с данными параметрами: диаметром D=3000 мм, длиной L=12400 мм и объемом V=80 м 3 .

2.2 Конструктивный расчет НГС

Проводим расчет согласно [3]:

Определяем диаметр патрубка для входа нефтегазовой смеси и выхода нефти:

$$D_{\text{BXC}} \coloneqq \sqrt{\frac{4 \cdot V_{\text{H}}}{\pi \cdot \omega_{\text{K}}}} \quad \text{M} \qquad D_{\text{BbiXH}} \coloneqq \sqrt{\frac{4 \cdot V_{\text{H}}}{\pi \cdot \omega_{\text{K}}}} \quad \text{M}$$

$$(2.21)$$

$$\Gamma_{\rm H}e\ V_{\rm H} = 0.135\ \frac{{\rm M}^3}{c}$$

Принимаем скорость жидкости в аппарате: [2, табл. 1.1]: $\omega_{\mathbf{x}} = \frac{1}{C}$

$$\mathsf{D}_{\mathsf{BX.C}} := \sqrt{\frac{4 \cdot 0.128}{3.14 \cdot 1}} = 0.404 \, \mathsf{m} \qquad \qquad \mathsf{D}_{\mathsf{BbIX.H}} := \sqrt{\frac{4 \cdot 0.128}{3.14 \cdot 1}} = 0.404 \, \mathsf{m}$$

Принимаем стандартный патрубок для входа смеси и выхода нефти:

$$D_{\text{NEW,Q}} := 500 \text{ mm} \quad D_{\text{NEW,M}} := 500 \text{ mm}$$

Определяем диаметр патрубка для выхода газа:

$$D_{BblX,\Gamma} := \sqrt{\frac{4 \cdot V_{\Gamma}}{\pi \cdot \omega_{\Gamma}}} M$$
(2.22)

Где
$$V_{\Gamma} = 1.2 \frac{M^3}{c}$$

Принимаем скорость газа в аппарате: [2, табл. 1.1]: $\omega_{\Gamma} := 15 \frac{M}{c}$

$$D_{BHX,\Gamma} := \sqrt{\frac{4 \cdot 1.2}{3.14 \cdot 15}} = 0.319 \text{ M}$$

Принимаем стандартный патрубок для выхода газа:

Люк-лаз принимаем диаметром:

$$D_{JI3} := 450 \text{ MM}$$

2.3 Механический расчет НГС

2.3.1 Исходные данные:

Материал аппарата: сталь 09Г2С конструкционная низколегированная для сварных конструкций. Выбрали эту сталь т.к. она морозостойкая.

Марка стали 09Г2С находит свое применение при изготовлении деталей сварных металлоконструкций, работающих в широком интервале температур от -70 до +425°С. Это детали работающих в условиях высокого давления. Сталь 09Г2С применяется в химической промышленности, а также в производстве труб.

Физические свойства стали 09Г2С достаточны для того, чтобы обеспечить прочность фасонного, сортового и полосового металлопроката при различных толщинах (от 10 до 100мм). При этом какой-либо дополнительной обработки не потребуется.

Таблица 2.1 - Химический состав в % материала 09Г2С [4]

С		Si	Mn	Ni	S	Р	Cr	N	Cu	As	
	до 0.12	0.5 - 0.8	1.3 - 1.7	до 0.3	до 0.04	до 0.035	до 0.3	до 0.008	до 0.3	до 0.08	

Объем ёмкости: $V = 80 \,\mathrm{m}^3$;

Рабочее давление в сепараторе: Р = 0.25 МПа;

Рабочая температура: tpa6 = 100 °C;

Внутренний диаметр сепаратора: Dc = 3000 мм;

Длина ёмкости сепаратора: L = 12400 мм;

Длина цилиндрической части: Н = 10600 мм;

Высота не отбортованного днища: h_в = 750 мм;

Высота отбортовки: h = 60 мм;

Высота отбортованного днища:

$$h_3 := h_B + h = 810 \text{ MM}$$
 (2.23)

Основные свойства материала выбираем согласно [5]:

Плотность стали
$$09\Gamma 2C$$
: $\rho_{MET} := 7850 \frac{\kappa \Gamma}{M^3}$

Расчетное значение предела текучести при температуре 20 °C (температура гидроиспытаний). [5, Табл. Б.1] $\sigma_{\text{тек20}} := 300 \, \text{МПа}$

Коэффициент запаса прочности при гидравлическом испытании. [5, Табл. 1]: $^{n_t} = 1.1$

Коэффициент уменьшения номинального допускаемого напряжения, согласно пособию [6, стр. 110]: $\eta = 1$

Допускаемое напряжение для условий испытаний:

$$σ20 := ceil \left(η \cdot \frac{σTeK20}{nt}\right) = 273 MΠa$$
(2.24)

Определяем допускаемое напряжение материала $09\Gamma 2C$ при температуре $100\ ^{\circ}C$ [5, табл. A.1]:

$$\sigma_{\text{Д}} := \text{Floor}\left[\text{linterp}\left[\begin{pmatrix} 20\\100 \end{pmatrix}, \begin{pmatrix} 196\\177 \end{pmatrix}, t_{\text{pa6}} \right], 0.5\right] = 177 \quad \text{M} \cap \text{a}$$

$$(2.25)$$

Коэффициент прочности сварных швов (Сварка аппарата полуавтоматическая), длина шва 100% (Назначили конструктивно) [5, табл. Д.1]: $\phi := 1$

2.3.2 Прибавки к расчетным толщинам конструктивных элементов:

Находим прибавку к расчетным толщинам:

Скорость коррозии материала аппарата определяем от действия заданной среды, для нефти принимаем от 0.01-0.05 мм/год: $\Pi = 0.04$ мм/год;

Срок эксплуатаций аппарата: $\tau = 30$ лет;

Прибавка для компенсации коррозии и эрозии:

$$c_1 := \Pi \cdot \tau = 1.2$$
 MM (2.26)

Прибавка для компенсации минусового допуска; $c_2 = 0$;

Технологическая прибавка; $c_3 = 0$;

Прибавки к расчетным толщинам конструктивных элементов:

$$c := c_1 + c_2 + c_3 = 1.2 \text{ MM}$$
 (2.3.2.27)

Коэффициент запаса по пределу текучести для условий испытаний.

[5, Табл. 1]:
$$n_{t1} := 1.1$$

Коэффициент запаса по пределу текучести для рабочих условий.

[5, Табл. 1]:
$$_{n_{t2} := 1.5}$$

Коэффициент запаса прочности по временному сопротивлению.

[5, Табл. 1]:
$$n_B := 2.4$$

2.3.3 Определение расчетных давлений:

Гидростатическое давление в аппарате:

Плотность воды при гидроиспытаниях (температура 20°C): $\frac{\rho_{\text{вод}}}{M} = 998 \frac{\text{кг}}{M}$

Ускорение свободного падения: $\frac{g}{c} = 9.8 \frac{M}{c}$

Высота гидростатического столба в аппарате, принимаем равной диаметру аппарата:

$$H_{\Gamma N A} := \frac{D_C}{1000} = 3 \text{ M}$$
 (2.28)

Давление гидростатического столба при гидроиспытаниях:

$$P_{\Gamma И Д} := \frac{g \cdot H_{\Gamma И Д} \cdot \rho_{BOД}}{10^6}$$
 МПа
$$P_{\Gamma И Д} := \frac{9.8 \cdot 3 \cdot 998}{10^6} = 0.029$$
 МПа (2.29)

Расчетное давление в аппарате при рабочих условиях, [7, стр.8]:

$$P_{pac} := (P + P_{\Gamma U A}) = 0.279$$
 МПа

Давление при гидравлических испытаниях, [6, стр.104]:

$$P_{\text{u}} := 1.25 \cdot P_{\text{pac}} \cdot \frac{\sigma_{20}}{\sigma_{\text{Д}}} = 0.539$$
 ΜΠa (2.30)

Условное давление:

$$P_{ycn} := P_{pac} \cdot \frac{\sigma_{20}}{\sigma_{Д}} = 0.431$$
 МПа (2.31)

2.3.4 Расчет толщины стенок

2.3.4.1 Расчет толщины стенки цилиндрической обечайки (кожуха):

Диаметр цилиндрической обечайки Dc = 3000 мм

Расчет толщины стенки цилиндрической обечайки ведется согласно [8, 5 - 5.3.1], а также в соответствии с рекомендациями, изложенными в пособии [6].

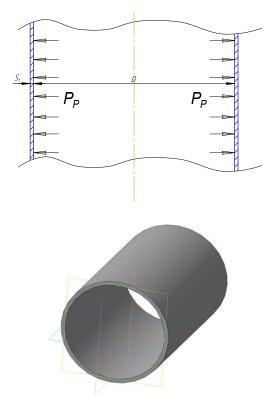


Рисунок 2.3 - Расчетная схема обечайки.

Расчетная толщина стенки цилиндрической обечайки при внутреннем избыточном давлении:

$$s_{p1} := max \left(\begin{pmatrix} P_{pac} \cdot \frac{D_c}{2 \cdot \phi \cdot \sigma_{\Lambda} - P_{pac}} \\ P_{\mu} \cdot \frac{D_c}{2 \cdot \phi \cdot \sigma_{20} - P_{\mu}} \end{pmatrix} \right) = 2.962 \quad MM$$

$$(2.32)$$

Исполнительная толщина стенки цилиндрической обечайки:

$$s_{u1} := s_{p1} + c = 4.162$$
 MM (2.33)

Принимаем толщину для стенки сепаратора из ряда стандартных толщин:

Проверка условий применимости формул безмоментной теории, [8, стр. 5]:

Проверка
$$_1:=$$
 "Условия применения формул безмомент. теории выполняются" if $\frac{s_1-c}{D_C} \le 0.1$ "Условия применения формул НЕ выполняются" if $\frac{s_1-c}{D_C} > 0.1$ Проверка $_1=$ "Условия применения формул безмомент. теории выполняются"

Допускаемое внутреннее избыточное давление при рабочих условиях:

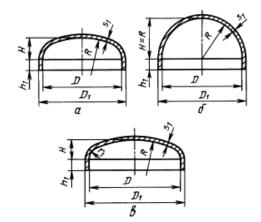
$$\mathsf{P}_{\mathsf{A}\mathsf{1}} \coloneqq \frac{2 \cdot \sigma_{\mathsf{A}} \cdot \phi \cdot \left(\mathsf{s}_{\mathsf{1}} - \mathsf{c}\right)}{\mathsf{D}_{\mathsf{c}} + \left(\mathsf{s}_{\mathsf{1}} - \mathsf{c}\right)} = 1.035 \quad \mathsf{M}\mathsf{\Pi}\mathsf{a} \tag{2.34}$$

Допускаемое внутреннее избыточное давление при гидроиспытаниях:

$$P_{\text{W1}} := \frac{2 \cdot \sigma_{20} \cdot \phi \cdot (s_1 - c)}{D_c + (s_1 - c)} = 1.597 \quad \text{M}\Pi a$$
(2.35)

Проверка условия прочности стенок, цилиндрической обечайки от действия внутреннего давления при рабочих условиях:

Проверка
$$_2 := \begin{bmatrix} \text{"Условие прочности стенки выполняется"} & \text{if } P_{д,1} > P_{pac} \\ \text{"Условие прочности НЕ выполняется"} & \text{otherwise} \end{bmatrix}$$
 Проверка $_2 = \text{"Условие прочности стенки выполняется"}$


Проверка условия прочности стенок, цилиндрической обечайки от действия внутреннего давления при гидроиспытаниях:

Проверка
$$_3 := \begin{bmatrix} \text{"Условие прочности стенки выполняется"} & \text{if} & \mathsf{P}_{\mathsf{N}1} > \mathsf{P}_{\mathsf{N}} \\ & \text{"Условие прочности НЕ выполняется"} & \text{otherwise} \end{bmatrix}$$
 Проверка $_3 = \text{"Условие прочности стенки выполняется"}$

2.3.4.2 Расчёт эллиптического днища:

Диаметр эллиптического днища $D_{\text{д}} = 3000 \text{ мм}$

Расчет толщины стенки цилиндрической обечайки ведется согласно [8, 6.1 - 6.3], а также в соответствии с рекомендациями, изложенными в пособии [6]

в — эллиптическое днище; б — полусферическое днище; в — торо сферическое днище

Пр и м е ч а н и е — Рисунок не определяет конструкцию днищ и приведен только для указания необходимых расчетных размеров.

Рисунок 2.4 - Расчетная схема эллиптических днищ Условия применения расчетных формул [8, стр. 14]:

$$0.002 \le \frac{s_1 - c}{D_A} \le 0.100$$

$$0.2 \le \frac{H_A}{D_A} \le 0.50$$
(2.36)

Высота днища:

Поскольку днище эллиптическое, то, согласно [8] и рисунку 4, высота выпуклой части крышки без учета цилиндрической части будет равна:

$$H_{\text{A}} := 0.25 \cdot D_{\text{A}} = 750 \text{ MM}$$
 (2.37)

Проверка условий применимости формул безмоментной теории:

Usl = "Условие применения формул выполняется"

Радиус кривизны в вершине днища по внутренней поверхности:

$$R := ceil \left(\frac{D_{\text{A}}^2}{4 \cdot H_{\text{A}}} \right) \quad MM$$

$$R := ceil \left(\frac{3000^2}{4 \cdot 750} \right) = 3 \cdot 10^3 \quad MM$$
(2.38)

Расчётная толщина стенки:

Коэффициент прочности сварных швов для крышек, изготовленных из одной заготовки:

$$s_{p2} := max \left[\frac{P_{pac} \cdot R}{\left(2 \cdot \phi \cdot \sigma_{IJ} - 0.5 P_{pac} \right)}, \frac{P_{\text{M}} \cdot R}{\left(2 \cdot \phi \cdot \sigma_{20} - 0.5 P_{\text{M}} \right)} \right] = 2.961 \quad \text{MM}$$

$$(2.39)$$

Исполнительная толщина стенки эллиптического днища:

$$s_{u2} := s_{p2} + c = 4.161$$
 MM

Принимаем толщину для стенки эллиптического днища из ряда стандартных толщин: $s_2 := 10$ мм

Проверка на условие прочности:

Допускаемое внутреннее избыточное давление:

$$P_{\text{ДОПУСК}} \coloneqq \frac{2 \cdot \sigma_{\prod} \cdot \phi \cdot \left(s_2 - c\right)}{D_c + \left(s_2 - c\right)} = 1.035 \quad \text{МПа}$$

$$Usl \coloneqq \quad \text{"Условие прочности выполняется"} \quad \text{if} \quad P \le P_{\text{ДОПУСК}}$$

$$"Условия прочности НЕ выполняются"} \quad \text{otherwise}$$

Usl = "Условие прочности выполняется"

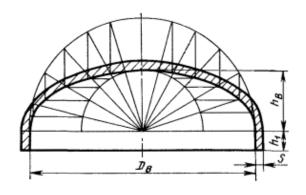


Рисунок 2.5 - Эллиптическое днище

Условное обозначение днища с диаметром $D=3000\,$ мм, толщиной стенки

s=10 мм и h = 750 мм из стали марки $09\Gamma 2C$: выбираем из [9]

«Днище 3000-10-750—09Г2С ГОСТ 6533-68»

2.3.5 Расчет и подбор фланцев

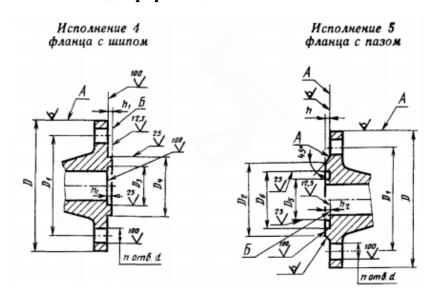


Рисунок 2.6 - Фланцы приварные встык с привалочной поверхностью "Шип-паз"

Выбираем согласно [10], стандартные фланцы для патрубков. Размеры приведены в табл. № 2:

Таблица 2.2 - Размеры фланцев

Проход условный <i>D</i> _v	D	D_1	D ₂	D_3	D_4	D_5	D_6	D_6 d		n		d n h h_1 h_2		h ₁		h ₂		В	Номинальный диаметр болтов или шпилек									
l				Ряд 1 Ряд 2	Ряд 1	Ряд 2	Ряд 1	Ряд 2		Ряд 1	Ряд 2	Ряд 1	Ряд 2		Ряд 1	Ряд 2												
500	710	650	585	549	575	548	576	33	33	20	20	4	5	5	4	4	_	M30	M30									
350	520	470	430	395	421	394	422	26	26	16	16	7						M24	M24									
150	280	240	212	183	203	182	204	22	22	8	8	3	4,5	4	3,5	3		M20	M20									
40	145	110	88	61	75	60	76	18	18			3					110	M16	M16									
50	160	125	102	73	87	72	88	10	10			,			_		125	WITO	WHO									
20	105	75	58	36	50	35	51	1.4	1/	4	4	2	4	4	3	3	80	M12	M12									
15	95	65	47	29	39	28	40	14	14	14	14	14	14	14	14	14	14	14			4					75		

2.3.5.1 Прочностной расчет фланцевого соединения для входа нефтегазовой смеси

Расчет на прочность и герметичность фланцевых соединений ведется согласно [11]

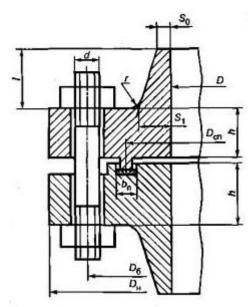


Рисунок 2.7 - Фланцевое соединения

Тип фланца: фланцевое соединение приварные встык

Тип уплотнительной поверхности: шип-паз

Исходные данные для расчета: взяты из таблицы № 2:

Внутренний диаметр: D = 500 мм

Наружный диаметр фланца: Dн = 710 мм

Диаметр болтовой окружности: Дб = 650 мм

Толщина фланца: h = 35 мм

Материал обечаек и фланцев - сталь 09Г2С

Материал болтов - сталь 35X

Материал прокладки - паронит ПОН.

Толщина прокладки: $h_{\Pi} = 3$ мм

Ширина прокладки: $b_{\pi} = 15 \text{ мм}$

Диаметр болта: d = 30 мм

Средний диаметр прокладки:

Толщина цилиндрической части втулки принята: s₀ = 7 мм

Толщина конической части втулки: ѕов = 16 мм

Уклон втулки (принимаем): i = 1/3

Высота втулки: $h_B = 22$ мм

Средний диаметр прокладки:

$$D_{cn} := D_{H} - b_{n} = 695$$
 MM (2.41)

Количество болтов: n = 20 болтов

Расчетная температура фланцевого соединения (не изолированного) [11, табл. В.1]:

$$t_{\phi} := t_{pa6} \cdot 0.96 = 96$$
 °C (2.42)

Расчетная температура болтов [10, табл. В.1]:

$$t_6 := t_{pa6} \cdot 0.85 = 85$$
 °c (2.43)

Материал для болтов: Сталь 35Х;

Допускаемое напряжение материала при температуре 20°C для болта:

$$\sigma_{620} := 230$$
 M Π a

Допускаемое напряжение материала болта при рабочей температуре $t_6 = 85$ °C:

$$\sigma_{6} := \mathsf{Floor}\left[\mathsf{linterp}\left[\begin{pmatrix}20\\100\end{pmatrix},\begin{pmatrix}147\\146.5\end{pmatrix},\mathsf{t}_{6}\right],0.5\right] = 146.5 \ \mathsf{M}\mathsf{\Pi}\mathsf{a} \tag{2.44}$$

Модуль упругости материала болта при рабочей температуре $t_6 = 85$ °C (Сталь 35X теплоустойчивая и корозионно-стойкая хромистая):

$$\mathsf{E}_6 := \mathsf{Floor} \left[\mathsf{linterp} \left[\binom{20}{100}, \binom{2.15 \cdot 10^5}{2.15 \cdot 10^5}, \mathsf{t}_6 \right], 0.5 \right] = 2.15 \times 10^5 \quad \mathsf{M} \mathsf{\Pi} \mathsf{a}$$
 (2.45)

Температурный коэффициент линейного расширения болтов 35X:

$$\alpha_6 := 11.3 \cdot 10^{-6}$$

Материал для фланцев 09Г2С

Допускаемое напряжение материала при гидроиспытаниях для фланцев:

$$σ_{φ20} := σ_{20} = 273$$
 ΜΠα

Допускаемое напряжение материала при рабочей температуре t_{φ} =96 °C для фланцев:

$$\sigma_{\dot{\Phi}} := \mathsf{Floor}\left[\mathsf{linterp}\left[\begin{pmatrix}20\\100\end{pmatrix},\begin{pmatrix}196\\177\end{pmatrix},\mathsf{t}_{\dot{\Phi}}\right],0.5\right] = 177.5 \quad \mathsf{M}\mathsf{\Pi}\mathsf{a}$$
(2.46)

Модуль упругости материала болта при рабочей температуре, согласно [10, табл. Ж.1]: $^{\mathsf{E}}_{620} := 2.15 \cdot 10^5$ МПа

Модуль упругости материала фланца 09Г2С, при температуре 20°С: $\mathsf{E}_{20} \coloneqq 1.99 \cdot 10^5 \ \mathsf{M} \mathsf{\Pi} \mathsf{a}$

Модуль упругости материала фланца при рабочей температуре $t_{\Phi} = 96 \, ^{\circ} C$:

E := Floor
$$\left[\text{linterp} \left[\begin{pmatrix} 20 \\ 100 \end{pmatrix}, \begin{pmatrix} 1.99 \cdot 10^5 \\ 1.91 \cdot 10^5 \end{pmatrix}, t_{\varphi} \right], 0.5 \right] = 1.914 \times 10^5 \text{ M} \Pi a$$
 (2.47)

Температурный коэффициент линейного расширения материала фланцев $09\Gamma2C$: $^{\alpha}\Phi$:= $^{11.6\cdot10^{-6}}$

Эффективная ширина прокладки:

Для плоских прокладок:

Характеристики прокладки:

Прокладочный коэффициент: т. = 2.5 м. = 2.5 m. = 2.5 m.

Удельное давление обжатия прокладки: q_{обж} := 20 МПа

Допускаемое удельное давление: $q_d := 130$ МПа

Коэффициент обжатия: $\kappa_{\text{обж}} = 0.9$

Условный модуль сжатия прокладки: E_п := 200 MПа

Усилие, необходимое для смятия прокладки при затяжке:

$$P_{obx} := 0.5\pi \cdot D_{cn} \cdot b_0 \cdot m \cdot |P_{pac}| = 1.028 \times 10^4 \text{ H}$$
 (2.48)

Усилие на прокладке в рабочих условиях, необходимое для обеспечения герметичности фланцевого соединения:

$$R_{\Pi} := \begin{bmatrix} \pi \cdot D_{c\Pi} \cdot b_0 \cdot m \cdot P_{pac} & \text{if } P_{pac} \ge 0 \\ 0 & \text{otherwise} \end{bmatrix} = 2.057 \times 10^4 \quad H$$

Таблица 2.3 - Расчетная площадь поперечного сечения болтов.

Суммарная площадь сечения болтов (шпилек) по внутреннему диаметру резьбы или нагруженному сечению наименьшего диаметра:

$$A_6 := n \cdot f_6 = 1.08 \times 10^4 \text{ MM}^2$$
 (2.49)

Равнодействующая нагрузка от давления:

$$Q_{\pi} := \frac{\pi}{4} \cdot (D_{cm})^2 \cdot P_{pac} = 1.06 \times 10^5 \text{ H}$$
 (2.50)

Податливость прокладки:

$$y_{\Pi} := \frac{h_{\Pi} \cdot K_{06 m}}{E_{\Pi} \cdot \pi \cdot D_{c\Pi} \cdot b_{\Pi}} = 4.122 \times 10^{-7} \frac{MM}{H}$$
 (2.51)

Расстояние между опорными поверхностями гайки и головки болта или опорными поверхностями гаек:

$$L_{60} := 2 \cdot h + h_{\Pi} = 73 \text{ MM}$$
 (2.52)

Эффективная длина болта при определении податливости:

$$L_6 := ceil(L_{60} + 0.28 \cdot d) = 82 \text{ MM}$$
 (2.53)

Податливость болтов:

$$y_6 := \frac{L_6}{E_{620} \cdot A_6} = 3.531 \times 10^{-8} \frac{MM}{H}$$
 (2.54)

Расчетные параметры фланцев:

Параметр длины обечайки:

$$I_0 := \sqrt{D \cdot s_0} = 59.161$$
 MM (2.55)

Отношение наружного диаметра тарелки фланца к внутреннему диаметру

$$K_{\text{WW}} = \frac{D_{\text{H}}}{D} = 1.42$$
(2.56)

Коэффициенты, зависящие от соотношения размеров тарелки фланца,

$$\beta_{T} := \frac{K^{2} \cdot (1 + 8.55 \cdot \log(K)) - 1}{(1.05 + 1.945 \cdot K^{2}) \cdot (K - 1)} = 1.744$$

$$\beta_{U} := \frac{K^{2} \cdot (1 + 8.55 \cdot \log(K)) - 1}{1.36(K^{2} - 1) \cdot (K - 1)} = 6.273$$

$$\beta_{Y} := \frac{1}{(K - 1)} \cdot \left[0.69 + 5.72 \cdot \frac{K^{2} \cdot \log(K)}{(K^{2} - 1)} \right] = 5.757$$

$$\beta_{Z} := \frac{K^{2} + 1}{K^{2} - 1} = 2.968$$

$$(2.57, 2.58, 2.59, 2.60)$$

Коэффициенты βF, βV и f, зависящие от соотношения размеров втулки фланца, для фланцевых соединений с приварными встык фланцами с конической втулкой определяют по графикам, приведенным на рисунках 2.3.5.8, 2.3.5.9, 2.3.5.10 в зависимости от отношений:

$$\beta := \frac{s_1}{s_0} = 1.429$$

$$x := \frac{h_{B.}}{\sqrt{D \cdot s_0}} = 0.372$$
(2.61, 2.62)

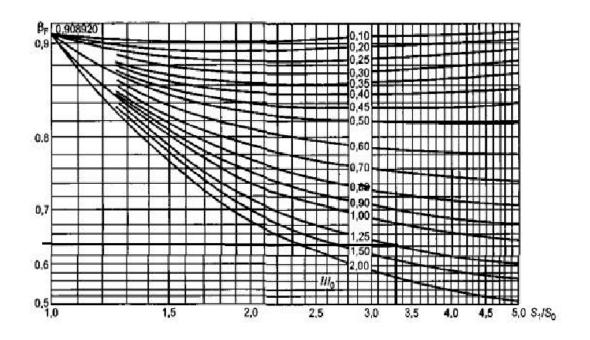


Рисунок 2.8 - Коэффициент β_F

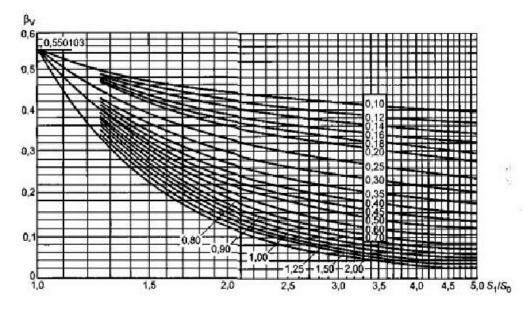


Рисунок 2.9 - Коэффициент β_V

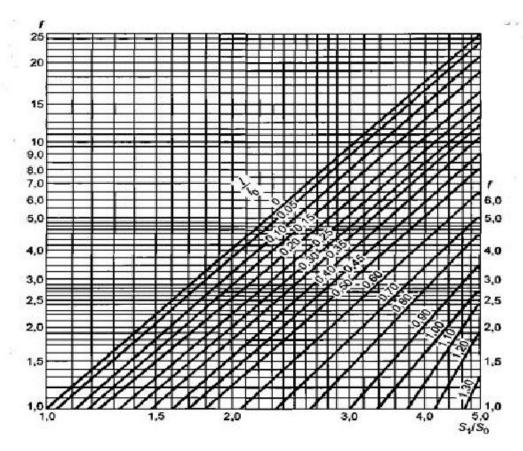


Рисунок 2.10 - Поправочный коэффициент для напряжений во втулке фланца _f

Коэффициенты для фланцевых соединений с приварными встык фланцами, [11 стр. 34, 35]:

$$\beta_F := 0.785$$
 $\beta_V := 0.22$ $f := 1$

Коэффициент λ:

$$\lambda := \frac{\beta_{F} \cdot h + 1_{0}}{\beta_{T} \cdot 1_{0}} + \frac{\beta_{V} \cdot h^{3}}{\beta_{U} \cdot 1_{0} \cdot (s_{1})^{2}} = 1.094$$
(2.63)

Угловая податливость фланцев:

Угловая податливость фланца при затяжке:

$$y_{\Phi} := \frac{0.91 \cdot \beta_{V}}{\lambda \cdot s_0^2 \cdot l_0 \cdot E_{20}} = 3.173 \times 10^{-10}$$
(2.64)

Плечи действий усилия в болтах:

Для приваренных встык фланцев: смотри [10, стр. 26]

$$b := 0.5 \cdot (D_H - D_{C\Pi}) = 7.5$$
 MM (2.65)

Относительная длина втулки фланца:

$$\xi := 1 + (\beta - 1) \cdot \frac{x}{x + \frac{1+\beta}{4}} = 1.163$$
(2.66)

$$s_3 := \xi \cdot s_0 = 8.14$$
 (2.67)

Плечо усилия от действия давления на фланец для всех типов фланцев:

$$e := 0.5 \cdot (D_{cm} - D - s_9) = 93.43$$
 MM (2.68)

Усилие, возникающее от температурных деформаций.

Коэффициент жесткости фланцевого соединения, нагруженного внутренним давлением:

$$\alpha := 1 - \frac{y_{\pi} - 2 \cdot y_{\Phi} \cdot e \cdot b}{y_{\pi} + y_{6} + 2 \cdot e \cdot y_{\Phi} \cdot b^{2}} = 1.009$$
(2.69)

Нагрузка на болты при затяжке, необходимая для обеспечения обжатия прокладки и минимального начального натяжения болтов:

$$P_{61} := \alpha \cdot Q_{\pi} + R_{\pi} = 1.298 \times 10^5 \text{ H}$$
 (2.70)

При рабочих условиях:

$$P_{62} := P_{61} + (1 - \alpha) \cdot (Q_{\pi}) = 1.288 \times 10^5 \text{ H}$$
 (2.71)

Расчётная нагрузка на болты (шпильки) фланцевых соединений:

• при затяжке фланцевого соединения:

$$P_{6M} := max(P_{61}, P_{62}) = 1.063 \times 1H$$
 (2.72)

• в рабочих условиях:

$$P_{\text{fip}} := P_{\text{fim}} + (1 - \alpha) \cdot Q_{\text{A}} = 1.109 \times 10^5 \text{ H}$$
 (2.73)

Расчетные напряжения в болтах:

• при затяжке фланцевого соединения:

$$\sigma_{61} := \frac{P_{6M}}{A_6} = 12.014 \text{ M}\Pi a$$
 (2.74)

• в рабочих условиях:

$$\sigma_{62} := \frac{P_{6p}}{A_6} = 11.93 \text{ MIIa}$$
(2.75)

где ξ =1,2— коэффициент увеличения допускаемых напряжений при затяжке;

Ку.р — коэффициент условий работы:

Ку.р1 = 1,0 для рабочих условий;

Ky.p2 = 1,35 для условий испытания.

Ку.з — коэффициент условий затяжки:

Ky.3 = 1,0 при обычной неконтролируемой затяжке;

Ку.т — коэффициент учета нагрузки от температурных деформаций:

Учитываем температурные деформации:

Ky.т = 1.3

Допускаемые напряжения для болтов (шпилек)при затяжке в рабочих условиях и при расчете на условия испытания вычисляют по формулам:

• при гидроиспытаниях:

$$\sigma_{\text{БM}} := K_{y,p2} \cdot K_{y,3} \cdot \xi \cdot K_{y,T} \cdot \sigma_{620} = 484.38 \quad \text{M} \cap \text{a}$$
(2.76)

• при рабочих условиях:

$$\sigma_{\delta p} := K_{y.p1} \cdot K_{y.3} \cdot K_{y.T} \cdot \sigma_{\delta} = 190.45 \quad M\Pi a$$
 (2.77)

Условие прочности болтов при затяжке:

Услов
$$_1$$
 := "Условия прочности болтов при гидроиспытаниях выполняются" if $\sigma_{61} \le \sigma_{6M}$ "Условия прочности не выполняются" otherwise

Услов₁ = "Условия прочности болтов при гидроиспытаниях выполняются"

$$\sigma_{61}$$
 = 12.014 MHa σ_{6M} = 484.38 MHa

Условие прочности болтов в рабочих условиях:

Услов 2 = "Условия прочности болтов при работе выполняются"

$$σ$$
₆₂ = 11.93 MΠa $σ$ _{6p} = 190.45 MΠa

Паронит мягкая прокладка, поэтому в соответствии с [11] проверяется условие прочности прокладки.

Расчетное удельное давление:

$$q := \frac{\max(P_{61}, P_{62})}{\pi \cdot D_{cn} \cdot b_0} = 3.962 \text{ MITa}$$
(2.78)

Допускаемое удельное давление для парононита при толщине не более 2-3 мм:

$$q_{\text{Д}} := 130 \quad \text{М} \square a$$

 Услов $_{\text{Проч}} := \begin{bmatrix} \text{"Условия выполняются"} & \text{if } q \leq q_{\text{Д}} \\ \text{"Условия прочности не выполняются"} & \text{otherwise} \end{bmatrix}$
 Услов $_{\text{Проч}} = \text{"Условия выполняются"}$

Расчет фланца на статическую прочность:

Коэффициент, учитывающий изгиб тарелки фланца между болтами:

$$C_{\phi} := \max \left(1, \sqrt{\frac{\frac{\pi \cdot D}{n}}{2 \cdot d + \frac{h \cdot 6}{m + 0.5}}} \right) = 1$$

$$(2.79)$$

Расчетный изгибающий момент, действующий на фланец при затяжке:

$$M_{M} := C_{\Phi} \cdot P_{61} \cdot b = 9.732 \times 10^{5} \quad H \cdot MM$$
 (2.80)

Расчетный изгибающий момент, действующий на фланец в рабочих условиях:

$$\mathbf{M}_{\mathbf{P}} := \mathbf{C}_{\Phi} \cdot \max \left[\left(\mathbf{P}_{6\mathbf{p}} \cdot \mathbf{b} + \mathbf{Q}_{\mathbf{q}} \cdot \mathbf{e} \right), \mathbf{e} \cdot \left| \mathbf{Q}_{\mathbf{q}} \right| \right] = 1.087 \times 10^{7} \quad \text{H·mm}$$

$$(2.81)$$

Приведенный диаметр приварного встык фланца с конической втулкой:

Расчетные напряжения во фланце при затяжке:

$$\sigma_{1M} := \frac{M_M}{\lambda \cdot (s_1 - c)^2 \cdot D_{np}} = 22.526 \quad M\Pi a$$

$$\sigma_{0M} := \mathbf{f} \cdot \sigma_{1M} = 22.526 \quad M\Pi a \qquad (2.81, 2.82)$$

Расчетные напряжения во фланце в рабочих условиях:

$$\sigma_{1P} := \frac{M_P}{\lambda \cdot (s_1 - c)^2 \cdot D_{np}} = 251.558 \quad \text{MIIa}$$

$$\sigma_{0p} := \mathbf{f} \cdot \sigma_{1P} = 251.558 \quad \text{MIIa}$$
(2.83, 2.84)

Меридиональные мембранные напряжения во втулке приварного встык фланца:

$$\sigma_{0_{\text{MM}}\text{_pa6}} := \frac{Q_{\text{p}}}{\pi \cdot (D + s_0) \cdot (s_0 - c)} = 11.471 \text{ MHa}$$
(2.85)

Окружные мембранные напряжения от действия давления во втулке приварного встык фланца, трубе плоского фланца S₀:

$$\sigma_{0\text{MO}_pa6} := \frac{D \cdot P_{pac}}{2 \cdot (s_0 - c)} = 12.041$$
 M Π a (2.86)

Условия статической прочности фланцев:

При затяжке:

Для приварных встык фланцев с конической втулкой в сечении S_0 условия статической прочности определяют по формулам:

с учетом стесненности температурных деформаций: $\mathbf{K_T} := 1.3$

Допускаемое значение суммарных общих и местных условных упругих мембранных и изгибных напряжений МПа;

$$σ_R := σ_6 = 146.5 \text{ M}Πa$$

$$σ_R \cdot K_T = 190.45 \text{ M}Πa$$
(2.87)

• при затяжке:

Услов
$$_3 := \begin{bmatrix} "Условия выполняются" & if $\sigma_{0M} \leq \sigma_R \cdot K_T \\ "Условия прочности не выполняются" & otherwise \\ \end{bmatrix}$$$

• в рабочих условиях:

$$A := \max(\left|0.3 \cdot \sigma_{0p} - \sigma_{0\text{MO}_pa6}\right|, \left|0.3 \cdot \sigma_{0p} + \sigma_{0\text{MO}_pa6}\right|)$$

$$B := \left|0.7 \cdot \sigma_{0p} + \left(\sigma_{0\text{MO}_pa6} - \sigma_{0\text{MM}_pa6}\right)\right|$$

$$B := \left|0.7 \cdot \sigma_{0p} - \left(\sigma_{0\text{MO}_pa6} - \sigma_{0\text{MM}_pa6}\right)\right|$$

$$\max(\max(\left|\sigma_{0p} - \sigma_{0\text{MM}_pa6}\right|, \left|\sigma_{0p} + \sigma_{0\text{MM}_pa6}\right|), A, \max(B, B))$$

$$\Gamma := 0.7 \cdot \sigma_{0p} + \left(\sigma_{0\text{MO}_pa6} - \sigma_{0\text{MM}_pa6}\right)$$

$$A := \max(\left|\sigma_{0p} - \sigma_{0\text{MM}_pa6}\right|, \left|\sigma_{0p} + \sigma_{0\text{MM}_pa6}\right|)$$

$$E := \max(\left|0.3 \cdot \sigma_{0p} - \sigma_{0\text{MO}_pa6}\right|, \left|0.3 \cdot \sigma_{0p} + \sigma_{0\text{MO}_pa6}\right|)$$

$$X := \left|0.7 \cdot \sigma_{0p} - \left(\sigma_{0\text{MO}_pa6} - \sigma_{0\text{MM}_pa6}\right)\right|$$

$$\max(A, E, \max(X, \Gamma)) = 158.208 \quad \text{M}\Pi \quad \sigma_{R} \cdot \text{K}_{T} = 190.45 \quad \text{M}\Pi \quad (2.88, 2.89, 2.90, 2.91, 2.92, 2.93, 2.94, 2.95)$$

$$\text{Успов}_{\text{CTat2}} := \left|\text{"Условия вытолняются" if } \max(A, E, \max(X, \Gamma)) \le \sigma_{R} \cdot \text{K}_{T} \right|$$
"Условия прочности не вытолняются" otherwise

Проверка углов поворота фланцев.

Угол поворота приварного встык, плоского фланца и бурта свободного фланца в рабочих условиях:

$$\theta := P_{6p} \cdot y_{\Phi} \cdot \frac{E_{20}}{E} = 4.25 \times 10^{-5}$$
(2.96)

Допускаемый угол поворота фланца определяем при помощи интерполяции:

2.3.6. Укрепление отверстий патрубков штуцеров

Расчет укрепления отверстий проводится в соответствии с требованиями [12].

В конструкцию входят пять основных технологических штуцеров.

Производим проверку необходимости укрепления отверстия.

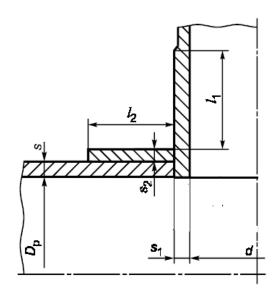


Рисунок 2.11 - Укрепление отверстий при наличии проходного штуцера

Расстояние от центра укрепляемого отверстия до оси эллиптического днища: x = 600 мм

Расчетный диаметр укрепляемых элементов:

Для цилиндрической обечайки:

$$D_{p1} := D_{c} = 3 \times 10^{3} \quad MM \tag{2.97}$$

Для эллиптического днища:

$$D_{p2} := 2 \cdot D_{A} \cdot \sqrt{1 - 3 \cdot \left(\frac{x}{D_{A}}\right)^{2}} = 5.628 \times 10^{3} \text{ MM}$$
(2.98)

Расчетный диаметр отверстий в стенках обечайки, ось которых совпадает с нормалью к поверхности.

Расчетный диаметр отверстия штуцера входа нефтегазовой смеси и выхода нефти:

$$d_1 := ceil(500 + 2 \cdot c) = 503$$
 MM (2.99)

Расчетный диаметр отверстия штуцера для выхода газа:

$$d_2 := ceil(350 + 2 \cdot c) = 353$$
 MM (2.100)

Расчетный диаметр отверстий штуцеров для дренажа и для предохранительного клапана:

$$d_3 := ceil(150 + 2 \cdot c) = 153$$
 MM (2.101)

Расчетный диаметр отверстия штуцера для люк-лаза:

$$d_4 := ceil(450 + 2 \cdot c) = 453$$
 MM (2.102)

Расчетный диаметр одиночного отверстия, не требующий дополнительного укрепления при наличии избыточной толщины стенки сосуда:

• для цилиндрической обечайки:

$$d_{01} := 2 \cdot \left(\frac{s_1 - c}{s_{p1}} - 0.8 \right) \cdot \sqrt{D_{p1} \cdot (s_1 - c)} = 705.466 \quad MM$$
(2.103)

• для эллиптического днища:

$$d_{02} := 2 \cdot \left(\frac{s_2 - c}{s_{p2}} - 0.8 \right) \cdot \sqrt{D_{p2} \cdot (s_2 - c)} = 966.952 \quad \text{MM}$$
(2.104)

Проверка необходимости проведения расчета на укрепления отверстий для штуцера входа нефтегазовой смеси:

Проверка необходимости проведения расчета на укрепления отверстий для штуцера выхода нефти:

Проверка необходимости проведения расчета на укрепления отверстий для штуцера дренажа и предохранительного клапана:

Проверка необходимости проведения расчета на укрепления отверстий для штуцера люка-лаза:

Исходя из условий укрепления делаем вывод, что расчет укрепления отверстий не нужен.

2.3.7 Выбор стандартного люк-лаза

Стандартный люк-лаз для сепаратора выбираем согласно [13]:

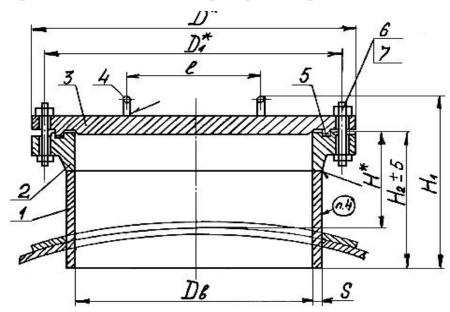


Рисунок 2.12 - Люк-лаз с фланцами, приварными встык, с уплотнительной поверхностью "шип-паз"

Условное обозначение люка-лаза, исполнением 1, внутренним диаметром $D_B = 450$ мм, условным давлением $P_Y = 2.5$ МПа и толщиной стенки s = 10 мм «Люк-лаз 1-450-2,5-10ОСТ 26-2006-83»

Таблица 2.4 - Размеры люка-лаза с фланцами, приварными встык, с уплотнительной поверхностью "шип-паз"

D_{ε} ,	D*	D* ₁	H*	H ₁ ,	H ₂ , MM	l, MM	s mm	Давление условное МПа
450	590	550	220	420	305	250	10	2,5

Конструкция и размеры ручки для крышки люка-лаза выбрали согласно [14].

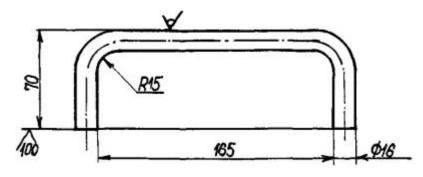


Рисунок 2.13 - Конструкция и размеры ручки для люка-лаза

2.3.7.1 Расчет и выбор стандартной крышки люка-лаза

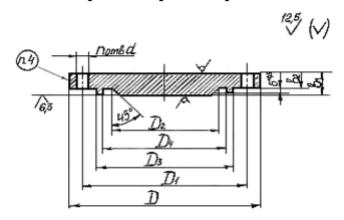


Рисунок 2.14 - Плоская крышка люка-лаза

Условное обозначение крышки, исполнением 1, внутренним диаметром $D_B = 450$ мм, условным давлением $P_Y = 2.5$ МПа выполненной из стали $09\Gamma 2C$: «1-450-2,5-09 $\Gamma 2C$ OCT 26-2008-83».

Таблица 2.5 - Размеры крышки люка-лаза с уплотнительной поверхностью "шип-паз"

							d MM		
450	590	550	513	489	36	27	23	24	2.5

Расчетный диаметр: $D_p = 450 \text{ мм}$

Коэффициент, зависящий от способа закрепления крышки: K = 0,4 Коэффициент ослабления, при отсутствии отверстий в крышке: $K_0 = 1$

Расчетная толщина крышки:

$$\mathbf{s}_{p\kappa} := \max \left(\begin{pmatrix} \mathbf{K} \cdot \mathbf{K}_{0} \cdot \mathbf{D}_{p} \cdot \sqrt{\frac{P_{pac}}{\phi \cdot \sigma_{II}}} \\ \mathbf{K} \cdot \mathbf{K}_{0} \cdot \mathbf{D}_{p} \cdot \sqrt{\frac{P_{u}}{\phi \cdot \sigma_{20}}} \end{pmatrix} \right) = 7.995 \quad \text{MM}$$

$$(2.105)$$

Исполнительная толщина стеки крышки:

$$s_{\text{MK}} := s_{\text{pK}} + c = 9.195$$
 MM (2.106)

Принимаем исполнительную толщину крышки из таблицы 5: $s_K = 36$ мм

Проверка условий применимости формул для расчета плоских крышек:

Расчет допускаемого внутреннего избыточного давления:

• допускаемое внутреннее давление при гидроиспытаниях:

$$\mathsf{P}_{\mathsf{A5}} \coloneqq \left[\frac{\left(\mathsf{s}_{\mathsf{K}} - \mathsf{c} \right)}{\left(\mathsf{K} \cdot \mathsf{K}_{0} \cdot \mathsf{D}_{\mathsf{p}} \right)} \right]^{2} \cdot \phi \cdot \sigma_{\mathsf{A}} = 6.616 \quad \mathsf{M} \mathsf{\Pi} \mathsf{a}$$

$$(2.107)$$

• допускаемое внутреннее давление при рабочих условиях:

$$\mathsf{P}_{\mathsf{A6}} \coloneqq \left[\frac{\left(\mathsf{s}_{\mathsf{K}} - \mathsf{c} \right)}{\left(\mathsf{K} \cdot \mathsf{K}_{0} \cdot \mathsf{D}_{\mathsf{p}} \right)} \right]^{2} \cdot \phi \cdot \sigma_{\mathsf{20}} = 10.204 \quad \mathsf{M} \mathsf{\Pi} \mathsf{a}$$

$$(2.108)$$

Проверка условия прочности стенки крышки:

 проверка условия прочности крышки от действия внутреннего давления при гидроиспытаниях:

Пров
$$_2$$
 := "Условие прочности стенки крышки выполняется" if $P_{\text{д}6} > P_{\text{M}}$ "Условие прочности НЕ выполняется" otherwise

Пров2 = "Условие прочности стенки крышки выполняется"

• проверка условия прочности крышки от действия внутреннего давления при рабочих условиях:

Пров
$$_3:=$$
 "Условие прочности стенки крышки выполняется" if $P_{\text{д}6} > P_{\text{pac}}$ "Условие прочности НЕ выполняется" otherwise

Прова = "Условие прочности стенки крышки выполняется"

2.3.8 Подбор и расчет стандартной опоры аппарата

Расчет веса аппарата:

Расчет веса корпуса аппарата:

Внутренний диаметр аппарата: Д:= 3 м

Длина цилиндрической части: Н := 10.6 м

Толщина стенки обечайки: 51. = 0.010 м

Плотность материала: сталь 09Г2С

$$\rho_{\text{MAZA}} := 7850 \qquad \frac{\text{KF}}{\text{M}^3}$$

Вес кожуха обечайки аппарата:

$$G_{KOK} := \pi \cdot \left[\frac{\left(D + 2 \cdot s_1\right)^2 - D^2}{4} \right] \cdot H \cdot \rho_{MET} \cdot g = 7.711 \times 10^4 \text{ H}$$
 (2.109)

Масса днища: Мдн := 816.9 кг

Вес эллиптического днища аппарата:

$$G_{A.9\pi} := m_{AH} \cdot g = 8.006 \times 10^3$$
 H (2.110)

Вес пустого аппарата:

$$G_{an} := 2G_{A.3n} + G_{KOX} = 9.312 \times 10^4$$
 H (2.111)

Объем аппарата: приведен в исходных данных $V_{an} := 80 \text{ м}^3$

Вес жидкости (вода) при гидроиспытаниях:

$$G_{\text{жид 1}} := V_{\text{ап}} \cdot \rho_{\text{вод}} \cdot g = 7.824 \times 10^5$$
 Н (2.112)

Вес аппарата, заполненного жидкостью при гидроиспытаниях:

$$G_{an1} := G_{an} + G_{жид1} = 8.756 \times 10^5$$
 H

Принимаем две опоры, тогда нагрузка на одну опору будет равна:

$$G_{0.0\Pi} := \frac{G_{an1}}{2} = 4.378 \times 10^5$$
 (2.113)

2.3.8.1 Подбор стандартных опор аппарата

По полученной нагрузке на одну опору аппарата выбираем подходящий тип опор. Выбор производим в соответствии с данными, указанными в

[15, табл. 29.12]. На рисунке 15 представлена опора горизонтальных аппаратов. В таблице буказаны основные сведения о выбранной опоре.

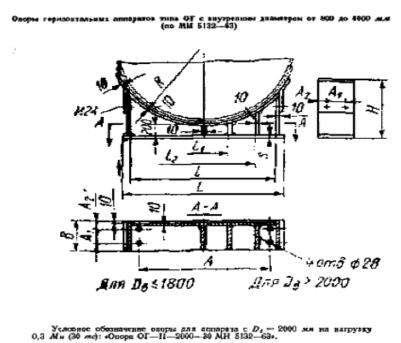


Рисунок 2.15 - Опора горизонтальных аппаратов типа ОГ Таблица 2.6 - Параметры опоры

Tun	G+-101, Ma (rec)	D_{θ}	L	ι	1,	l ₂	В	н	A	A,	Α,	R	3	Macca,
							JEN.							
III	85	3000	3200	2600	1100	2100	500	1240	2800	200	150	1630	22	745

2.3.8.2 Расчет опор аппарата

Выполняем согласно [16]:

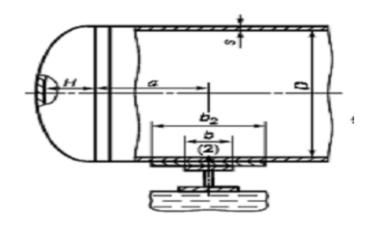


Рисунок 2.16 - Цилиндрическая обечайка, не подкрепленная элементами жесткости

Опора изготовлена из стали 09Г2С

Внутренний диаметр обечайки: Д := 3000 мм

Толщина стенки обечайки: $s_1 := 10$ мм

Прибавки к расчетным толщинам конструктивных элементов: с = 1.2 мм

Ширина опоры: "р.≔ 500 мм

Угол охвата опоры: $\delta_1 := 120^{\circ}$

Расстояние до днища: а := 1800 мм

Высота опоры: Н := 1240 мм

Толщина опоры: son := 22 мм

Коэффициенты запаса прочности:

• для рабочих условий: $n_p \coloneqq 2.4$

• для условий испытаний: $n_{\mathbf{N}} := 1.8$

2.3.8.2.1 Определение допускаемых осевых сжимающих усилий

При рабочих условиях:

Определим допускаемое осевое сжимающее усилие из условия прочности:

$$F_{A.\Pi 1} := \pi \cdot (D + s_1 - c)(s_1 - c) \cdot \sigma_A = 1.472 \times 10^7$$
 H (2.114)

Допускаемое осевое сжимающее усилие из условия местной устойчивости в пределах упругости:

$$\mathsf{F}_{\mathsf{AE11}} := \frac{31 \cdot 10^{-5} \cdot \mathsf{E}}{\mathsf{n}_{\mathsf{p}}} \cdot \mathsf{D}^2 \cdot \left[\frac{100 \cdot \left(\mathsf{s}_{\mathsf{1}} - \mathsf{c} \right)}{\mathsf{D}} \right]^{2.5} = 1.037 \times 10^7 \; \mathsf{H}$$
(2.115)

Приведенная расчетная длинна обечайки:

$$I_{np} := L = 1.24 \times 10^4$$
 MM (2.116)

Гибкость λ:

$$\lambda = \frac{2.83 \cdot I_{np}}{D + s_1 - c} = 11.663$$
 (2.117)

Допускаемое осевое сжимающее усилие из условия общей устойчивости в пределах упругости:

$$\mathsf{F}_{\text{AE21}} \coloneqq \frac{\pi \cdot \left(\mathsf{D} + \mathsf{s}_1 - \mathsf{c}\right) \cdot \left(\mathsf{s}_1 - \mathsf{c}\right) \cdot \mathsf{E}}{\mathsf{n}_\mathsf{p}} \cdot \left(\frac{\pi}{\lambda}\right)^{2.5} = 2.498 \times 10^8 \quad \mathsf{H} \tag{2.118}$$

Допускаемое осевое сжимающее усилие в пределах упругости из условия устойчивости:

$$F_{AE1} := min(F_{AE11}, F_{AE21})$$
 if $\frac{L}{D} \ge 10 = 1.037 \times 10^7$ H

 F_{AE11} if $\frac{L}{D} < 10$

Допускаемое осевое сжимающее усилие для рабочих условий:

$$F_{A,p1} := \frac{F_{A,n1}}{\sqrt{1 + \left(\frac{F_{A,n1}}{F_{AE1}}\right)^2}} = 8.478 \times 10^6 \text{ H}$$
(2.119)

Определим допускаемый изгибающий момент:

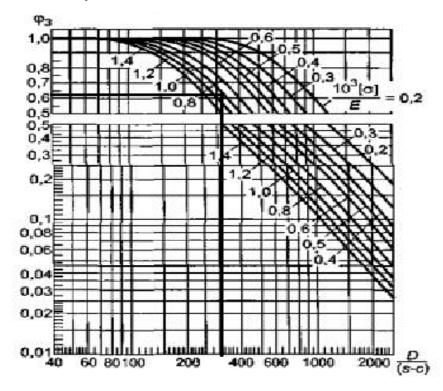


Рисунок 2.17 - График для определения коэффициента Фз

$$\frac{D}{(s_1 - c)} = 340.909$$

$$\frac{10^3 \cdot \sigma_{\Pi}}{E} = 0.925$$
(2.120, 2.121)

Коэффициент снижения допускаемых напряжений: Ф3 = 0.62

$$\mathsf{M}_{\text{Д1}} \coloneqq \frac{\pi}{4} \cdot \mathsf{D} \cdot \left(\mathsf{D} + \mathsf{s}_1 - \mathsf{c}\right) \cdot \left(\mathsf{s}_1 - \mathsf{c}\right) \cdot \sigma_{\text{Д}} \cdot \varphi_3 = 6.846 \times 10^9 \qquad \mathsf{H} \cdot \mathsf{MM}$$

Определим допускаемое осевое сжимающее усилие из условия прочности:

$$Q_{A.\Pi 1} := 0.25\pi \cdot D(s_1 - c) \cdot \sigma_A = 3.67 \times 10^6 \text{ H}$$
 (2.122)

Определим допускаемое осевое сжимающее усилие в пределах упругости из условия местной устойчивости:

$$Q_{A.E1} := \frac{2.4 \cdot E \cdot (s_1 - c)^2}{n_p} \cdot \left[0.18 + 3.3 \frac{D \cdot (s_1 - c)}{L^2} \right] = 2.676 \times 10^6 \quad H$$
 (2.123)

Допускаемое осевое сжимающее усилие для рабочих условий:

$$Q_{A,1} := \frac{Q_{A,n1}}{\sqrt{1 + \left(\frac{Q_{A,n1}}{Q_{A,E1}}\right)^2}} = 2.162 \times 10^6 \text{ H}$$
(2.124)

Проверка устойчивости аппарата осуществляется, путем сравнения моментов и усилий от опор с допускаемыми. Поэтому для дальнейшего расчета необходимо определить значения допускаемых усилий и моментов.

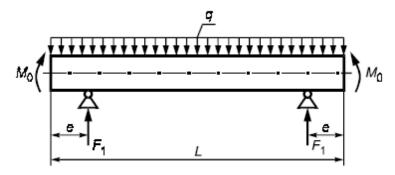


Рисунок 2.18 - Расчетная схема определения усилий Расчетные формулы применимые при выполнении условий:

Услов
$$_{\text{прим}} := \begin{bmatrix} \text{"формулы применимы"} & \text{if} & 60 \le \delta_1 \le 180 & = \text{"формулы применимы"} \\ & \frac{s_1 - c}{D} \le 0.5 \\ & \text{"формулы НЕ применимы"} & \text{otherwise} \end{bmatrix}$$

Высота выпуклой части днища: $h_B = 750$ мм

Распределенная нагрузка сосуда:

$$q_1 := \frac{G_{an1}}{L \cdot \frac{4}{3} \cdot h_B} = 0.071 \quad \frac{H}{MM}$$
(2.125)

$$M_{01} := q_1 \cdot \frac{D^2}{16} = 3.972 \times 10^4 \text{ H-MM}$$
 (2.126)

Опорное усилие в рабочих условиях:

$$F_{11} := \frac{G_{an1}}{2} = 4.378 \times 10^5 \text{ H}$$
 (2.127)

Момент над опорой: $e := a = 1.8 \times 10^3$ мм

$$M_{11} := \frac{q_1 \cdot e^2}{2} - M_{01} = 7.467 \times 10^4 \text{ H-MM}$$
 (2.128)

Максимальный момент между опорами 1 и 2:

$$M_{12p} := M_{01} + F_{11} \cdot \left(\frac{L}{2} - a\right) - \frac{q_1}{2} \left(\frac{L}{2} + \frac{2}{3} \cdot h_B\right)^2 = 1.925 \times 10^9 \text{ H·mm}$$
(2.129)

Несущую способность обечайки в сечении между опорами следует проверять при условии:

Ult_1 :=
$$\|$$
 "следует проверять" if $M_{12p} > M_{11} =$ "следует проверять" $\|$ "следует НЕ проверять" otherwise

Поперечное усилие в сечении оболочки над опорой:

$$Q_{1p} := \frac{L - 2 \cdot a}{L + \frac{4}{3} \cdot h_B} \cdot F_{11} = 2.875 \times 10^5 \text{ H}$$
(2.130)

Проверка несущей способности обечайки в сечении между опорами. Определим коэффициент К9:

$$y := \frac{D}{(s_1 - c)} = 340.909 \quad x_i := \frac{L}{D} = 4.133$$

$$(2.131, 2.132)$$

$$K_{9.1} := 1.6 - 0.20924 \cdot (x - 1) + 0.028702 \cdot x \cdot (x - 1) + 0.4795 \cdot 10^{-3} \cdot y \cdot (x - 1)$$

$$K_{9.2} := -0.29936 \cdot 10^{-2} \cdot (x - 1) \cdot x^2 - 0.85692 \cdot 10^{-6} \cdot (x - 1) \cdot y^2$$

$$K_{9.3} := -0.75955 \cdot 10^{-8} \cdot y^2 \cdot (x - 1) \cdot x + 0.82748 \cdot 10^{-4} \cdot (x - 1) \cdot x^3$$

$$K_{9.4} := 0.88174 \cdot 10^{-6} \cdot x^2 \cdot (x - 1) \cdot y - 0.2391 \cdot 10^{-6} \cdot x \cdot y \cdot (x - 1) + 0.48168 \cdot 10^{-9} \cdot (x - 1) \cdot y^3$$

$$K_{9} := \max(K_{9.1} + K_{9.2} + K_{9.3} + K_{9.4}, 1) = 1.438$$

$$(2.133, 2.134, 2.135, 2.136, 2.137)$$

Проверим условие прочности в рабочих условиях:

$$\frac{P_{pac} \cdot D}{4 (s_1 - c)} + \frac{4 \cdot M_{12p} \cdot K_9}{\pi \cdot D^2 (s_1 - c)} = 68.292$$

$$Ult_2 := \begin{bmatrix} \text{"Условия прочности выполняются"} & \text{if} & \sigma_{\prod} \geq \frac{P_{pac} \cdot D}{4 (s_1 - c)} + \frac{4 \cdot M_{12p} \cdot K_9}{\pi \cdot D^2 (s_1 - c)} \\ & \text{"Условия прочности не выполняются"} & \text{otherwise} \end{bmatrix}$$

$$Ult_2 = \text{"Условия прочности выполняются"}$$

Условие устойчивости в рабочих условиях:

$$\frac{M_{12p}}{M_{\text{д1}}} = 0.281$$
Ult_3 :=

"Условие устойчивости в рабочих условиях выполняется" if $1 > \frac{M_{12p}}{M_{\text{д1}}}$

"Условие устойчивости в рабочих условиях не выполняется" otherwise

Ult_3 = "Условие устойчивости в рабочих условиях выполняется" (2.139)

2.3.8.2.2 Проверка несущей способности обечайки, неукреплённой кольцами жесткости в области опорного узла

При рабочих условиях:

Лист опоры рассматривают как усиление стенки сосуда. Во всех формулах принимаем опору шириной b с углом охвата δ_1 : $\delta_1 = 1.88$ радиан

Параметр, определяемый расстоянием до днища:

$$\gamma := 2.83 \cdot \frac{a}{D} \cdot \sqrt{\frac{(s_1 - c)}{D}} = 0.092$$
 (2.140)

Параметр, определяемый шириной пояса опоры, вычисляют по формуле:

$$\beta_1 := 0.91 \cdot \frac{b}{\sqrt{D \cdot (s_1 - c)}} = 2.8$$
 (2.141)

Общее меридиональное мембранное напряжение изгиба:

$$\sigma_{\text{mx}} := \frac{4 \cdot M_{11}}{\pi \cdot D^2 \cdot (s_1 - c)} = 1.2 \times 10^{-3} \quad M\Pi a$$
 (2.142)

Коэффициент, учитывающий влияние ширины пояса опоры:

$$K_{10} := \max\left(\frac{e^{-\beta_1} \cdot \sin(\beta_1)}{\beta_1}, 0.25\right) = 0.25$$
 (2.143)

Коэффициент, учитывающий влияние угла охвата опоры:

$$K_{12} := \frac{1.15 - 0.1432\sin(\delta_1)}{\sin(0.5 \cdot \delta_1)} = 1.255$$
 (2.144)

Коэффициент, учитывающий влияние угла охвата опоры:

$$K_{13} := \frac{1}{\sin(0.5 \cdot \delta_1)} \cdot \max\left(1.7 - \frac{2.1 \cdot \delta_1}{\pi}, 0\right) = 0.549$$
 (2.145)

Коэффициент, учитывающий влияние расстояния до днища:

$$K_{15} := \min\left(1, \frac{0.8 \cdot \sqrt{\gamma} + 6 \cdot \gamma}{\delta_1}\right) = 0.423$$
 (2.146)

Коэффициент V_1 для определения коэффициента K_1 :

$$\nu_1 := \frac{-0.23 \cdot K_{13} \cdot K_{15}}{K_{12} \cdot K_{10}} = -0.17 \tag{2.147}$$

Коэффициент К2

В рабочих условиях:

$$K_{2p} := 1.25$$

$$\nu_{21} := -\sigma_{mx} \cdot \frac{1}{K_{2p} \cdot \sigma_{II}} = -5.426 \times 10^{-6}$$

$$\nu_{22} := \frac{1}{K_{2p} \cdot \sigma_{II}} \cdot \left[\frac{D \cdot P_{pac}}{4 \cdot (s_1 - c)} - \sigma_{mx} \right] = 0.108$$

$$(2.148, 2.149)$$

Общее мембранное напряжение в эллиптическом днище:

$$\sigma_{m} := \frac{D \cdot P_{pac}}{4 \cdot \left(s_{1} - c\right)} = 23.807 \quad M\Pi a$$

$$\nu_{2} := \frac{\sigma_{m}}{K_{2p} \cdot \sigma_{\prod} \cdot \phi} = 0.108 \qquad (2.150, 2.151)$$

При $V_2 > 0$ принимают, $V_2 = |V_2|$, а знак V_1 меняют на обратный.

$$K_{1} := \frac{1 - \nu_{2}}{\left(\frac{1}{3} + \nu_{2} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{2} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{2}^{2}\right) \cdot \nu_{1}^{2}}} = 1.355$$
(2.152)

При $V_{21} < 0$ принимают $V_{21} = |V_{21}|$, а знак меняют на обратный.

$$\mathsf{K}_{\mathsf{V11}} \coloneqq \frac{1 - \nu_{\mathsf{21}}}{\left(\frac{1}{3} + \nu_{\mathsf{21}} \cdot \nu_{\mathsf{1}}\right) + \sqrt{\left(\frac{1}{3} + \nu_{\mathsf{21}} \cdot \nu_{\mathsf{1}}\right)^2 + \left(1 - \nu_{\mathsf{21}}^2\right) \cdot \nu_{\mathsf{1}}^2}} = 1.438$$

$$\mathsf{K}_{\mathsf{V21}} \coloneqq \frac{1 - \nu_{\mathsf{22}}}{\left(\frac{1}{3} + \nu_{\mathsf{22}} \cdot \nu_{\mathsf{1}}\right) + \sqrt{\left(\frac{1}{3} + \nu_{\mathsf{22}} \cdot \nu_{\mathsf{1}}\right)^2 + \left(1 - \nu_{\mathsf{22}}^2\right) \cdot \nu_{\mathsf{1}}^2}} = 1.219$$

$$K_{1} = \min(K_{v21}, K_{v11}) = 1.219$$

Предельное напряжение изгиба:

$$\sigma_{i2} := K_1 \cdot K_{2p} \cdot \sigma_{\text{Д}} = 269.795$$
 МПа (2.156)

Допускаемое опорное усилие от нагружения в меридиональном направлении:

$$\mathsf{F}_{\mathsf{ДОП22}} := \frac{0.7 \cdot \sigma_{\mathsf{i}2} \cdot \left(\mathsf{s}_{\mathsf{1}} - \mathsf{c}\right) \cdot \sqrt{\mathsf{D} \cdot \left(\mathsf{s}_{\mathsf{1}} - \mathsf{c}\right)}}{\mathsf{K}_{\mathsf{10}} \cdot \mathsf{K}_{\mathsf{12}}} = 8.606 \times 10^{5} \quad \mathsf{H}$$
(2.157)

Коэффициент, учитывающий влияние угла охвата опоры:

$$K_{14} := \frac{1.45 - 0.43 \cdot \delta_1}{\sin(0.5 \cdot \delta_1)} = 0.794$$
(2.158)

Коэффициент, учитывающий влияние расстояния до днища:

$$K_{16} := 1 - \frac{0.65}{1 + (6 \cdot \gamma)^2} \cdot \sqrt{\frac{\pi}{3 \cdot \delta_1}} = 0.628$$
 (2.159)

Коэффициент, учитывающий влияние ширины пояса опоры:

$$K_{17} := \frac{1}{1 + 0.6 \cdot \delta_1 \cdot \frac{b}{D} \cdot \sqrt[3]{\frac{D}{(s_1 - c)}}} = 0.432$$
(2.160)

Коэффициент, учитывающий влияние ширины пояса опоры:

$$K_{11} := \frac{1 - e^{-\beta_1} \cdot \cos(\beta_1)}{\beta_1} = 0.357$$
(2.161)

Коэффициент V1 для определения коэффициента К1:

$$\frac{\nu_{11}}{K_{14} \cdot K_{16} \cdot K_{17} \cdot \sin(0.5 \cdot \delta_{1})} = -1.086$$

$$\frac{\nu_{221}}{V_{222}} = 0$$

$$\frac{\nu_{222}}{2 \cdot (s_{1} - c)} \cdot \frac{1}{(K_{2p} \cdot \sigma_{11})} = 0.215$$

$$\frac{1 - \nu_{22}}{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{22}^{2}\right) \cdot \nu_{1}^{2}}} = 0.592$$

$$\frac{1 - \nu_{21}}{\left(\frac{1}{3} + \nu_{21} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{21} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{21}^{2}\right) \cdot \nu_{1}^{2}}} = 0.541$$

$$\frac{K_{11}}{K_{12}} = \frac{1 - \nu_{21}}{\left(\frac{1}{3} + \nu_{21} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{21} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{21}^{2}\right) \cdot \nu_{1}^{2}}} = 0.541$$

$$\frac{K_{12}}{K_{12}} = \min(K_{12}, K_{11}) = 0.541$$

$$(2.162, 2.163, 2.164, 2.165, 2.166)$$

Предельное напряжение изгиба:

$$\sigma_{i3} := K_1 \cdot K_{2p} \cdot \sigma_{\Lambda} = 119.789 \quad M\Pi a$$
 (2.167)

Допускаемое опорное усилие от нагружения в окружном направлении, вычисляемое по формуле:

$$F_{\text{Доп32}} := \frac{0.9 \cdot \sigma_{i3} \cdot \sqrt{D \cdot (s_1 - c)} \cdot (s_1 - c)}{K_{17} \cdot K_{16} \cdot K_{14}} = 7.146 \times 10^5 \text{ H}$$

$$F_{\text{Доп}} := \min(F_{\text{Доп22}}, F_{\text{Доп32}}) = 7.146 \times 10^5 \text{ H}$$

$$(2.168, 2.169)$$

Условие прочности при рабочих условиях:

Услов
$$_{\text{прочности}} := \begin{bmatrix} \text{"Условия прочности выполняются"} & \text{if } F_{11} \leq F_{\text{доп}} \\ \text{"Условия прочности не выполняются"} & \text{otherwise} \end{bmatrix}$$

Условпрочности = "Условия прочности выполняются"

$$F_{11} = 4.378 \times 10^5$$
 H $F_{\text{don}} = 7.146 \times 10^5$ H

Эффективное осевое усилие от местных мембранных напряжений, действующих в области опоры:

$$F_{B2} := F_{11} \cdot \frac{\pi}{4} \cdot \sqrt{\frac{D}{(s_1 - c)}} \cdot K_{13} \cdot K_{15} = 1.473 \times 10^6 \text{ H}$$
(2.170)

Проверка условий устойчивости при рабочих условиях:

Услов
$$_{\text{УСТОЙЧ}} := \begin{bmatrix} \text{"Условие выполняется"} & \text{if } \frac{\mathsf{F}_{\mathsf{B2}}}{\mathsf{F}_{\mathsf{Д.P1}}} + \frac{\mathsf{M}_{\mathsf{11}}}{\mathsf{M}_{\mathsf{Д1}}} + \left(\frac{\mathsf{Q}_{\mathsf{1p}}}{\mathsf{Q}_{\mathsf{Д1}}}\right)^2 \leq 1 \\ \text{"Условие устойчивости в рабочих условиях не выполняется"} & \text{otherwise} \end{bmatrix}$$

Услов_{устойч} = "Условие выполняется"

При гидроиспытаниях:

Определим допускаемое осевое сжимающее усилие из условия прочности:

$$F_{A.\Pi 2} := \pi \cdot (D + s_1 - c)(s_1 - c) \cdot \sigma_{\mu 20} = 2.271 \times 10^7 \quad H$$
 (2.171)

Допускаемое осевое сжимающее усилие из условия местной устойчивости в пределах упругости:

$$\mathsf{F}_{\mathsf{AE}12} := \frac{31 \cdot 10^{-5} \cdot \mathsf{E}}{\sigma_{20}} \cdot \mathsf{D}^2 \cdot \left[\frac{100 \cdot \left(\mathsf{s}_1 - \mathsf{c} \right)}{\mathsf{D}} \right]^{2.5} = 9.116 \times 10^4 \quad \mathsf{H}$$
(2.172)

Допускаемое осевое сжимающее усилие в пределах упругости из условия устойчивости:

$$F_{\Delta E2} = F_{\Delta E12}$$

Допускаемое осевое сжимающее усилие в условиях испытаний:

$$F_{A.p2} := \frac{F_{A.n2}}{\sqrt{1 + \left(\frac{F_{A.n2}}{F_{AE2}}\right)^2}} = 9.116 \times 10^4 \text{ H}$$
(2.173)

Допускаемый изгибающий момент из условия прочности:

$$\mathsf{M}_{\mathsf{A}\mathsf{\Pi}2} := \frac{\pi}{4} \cdot \mathsf{D} \cdot \left(\mathsf{D} + \mathsf{s}_1 - \mathsf{c} \right) \cdot \left(\mathsf{s}_1 - \mathsf{c} \right) \cdot \sigma_{20} = 1.703 \times 10^{10} \quad \mathsf{H} \cdot \mathsf{MM} \tag{2.174}$$

Допускаемый изгибающий момент из условия устойчивости в пределах упругости:

$$\mathsf{M}_{\mathsf{A}\mathsf{e}2} \coloneqq \frac{8.9 \cdot 10^{-5} \cdot \mathsf{E}}{\mathsf{n}_{\mathsf{M}}} \cdot \mathsf{D}^{3} \cdot \left[\frac{100 \cdot \left(\mathsf{s}_{\mathsf{1}} - \mathsf{c} \right)}{\mathsf{D}} \right]^{2.5} = 1.191 \times 10^{10} \quad \mathsf{H} \cdot \mathsf{MM}$$

$$(2.175)$$

Определим допускаемые изгибающие моменты.

$$M_{\text{A2}} := \frac{M_{\text{An2}}}{\sqrt{1 + \left(\frac{M_{\text{An2}}}{M_{\text{Ae2}}}\right)^2}} = 9.759 \times 10^9 \text{ H·мм}$$
(2.176)

Определим допускаемое осевое сжимающее усилие из условия прочности:

$$Q_{A,\Pi_2} := 0.25\pi \cdot D(s_1 - c) \cdot \sigma_{20} = 5.661 \times 10^6 \text{ H}$$
 (2.177)

Определим допускаемое осевое сжимающее усилие в пределах упругости из условия местной устойчивости:

$$Q_{\text{A.E2}} := \frac{2.4 \cdot \text{E} \cdot \left(\text{s}_{1} - \text{c}\right)^{2}}{\text{n}_{\text{M}}} \cdot \left[0.18 + 3.3 \frac{\text{D} \cdot \left(\text{s}_{1} - \text{c}\right)}{\text{L}^{2}}\right] = 3.568 \times 10^{6} \text{ H}$$
(2.178)

Допускаемое осевое сжимающее усилие в условиях испытаний:

$$Q_{A,2} := \frac{Q_{A,n2}}{\sqrt{1 + \left(\frac{Q_{A,n2}}{Q_{A,E2}}\right)^2}} = 3.019 \times 10^6 \text{ H}$$
(2.179)

Определения расчетных усилий в условиях испытаний:

Распределенная нагрузка сосуда

$$q_2 := \frac{G_{an1}}{L \cdot \frac{4}{3} \cdot h_B} = 0.071 \quad \frac{H}{MM}$$
(2.180)

$$M_{02} := q_2 \cdot \frac{D^2}{16} = 3.972 \times 10^4 \text{ H·mm}$$
 (2.181)

Опорное усилие в условиях испытаний:

$$F_{12} := \frac{G_{an1}}{2} = 4.378 \times 10^5 \text{ H}$$
 (2.182)

Момент над опорой: $e := a = 1.8 \times 10^3$ мм

$$M_{12} := \frac{q_2 \cdot e^2}{2} - M_{02} = 7.467 \times 10^4 \text{ H-MM}$$
(2.183)

Максимальный момент между опорами 1 и 2:

$$M_{12\mu} := M_{02} + F_{12} \cdot \left(\frac{L}{2} - a\right) - \frac{q_2}{2} \left(\frac{L}{2} + \frac{2}{3} \cdot h_B\right)^2 = 1.925 \times 10^9 \text{ H·mm}$$
(2.184)

Несущую способность обечайки в сечении между опорами следует проверять при условии:

Подкладной лист рассматривают как усиление стенки сосуда. Во всех формулах принимаем опору шириной b с углом охвата δ_1 : $\delta_2 = 1.88$ радиан

Параметр, определяемый расстоянием до днища:

$$\chi = 2.83 \cdot \frac{a}{D} \cdot \sqrt{\frac{(s_1 - c)}{D}} = 0.092$$
 (2.185)

Параметр, определяемый шириной пояса опоры, вычисляют по формуле:

$$\beta_{1} = 0.91 \cdot \frac{b}{\sqrt{D \cdot (s_1 - c)}} = 2.8$$
(2.186)

Общее меридиональное мембранное напряжение изгиба:

$$g_{\text{max}} = \frac{4 \cdot M_{12}}{\pi \cdot D^2 \cdot (s_1 - c)} = 1.2 \times 10^{-3} \text{ M}\Pi a$$
 (2.187)

Коэффициент, учитывающий влияние угла охвата опоры:

$$K_{13} := \frac{1}{\sin(0.5 \cdot \delta_1)} \cdot \max\left(1.7 - \frac{2.1 \cdot \delta_1}{\pi}, 0\right) = 0.549$$
 (2.188)

Коэффициент, учитывающий влияние расстояния до днища:

$$K_{15} = \min \left(1, \frac{0.8 \cdot \sqrt{\gamma} + 6 \cdot \gamma}{\delta_1} \right) = 0.423$$
 (2.189)

Коэффициент, учитывающий влияние угла охвата опоры:

$$K_{12} = \frac{1.15 - 0.1432 \cdot \sin(\delta_1)}{\sin(0.5 \cdot \delta_1)} = 1.255$$
(2.190)

Коэффициент, учитывающий влияние ширины пояса опоры:

$$K_{10} := \max \left(\frac{e^{-\beta_1} \cdot \sin(\beta_1)}{\beta_1}, 0.25 \right) = 0.25$$
 (2.191)

Коэффициент V_1 для определения коэффициента K_1 :

$$v_{1} = \frac{-0.23 \cdot K_{13} \cdot K_{15}}{K_{12} \cdot K_{10}} = -0.17$$
(2.192)

Коэффициент К2

В условиях испытаний:

$$K_{2\text{M}} := 1.05$$
 $V_{2\text{M}} := -\sigma_{\text{mx}} \cdot \frac{1}{K_{2\text{M}} \cdot \sigma_{20}} = -4.188 \times 10^{-6}$
 $V_{2\text{M}} := \frac{1}{K_{2\text{M}} \cdot \sigma_{20}} \cdot \left[\frac{D \cdot P_{\text{M}}}{4 \cdot (s_{1} - c)} - \sigma_{\text{mx}} \right] = 0.16$

(2.193) (2.194)

Общее мембранное напряжение в эллиптическом днище:

$$σ_{MM} := \frac{D \cdot P_{M}}{4 \cdot (s_{1} - c)} = 45.9 \quad MΠa$$

$$ν_{2M} := \frac{σ_{M}}{K_{2M} \cdot σ_{20} \cdot φ} = 0.16$$
(2.195) (2.196)

При $V_2 > 0$ принимают, $V_2 = |V_2|$, а знак V_1 меняют на обратный.

$$K_{1} = \frac{1 - \nu_{2}}{\left(\frac{1}{3} + \nu_{2} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{2} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{2}^{2}\right) \cdot \nu_{1}^{2}}} = 1.312$$
(2.197)

При $V_{21} < 0$ принимают $V_{21} = |V_{21}|$, а знак меняют на обратный.

$$\frac{\nu_{1}}{\sqrt{1}} = 0.277 \qquad \nu_{21} = 4.188 \times 10^{-6}$$

$$\frac{1 - \nu_{21}}{\left(\frac{1}{3} + \nu_{21} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{21} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{21}^{2}\right) \cdot \nu_{1}^{2}}} = 1.345$$

$$\frac{1 - \nu_{22}}{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{22}^{2}\right) \cdot \nu_{1}^{2}}} = 1.012$$

$$\frac{1 - \nu_{22}}{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{22}^{2}\right) \cdot \nu_{1}^{2}}}$$

$$\frac{1 - \nu_{22}}{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{22}^{2}\right) \cdot \nu_{1}^{2}}}$$

$$\frac{1 - \nu_{22}}{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{22}^{2}\right) \cdot \nu_{1}^{2}}}$$

$$\frac{1 - \nu_{22}}{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{22}^{2}\right) \cdot \nu_{1}^{2}}}$$

$$\frac{1 - \nu_{22}}{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{22}^{2}\right) \cdot \nu_{1}^{2}}}$$

$$\frac{1 - \nu_{22}}{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{22}^{2}\right) \cdot \nu_{1}^{2}}}$$

$$\frac{1 - \nu_{22}}{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{22}^{2}\right) \cdot \nu_{1}^{2}}}$$

$$\frac{1 - \nu_{22}}{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{22}^{2}\right) \cdot \nu_{1}^{2}}}$$

Предельное напряжение изгиба:

$$\sigma_{12} := K_1 \cdot K_{2N} \cdot \sigma_{20} = 290.014$$
 ΜΠa (2.203)

Допускаемое опорное усилие от нагружения в меридиональном направлении:

$$F_{10} = \frac{0.7 \cdot \sigma_{i2} \cdot (s_1 - c) \cdot \sqrt{D \cdot (s_1 - c)}}{K_{10} \cdot K_{12}} = 9.251 \times 10^5 \quad H$$
(2.204)

Коэффициент, учитывающий влияние угла охвата опоры:

$$K_{14} = \frac{1.45 - 0.43 \cdot \delta_1}{\sin(0.5 \cdot \delta_1)} = 0.794$$
(2.205)

Коэффициент, учитывающий влияние расстояния до днища:

$$K_{16} = 1 - \frac{0.65}{1 + (6 \cdot \gamma)^2} \cdot \sqrt{\frac{\pi}{3 \cdot \delta_1}} = 0.628$$
(2.206)

Коэффициент, учитывающий влияние ширины пояса опоры:

$$\frac{K_{17} = \frac{1}{1 + 0.6 \cdot \delta_1 \cdot \frac{b}{D} \cdot \sqrt[3]{\frac{D}{(s_1 - c)}}} = 0.432$$
(2.207)

Коэффициент, учитывающий влияние ширины пояса опоры:

$$K_{11} = \frac{1 - e^{-\beta_1} \cdot \cos(\beta_1)}{\beta_1} = 0.357$$
(2.208)

Коэффициент V_1 для определения коэффициента K_1 :

$$\frac{V_{11}}{K_{14} \cdot K_{16} \cdot K_{17} \cdot \sin(0.5 \cdot \delta_{1})} = -1.086$$

$$\frac{V_{221}}{V_{222}} = 0$$

$$\frac{D \cdot P_{ii}}{2 \cdot (s_{1} - c)} \cdot \frac{1}{(K_{2p} \cdot \sigma_{20})} = 0.269$$

$$\frac{1 - \nu_{22}}{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{22} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{22}^{2}\right) \cdot \nu_{1}^{2}}} = 0.621$$

$$K_{121} = \frac{1 - \nu_{21}}{\left(\frac{1}{3} + \nu_{21} \cdot \nu_{1}\right) + \sqrt{\left(\frac{1}{3} + \nu_{21} \cdot \nu_{1}\right)^{2} + \left(1 - \nu_{21}^{2}\right) \cdot \nu_{1}^{2}}} = 0.541$$

$$K_{11} = \min(K_{121}, K_{111}) = 0.541$$

$$K_{12} = \min(K_{121}, K_{111}) = 0.541$$

$$(2.209, 2.210, 2.211, 2.212, 2.213)$$

Предельное напряжение изгиба:

$$\sigma_{i3} := K_1 \cdot K_{2N} \cdot \sigma_{20} = 155.197$$
 ΜΠα (2.214)

Допускаемое опорное усилие от нагружения в окружном направлении, вычисляемое по формуле:

$$F_{\text{MARIS2}} := \frac{0.9 \cdot \sigma_{i3} \cdot \sqrt{D \cdot (s_1 - c)} \cdot (s_1 - c)}{K_{17} \cdot K_{16} \cdot K_{14}} = 9.258 \times 10^5 \text{ H}$$

$$F_{\text{MARIS}} := \min(F_{\text{MORIS2}}, F_{\text{MORIS2}}) = 9.251 \times 10^5 \text{ H}$$

Условие прочности при гидраиспытаниях:

Услов_{прочности} = "Условия прочности выполняются"

$$F_{12} = 4.378 \times 10^5$$
 H $F_{\text{don}} = 9.251 \times 10^5$ H $(2.215, 2.216)$

Условие прочности при гидроиспытаниях:

$$F_{12} = F_{12} \cdot \frac{\pi}{4} \cdot \sqrt{\frac{D}{(s_1 - c)}} \cdot K_{13} \cdot K_{15} = 1.473 \times 10^6 \quad H$$
(2.217)

Эффективное осевое усилие от местных мембранных напряжений, действующих в области опоры:

$$F_{12} = F_{12} \cdot \frac{\pi}{4} \cdot \sqrt{\frac{D}{(s_1 - c)}} \cdot K_{13} \cdot K_{15} = 1.473 \times 10^6 \quad H$$
(2.218)

Проверка условий устойчивости при гидроиспытаниях:

Услов
$$_{\text{УСТ}} := \begin{bmatrix} \text{"Условие выполняется"} & \text{if } \frac{\mathsf{F}_{B2}}{\mathsf{F}_{\mathsf{Д},\mathsf{P}1}} + \frac{\mathsf{M}_{11}}{\mathsf{M}_{\mathsf{Д}1}} + \left(\frac{\mathsf{Q}_{1\mathsf{P}}}{\mathsf{Q}_{\mathsf{Д}1}}\right)^2 \leq 1 \\ \text{"Условие устойчивости в условиях гидроиспытаний НЕ выполняется"} & \text{otherwise} \end{bmatrix}$$

Услов_{уст} = "Условие выполняется"

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ»

Студенту:

5 ~ 5 ·	
Группа	ФИО
2K22	Курмель Герман Валериевич

Институт	ИФВТ	Кафедра	OXXT
Уровень образования	Бакалавриат	Направление/специальность	МАХП

Исходные данные к разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»: 1. Стоимость ресурсов научного исследования (НИ): Работа с информацией, представленной в материально-технических, энергетических, российских иностранных научных финансовых, информационных и человеческих публикациях, аналитических материалах, 2. Нормы и нормативы расходования ресурсов статистических бюллетенях и изданиях, 3. Используемая система налогообложения, ставки нормативно-правовых документах; налогов, отчислений, дисконтирования и кредитования анкетирование; опрос Перечень вопросов, подлежащих исследованию, проектированию и разработке: 1. Затраты на проектирование, заказ, монтаж и Расчет общих затрат на проектирование установку нефтегазосепаратора отдельных узлов, их приобретение и установку. 2. Расчет затрат на обслуживание нефтегазосепаратора График сменности. Баланс эффективного

времени одного рабочего. Расчет затрат на заработную плату рабочим, обслуживающим

нефтегазосепаратор

Перечень графического материала (с точным указанием обязательных чертежей):

- 1. График сменности
- 2. Баланс эффективного времени одного рабочего
- 3. Затраты на заработную плату основных рабочих
- 4. Затраты на закупку, монтаж и обслуживание нефтегосепаратора

_		
📗 Дата выдачи задания для разд		
т дата выдачи задания для разд	ена по пинеиному грас	оику
gara sega in sagaiin gan pasa	cord in o criminating in part	Pility

Задание выдал консультант:

Suguine Bolgun Roneyin	, i wii i v			
Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
доцент	Сечина Ася	к.х.н.		
	Александровна			

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
2К22	Курмель Герман Валериевич		

3. ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ

Цель: Рассчитать затраты на приобретение и обслуживание нефтегазосепаратора.

3.1 Расчет годовой производственной мощности

Расчет производственной мощности для непрерывного производства

$$M = \prod_{\text{vac}} T_{\theta \phi \phi} n, \qquad (3.1)$$

где $\Pi_{\text{час}}$, — часовая производительность нефтегазового сепаратора;

$$\Pi_{\text{vac}} = 486 \text{ m}^3/\text{v}.$$

n — Количество однотипного оборудования. n = 3.

 $T_{9 \phi \phi} - 9 \phi$ ективное время работы оборудования;

Эффективное время оборудования определяется по формуле:

$$T_{9\phi\phi} = T_{H} - T_{mnp} \tag{3.2}$$

где Т_н –номинальный фонд работы оборудования;

$$T_H = 365$$
 дней×24 часа=8760 часов; (3.3)

 $T_{\text{ппр}}-$ время простоя в ремонтах и отмывки за расчетный период;

$$T_{\Pi\Pi P} = 30$$
 дней×24 часа = 720 часов; (3.4)

Таким образом:

$$T_{9\phi\phi} = 8760 - 720 = 8040 \text{ y.}$$
 (3.5)

Таким образом, годовая производственная мощность:

$$M = 486 \cdot 8040 \cdot 3 = 11722320 \text{ м}^3/\text{год}.$$
 (3.6)

Коэффициент экстенсивности:

Он характеризуется использованием основного оборудования по времени:

$$K_{\mathcal{E}KCT} = \frac{T_{\mathcal{E}\Phi\Phi,\Gamma}}{T_{\text{H}}} = \frac{8040}{8760} = 0.92$$
 (3.7)

Коэффициент интенсивности:

Характеризует использование оборудования по производительности.

$$K_{UHT} = \frac{\Pi_{\phi AKT} \cdot K_P}{\Pi_{TEXH} \cdot K_{VCT}} = \frac{486 \cdot 3}{486 \cdot 3} = 1$$
 (3.8)

где: $\Pi_{\Phi AKT}$ - фактическая производительность, $\Pi_{\Phi AKT} = 486 \text{ м}^3/\text{ч}$;

 Π_{TEXH} - техническая норма производительности, $\Pi_{TEXH} = 486 \text{ m}^3/\text{ч};$

КР - количество работающего оборудования;

Куст - количество установленного оборудования

3.2 Расчета годового фонда заработной платы

Основные рабочие на производстве работают в четыре смены по шесть часов.

1 – смена с 8:00 до 20:00. Рабочий А, В.

2 – смена с 20:00 до 8:00. Рабочий C, D.

В – выходной.

Полный цикл — 30 дней, 15 рабочих и 15 выходных. Потом все повторяется.

Таблица 3.1 - График сменности.

Раб дни/	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Смены																														
Первая	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	С	С	С	С	С	С	C	С	C	С	С	C	C	C	С
смена																														
Вторая	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
смена																														
Выходн	C,	A,																												
ой	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В

Для эффективного фонда рабочего времени составим баланс времени одного среднесписочного рабочего.

Номинальный фонд рабочего времени: (согласно таблице 1, полный цикл – 30 дней, 15 рабочих и 15 выходных. Потом все повторяется.)

$$T_{PAB} = \frac{T \cdot T_{PAB.CM}}{t_{CM}} = \frac{365 \cdot 15}{30} = 183$$
 дней. (3.9)

Один среднесписочный рабочий работает 12 часов в сутки, значит календарный фонд рабочего времени одного рабочего $T_{\text{раб}}$ -12 = 183-12 = 2196 часов в год. (3.10)

Таблица 3.2 - Баланс эффективного времени одного среднесписочного работника.

№	Показатели	Дней	Часы
1	Календарный фонд рабочего времени, Ткал	365	4380
2	Выходные дни, Твых	182	2184
3	Номинальный фонд рабочего времени, $T_{PAB} = T_{KAJ} - T_{BbIX}$	183	2196
4	Очередные и дополнительные отпуска	45	540
8	Эффективный фонд рабочего времени	138	1656

Таблица 3.3 - Расчет численности персонала.

Категория персонала	Норма обслужив ания, Н _{обс}	Число смен в сутки, S	Число единиц обор-ния, n	Явочная числен- ность, Н _{яв}	Коэф-т перехода, К _{пер}	Списоч чис-ть, Н _{сп}
Основные рабочие	1	2	1	2	5,58	4

Для обслуживания нефтегазосепаратора необходимы только основные рабочие (аппаратчики)

3.3 Организация оплаты труда

Рабочим, смены в ночное время оплачивается в повышенном размере на 40%. Работа в праздничные дни оплачивается работникам, труд которых оплачивается по часовым тарифным ставкам - в размере двойной часовой тарифной ставки.

Расчет годового фонда заработной платы основных рабочих:

Расчёт тарифного фонда зарплаты основных рабочих:

$$3_{\text{Tap}} = T_{\text{cr}} \cdot T_{\text{ad.pa6}} \cdot H_{\text{cn}}, \tag{3.11}$$

 Γ де T_{CT} - тарифная ставка соответствующего разряда рабочего.

 $T_{CT} = 250 \text{ руб./час}$

 $T_{\Theta\Phi\Phi}$ - эффективный фонд рабочего времени. (138 дня, по 1656 часов рабочей смены).

$$T_{\Theta\Phi\Phi} = 138$$
 дней = 1656 часов. (3.12)

Н_{сп} – списочная численность рабочих 4 человек

$$3_{\text{тар}} = T_{\text{ст}} \cdot T_{9\phi, pa6} \cdot H_{\text{сп}} = 250 \cdot 1656 \cdot 4 = 1656000 \text{ руб./год.}$$
 (3.13)

Премиальные 20% от 3_{TAP} :

$$\Pi_{\text{прем}} = 3_{\text{ТАР}} \cdot 20\% / 100\% = 1656000 \cdot 0,2 = 331200 рублей. (3.14)$$

Время ночной работы: Смены, работающие с 20:00 до 8:00 принимаем как ночные. Согласно таблице 1 - Графику сменности, полный цикл — 30 дней рабочих (720 ч) и 15 выходных, из них 360 ч. работают в ночь, потом все повторяется.

$$t_{HB} = 1656.360/720 = 828$$
 часов в году. (3.15)

Доплата за работу в ночное время: (40 % от $(T_{CT}t_{HB})$).

$$Д_{HB} = t_{HB} T_{CT} H_{cn} 40\%/100\% = 828 \cdot 250 \cdot 4 \cdot 0, 4 = 331200$$
 рублей. (3.16)

Доплата за работу в праздничные дни (Д $_{\Pi P}$):

Официальных праздников в России – 12 дней в году (288 ч.).

12 часовой день, тарифная ставка 250 рублей/час.

Явочное число одной смены составляет два человека, но поскольку рабочие работают в две смены в сутки, явочная численность рабочих в этот день составит четыре человека.

Основная зарплата рабочих (Зосн):

$$3_{\text{OCH}} = 3_{\text{TAP}} + \mathcal{A}_{\text{IIPEM}} + \mathcal{A}_{\text{IIP}} = 1656000 + 331200 + 331200 + 288000 = 2606400 \text{ py6.}$$
 (3.18)

Дополнительная зарплата (Здоп):

$$3_{\text{ДОП}} = (Д_{\text{H}} * 3_{\text{ОСH}}) / T_{\Theta\Phi\Phi} = 45.2606400 / 138 = 849913$$
 рублей. (3.19)

Где $Д_H$ – количество дней невыхода на работу по планируемым причинам (отпуск, гособязанности) 45 дня.

Годовой фонд заработной платы основных рабочих:

$$\Phi 3\Pi_{\text{год1}} = (2606400 + 849913) \cdot 1.5 = 5184469$$
 рубля. (3.20)

Таблица 3.4 - Порядок расчета годового фонда заработной платы основных рабочих

Этапы расчета	Размер выплат (руб.)
1.Расчёт тарифного фонда	1656000
зарплаты	1020000
2.Премиальный фонд	331200
(Дпрем)	331200
3.Доплата за работу в	331200
ночное время	331200
4. Доплата за работу в	288000
праздничные дни	200000
5.Основная зарплата (3 _{ОСН})	2606400
6.Дополнительная зарплата	849913
7.Районный коэффициент	1.5
8. Начисления на зарплату	5184469

3.4 Определение потребности в инвестициях

Таблица 3.5 - Объекты и направления инвестиций

		Общая	
Наименование объекта	Кол-во	стоимость	
		руб.	
1. НГС	1	600000	
2. Инструмент со сроком	1	40000	
службы более 1 года	1	40000	
3. Производственный	2.	50000	
инвентарь и принадлежности	2	30000	
4. Расходы на монтаж и		500000	
наладку оборудования		300000	
5. Расходы на оборотные		1000000	
средства		100000	
Всего инвестиций		2190000	

Стоимость нефтегазового сепаратора 600000 рублей.

Инструмент со сроком службы более 1 года: ручной сварной аппарат стоимость 40000 рублей.

Таблица 3.6. - Расходы на наладку и монтаж выпарного аппарата

Наименование нормативов	% от стоимости	Расходы
	оборудования	руб.
1.На устройство фундаментов	10	60000
2. На технологические трубопроводы	20	120000
3. На антикоррозионные работы	5	30000
4. На кабельные разводки	5	30000
5. На КИПиА	10	60000
6. На монтаж оборудования	22	132000
8. На вспомогательное оборудование	5	30000
9. Общие затраты		462000

Таблица 3.7 - Расчет амортизационных отчислении

Наименование	Норма	1-й	год	2-ř	і год	3-й год		
основных	аморт.	C _{оф} ,	AO ₁ ,	AO_2 ,	Остаточ.	AO ₃ ,	Остаточ.	
средств	%	тыс.руб.	тыс.руб.	тыс.руб.	стоимость	тыс.руб.	стоимость	
НГС	5	600	30	30	540	30	510	
Итого		600	30	30	540	30	510	

3.5 Итоговые затраты

 Таблица 3.8. - Итоговые затраты на приобретение и обслуживание выпарного аппарата

Наименование	1 год	2 год	3 год
Расходы на наладку и монтаж	500000	-	-
Объекты и направления инвестиций	2190000	-	-
Начисления на заработную плату	5184469	5184469	5184469
Амортизационные отчисления	30000	30000	30000
Итого	7454469	5214469	5214469

На эксплуатацию нефтегазосепаратора в первый год мы потратим 7454469 рубля, в последующие два года 5214469 рубля. Это обуславливается тем, что в первый год учитываются затраты на покупку нефтегазосепаратора и его монтаж.

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ»

Студенту:

Группа	ФИО
2K22	Курмель Герман Валериевич

Институт	ИФВТ	Кафедра	OXXT
Уровень образования	Бакалавр	Направление/специальность	МАХП

Исходные данные к разделу «Социальная ответственность»:

1. Характеристика объекта исследования (вещество, материал, прибор, алгоритм, методика, рабочая зона) и области его применения

Объект исследования — УБС, аппарат обессоливания и обезвоживания нефти. Рабочая зона — цех подготовки и перекачки

Область применения – нефтяная промышленность.

Перечень вопросов, подлежащих исследованию, проектированию и разработке:

1. Производственная безопасность

- 1.1. Анализ выявленных вредных факторов при разработке и эксплуатации проектируемого решения в следующей последовательности:
 - физико-химическая природа вредности, её связь с разрабатываемой темой;
 - действие фактора на организм человека;
 - приведение допустимых норм с необходимой размерностью (со ссылкой на соответствующий нормативно-технический документ);
 - предлагаемые средства защиты;
 - (сначала коллективной защиты, затем индивидуальные защитные средства).
- 1.2. Анализ выявленных опасных факторов при разработке и эксплуатации проектируемого решения в следующей последовательности:
 - механические опасности (источники, средства защиты:
 - термические опасности (источники, средства защиты);
 - электробезопасность (в т.ч. статическое электричество, молниезащита источники, средства защиты);
 - пожаровзрывобезопасность (причины, профилактические мероприятия, первичные средства пожаротушения).

1.1. Выявление вредных факторов в цехе подготовки и перекачки нефти

(при разработке и экспауат

(при разработке и эксплуатации промышленного оборудования:

- вредные вещества, освещение, производственный шум, вибрация; СанПиН 2.2.4/2.1.8.562-96
- физико-химическая природа вредности веществ и их связь с разрабатываемой темой;
- действие вредных веществ на организм (метан, углеводороды);

СанПиН 2.2.1/2.1.1.1200-03

- предлагаемые средства защиты для работы в цехе подготовки и перекачки нефти:
- 1. Индивидуальные средства защиты спецодежда, противогазы, резиновые перчатки, защитные очки, резиновые сапоги, каска;
- **1.2.** Выявление опасных факторов при разработке и эксплуатации установок:
- термическая опасность (оборудования с повышенной температурой) СанПиН 2.1.7.2790-10;
- электробезопасность (наличие химически активной и органической среды, разрушающей изоляцию и токоведущие части электрооборудования) СанПиН 2971-84;
- пожаровзрывоопасность (оборудования, работающие под давлением и наличие легковоспламеняющих жидкостей) СанПиН 2.6.1.1192-03;

2. Экологическая безопасность:

 анализ воздействия объекта на атмосферу (выбросы); - вредные вещества, которые выделяются или используются вовремя производственного процесса в атмосферу (углеводороды, метан);

- анализ воздействия объекта на гидросферу (сбросы);
 анализ воздействия объекта на литосферу (отходы);
- (отходы);
 разработать решения по обеспечению
- разработать решения по обеспечению экологической безопасности со ссылками на НТД по охране окружающей среды.
- -проведение анализа воздействий объекта на гидросферу и литосферу (дождевые стоки с территории тех. площадок, сточные воды, шламы);
- разработаны решения по обеспечению экологической безопасности

3. Безопасность в чрезвычайных ситуациях:

- перечень возможных ЧС при разработке и эксплуатации проектируемого решения;
- выбор наиболее типичной ЧС;
- разработка превентивных мер по предупреждению ЧС;
- разработка действий в результате возникшей ЧС и мер по ликвидации её последствий.
- перечень возможных ЧС при разработке и эксплуатации проектируемого решенияпожар, взрыв в результате использования взрыво- и пожароопасных веществ; - разработка действий в результате
- разработка действий в результате возникшей ЧС и мер по ликвидации её последствий:
- 1. использование огнетушителя, песка, пенораствора, водяного пара.
- 2. в случае стихийных бедствий отключение подачи электроэнергии, сырья, воды;
- 3. организационная эвакуация работающих;

4. Правовые и организационные вопросы обеспечения безопасности:

- специальные (характерные при эксплуатации объекта исследования, проектируемой рабочей зоны) правовые нормы трудового законодательства;
- организационные мероприятия при компоновке рабочей зоны.
- "Трудовой кодекс Российской Федерации" от 30.12.2001 N 197-ФЗ (ред. от 31.12.2014) -организационные мероприятия при компоновке рабочей зоны: технический перерыв, проветривание, полная изоляция от производственных источников шума и вибрации.

Дата выдачи задания для раздела по линейному графику

Задание выдал консультант:

3 10 11 11 11 11 11 11 11 11 11 11 11 11										
Должность	ФИО	Ученая степень,	Подпись	Дата						
		звание								
Профессор кафедры	Ахмеджанов Р.Р.	д.б.н.,								
ЭБЖ ИНК		профессор								

Залание принял к исполнению стулент:

эндиние принии	R Heliotineillio etjaenit		
Группа	ФИО	Подпись	Дата
2K22	Курмель Герман Валериевич		

4. «СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ»

Улучшение условий труда важная задача социальной политики, осуществляемой нашим государством. Правительство уделяет большое внимание созданию здоровых и безопасных условий труда. Для решения задач, определяющих были разработаны ЭТУ проблему, нашим государством реализованы экономические многочисленные правовые, технические, И организационные мероприятия.

В России действует законодательство об охране труда, выраженное в правовых, технических и санитарно-гигиенических нормах. Законодательство предусматривает систему надзора и контроля, точного их выполнения, а также ответственности за нарушение законодательства об охране труда.

4.1 Анализ вредных и опасных факторов на УПН «ВФХ»

УПН "ВАХ" относится к категории взрывопожароопасных производств.

При нарушении правил техники безопасности, правил эксплуатации оборудования, норм технологического режима могут возникать ситуации, приводящие к авариям и травмам.

Основное сырье установки - нефть, И продукт которая является легковоспламеняющейся жидкостью, состоящей ИЗ смеси углеводородов. Вследствие довольно высокого содержания легких газовых фракций, особенно в сырой нефти, и способности их быстрого выделения в атмосферу возможно образование взрывоопасных смесей. Это особенно важно, так как обычное горение возникает и развивается только в паровой (газовой) фазе, и именно к этой фазе относятся показатели пожарной опасности нефтепродуктов. Для практического использования пределы воспламенения могут быть приняты равными: нижний - 2% об. или 40 г/м 3 , верхний - 10 % об. или 200 г/м 3 . Нефти способны при горении прогреваться в глубину, образуя все возрастающий гомотермический слой. Скорость выгорания их 9÷12 см/час, скорость нарастания прогретого слоя при выгорании - 24÷36 см/час, температура прогретого слоя и пламени соответственно 130÷160 и 1100°С.

Деэмульгаторы, используемые на установке, являются пожароопасными и токсичными веществами.

Метанол, применяемый для ввода в газопроводы, является техническим сильнодействующим ядом.

Нефтепродукты, являясь в большинстве случаев хорошими диэлектриками, сохраняют электрические заряды в течение длительного времени.

Газы, выделившиеся в процессе подготовки нефти, являются горючими и способны при утечках образовывать с воздухом взрывоопасные смеси.

При нарушении правил обслуживания механизмов, имеющих движущиеся и вращающиеся части, возможны механические травмы.

При неисправности электрооборудования, электросетей, а также при несоблюдении правил электробезопасности существует возможность поражения электрическим током.

При несоблюдении правил хранения и противопожарных норм возможно загорание смазочных масел и обтирочного материала, деэмульгаторов.

Наличие гидравлических пробок в коммуникациях может вызвать гидравлические удары и разрушение коммуникаций и аппаратов.

Возможно коррозионное разрушение емкостей, арматуры и трубных коммуникаций.

При попадании воздуха в факельную систему возможны взрывы и пожары. Воздушная компрессорная не относится к категории взрывопожароопасных производств, поэтому основным опасным фактором установки является неисправность электрооборудования, электросетей, а также несоблюдение правил электробезопасности.

4.2 Промышленная санитария

Промышленная санитария - система организационных, гигиенических и санитарно-технических мероприятий, предотвращающих воздействие на работающих, вредных производственных факторов согласно [17].

Санитарно-гигиеническая характеристика производственного процесса определяется применением токсичных веществ. С целью обеспечения нормальных санитарных условий все производственные помещения, связанные с применением токсичных веществ обеспечены проточновытяжной вентиляцией.

Сероводород является наиболее токсичным в составе атмосферы объектов по добыче и переработке нефти и газа. Пары сырой нефти малотоксичны. Большее воздействие оказывает попадание нефти на кожные покровы человека, вследствие чего могут возникнуть экземы или дерматиты. Установлено, что токсичность сероводорода возрастет в составе нефтяного газа.

По категориям опасных газовыделений установка относится к опасным с содержанием сероводорода не более 0,2 %. На установке предусмотрены местные отсосы, газ из аппарата направляется через ловушки на факел.

Несмотря на мероприятия, принятые в проекте и перечисленные выше, в производстве возможен контакт обслуживающего персонала с вредными веществами по следующим причинам:

- фоновые постоянные (через неплотности оборудования и запирающих устройств);
- отсутствие герметичности на арматуре;
- возможности разгерметизации оборудования, трубопроводов и арматуры, при продувках скважин, стравливании газа из трубопроводов, аппаратов во время ремонтных работ, открытии предохранительных клапанов;
- при авариях.

Учитывая вышеизложенное, в целях предупреждения профзаболеваний и улучшения условий труда для трудящихся предусматриваются льготы.

Обслуживающий персонал обеспечивается спецодеждой и средствами индивидуальной защиты.

4.3. Метеорологические условия

Метеоусловия зависят от состояния воздушной среды и характеризуются следующими элементами: температурой, влажностью, скоростью движения воздуха, тепловым излучением нагретых поверхностей оборудования и обрабатыванием деталей и материалов. Для обеспечения этих условий в пределах санитарных норм и поддержанием теплового равновесия между теплом человека и окружающей средой на производстве необходимо проводить ряд мероприятий:

- механизация и автоматизация тяжелых работ;
- дистанционное управление теплоизлучающими процессами и аппаратами;
- рациональное размещение и теплоизоляция оборудования, аппаратов и трубопроводов, излучающих тепло;
- для предупреждения переохлаждений и простудных заболеваний у входа в цех устраивают тамбуры. Для работающих на холоде, предусматривают специально оборудованные помещения для обогрева;

С целью создания нормальных условий работы персонала установлены нормы производственного микроклимата. Эти нормы устанавливают оптимальные и допустимые значения температуры, относительной влажности и скорости движения воздуха с учетом согласно [18], тяжести выполняемых работ и сезонов года.

Обслуживающий персонал - машинисты и операторы ЦППН, не менее 50% своего рабочего времени находятся в операторной.

Микроклиматические показатели относятся к числу основных факторов, характеризующих условия труда работающих. Их значения заносят в санитарнотехнический паспорт производственного объекта. Мероприятия по доведению микроклиматических показателей до нормативных значений включаются в комплексные планы предприятий по охране труда, составляемые администрацией ежегодно.

Нормативные показатели производственного микроклимата установлены [19], а также [18]. Этими нормами регламентируют показатели микроклимата в рабочей зоне производственного помещения: температуру, относи тельную влажность, скорость движения воздуха и тепловое излучение.

Нормами установлены оптимальные и допустимые температуры относительная влажность и скорость движения воздуха в зависимости от характера производственных помещений, категории выполняемо работы и времени года.

Согласно санитарным нормам, производственные помещения по избыткам явного тепла, изменяющего температуру воздуха в помещениях, условно подразделяют на холодные, характеризуемые незначительными избытками явного тепла (не более 20 ккал/час на 1 м куб.) и горячие, характеризуемые значительными избытками явного тепла (более 20 ккал/час на 1 м куб).

Различают теплый и холодный период года. Теплый период года характеризуется среднесуточной температурой наружного воздуха + 10°C и выше,

холодный - ниже + 10°C.

Для операторной ЦППН существует оптимальная и допустимая норма температуры, относительно влажности и скорости движения воздуха в рабочей зоне. Оптимальные микроклиматические условия - это такое сочетание параметров микроклимата, которое при длительном воздействии на человека обеспечивает ощущение теплового комфорта и создает предпосылки для высокой работоспособности.

Допустимые микроклиматические условия — это такое сочетание параметров микроклимата, которые при длительном воздействии на человека не могут вызвать дискомфортные теплоощущения и понижения работоспособности.

Для холодного периода года оптимальные и допустимые параметры микроклимата следующие:

- оптимальная температура воздуха 20-23 °C;
- допустимая температура воздуха 19-25 °C;
- оптимальная относительная влажность 40-60%;
- допустимая относительная влажность 75%;
- оптимальная скорость движения воздуха до 0,2м/сек.;
- допустимая скорость движения воздуха до 0,2 м/сек.

Для теплого периода года оптимальные и допустимые параметры микроклимата следующие:

- температура воздуха 18-22 °C;
- относительная влажность 40-60%;
- скорость движения воздуха до 0,2 м/сек. Все показатели в операторной соответствуют стандартным нормам [18], и относится к категории Іб.

4.4. Средства защиты работающих

4.4.1. Средства коллективной защиты

С целью защиты от воздействия вредных газов и паров углеводородов производственные помещения снабжены приточной и вытяжной вентиляцией по [22]. На случай аварии предусмотрена аварийная система вентиляции.

В производственных помещениях и на открытых установках предусмотрены датчики сигнализации предельных концентраций углеводородов.

С целью защиты обслуживающего персонала от шумов и вибрации здания и сооружения выполнены согласно санитарным нормам.

Предусмотрено:

- 1. производственные помещения имеют систему водяного отопления, освещения и вентиляции (механическую и естественную) по [22];
- 2. состав воздуха блок-боксов насосов внешней и внутренней откачки, ГРП ПТБ, БРХ постоянно контролируется датчиками загазованности с выходом сигнала (светового и звукового) в операторную. При превышении содержания взрывоопасных паров углеводородов нефти выше 5-20% от НКПВ происходит включение вытяжной вентиляции;
- 3. контроль состояния воздушной среды открытых площадок осуществляется датчиками загазованности с выходом сигнала (светового и звукового) в операторную и переносным газоанализатором;
- 4. для защиты от шума и вибрации динамического оборудования блок-боксы, в которых они расположены, изготовлены из звукопоглощающих материалов, оборудование надежно закреплено и периодически центруется и балансируется;

- 5. оборудование заземлено, распределительные щиты и пульты закрыты;
- 6. от воздействия химических факторов оборудование и установки герметизируют;
- 7. изоляция трубопроводов с повышенной и пониженной температурой;
- 8. основные параметры работы оборудования выведены в операторную;
- 9. предусмотрено дистанционное управление пуском и остановкой оборудования;
- 10. разработан план ликвидации аварийных ситуаций и проводятся учебнотренировочные занятия с персоналом для отработки правильных действий.
- 11. применение звукопоглощающих кожухов на компрессорах;
- 12. шумопоглощающая изоляция трубопроводов;
- 13. установка вентиляторов на виброоснове.

4.4.2 Индивидуальные средства защиты

Использование на ЦППН жидких и газообразных углеводородов, влияющих на организм человека, вызывает необходимость применения индивидуальных средств защиты по ГОСТ 12.4.011-89. На ЦППН все виды работ производятся в спецодежде, спецобуви и обязательно в каске.

В соответствии с законодательством РФ о труде по ГОСТ 12.4.011-89, обслуживающий персонал ЦППН обеспечивается средствами индивидуальной защиты (СИЗ):

Для защиты обслуживающего персонала от возможных вредных и опасных производственных и метеорологических факторов используются различные приспособления и одежда:

- 1. спецодежда зимняя и летняя, предназначенная для защиты рабочих от вредного воздействия нефти и нефтепродуктов, а также от холода;
- 2. спецобувь, предназначенная для предохранения ног от механических повреждений, от опасностей и вредностей производства, защиты от низких температур;
- 3. головные уборы для защиты головы от механических повреждений (каска, подшлемник), холода и атмосферных осадков;
- 4. рукавицы для предохранения рук от механических повреждений, загрязнений, от холода;

- 5. защитные очки для защиты глаз от механических повреждений, ожогов, пыли и лучистой энергии;
- 6. противогазы, для защиты органов дыхания и зрения (фильтрующие с коробкой марки "А" и шланговые типа ПШ-1;2 применяются в воздухе с малым содержанием кислорода (менее 18% объемных));
- 7. предохранительные пояса, при производстве работ связанных с опасностью падения с высоты.
- 8. для защиты персонала от поражения электрическим током применяются диэлектрические перчатки, коврики, сапоги, резиновые фартуки и прорезиненные костюмы, инструмент с изолированными ручками.
- 9. фильтрующие противогазы марки БКФ при объемной доле свободного кислорода долее 18% и суммарной, объемной доле вредных газообразных веществ не более 0,5%.
- 10.для защиты от несорбирующихся веществ применяются самоспасатели марок СШ-20м, СПИ-40. Для защиты при внутренней чистке аппаратов водой высокого давления, применяется гидрокостюм.
- 11. для защиты кожи используются дерматологические средства.
- 12.для персонала, находящегося в зоне высокого шума, рекомендуются защитные наушники.

4.5. Освещение

Все сосуды и аппараты в ЦППН находятся на открытой площадке при естественном освещении. Естественный солнечный свет характеризуется большой интенсивностью и равномерностью освещения, и создает наилучшие условия для работы. В темное время суток территория ЦППН освещается прожекторами.

В связи с тем, что условия деятельности машинистов и операторов связаны с явным преобладанием зрительной информации, до 90%, особенно важным становится вопрос производственного освещения. Поэтому в производственных помещениях используется искусственное освещение. Для искусственного освещения используют люминесцентные лампы ЛБ - белого цвета или ЛТБ - теплобелого цвета, мощностью 20, 40, 80 Вт. Согласно действующим санитарным нормам и правилам [18], для искусственного освещения регламентирована наименьшая допустимая освещенность рабочих мест, а для естественного и совмещенного - коэффициент естественной освещенности (КЕО).

Рекомендуемая освещенность для работы с приборами КИША составляет 200 лк, а при работе с приборами КИП и А в сочетании с работой над документацией (ежечасная запись в журнале контроля параметров технологического процесса, работой с регламентом техпроцесса) - 400 лк.

Рекомендуемое значение яркости в поле зрения оператора должно лежать в пределах 2,5%.

Расчет искусственного освещения включает в себя следующие этапы:

- выбор типа лампы;
- выбор величины освещения и величины коэффициента запаса;
- расчет освещения методом коэффициента использования.

Расчет электрического освещения выполняют при проектировании осветительных установок для определения общей установленной мощности и мощности каждой лампы или числа светильников.

Основной метод расчета - по коэффициенту использования светового потока, которым определяется поток, необходимый для создания заданной освещенности горизонтальной поверхности при общем равномерном освещении, с учетом света, отраженного стенами и потолком. Расчет выполняется по следующей формуле:

Определяем отношение расстояния между светильниками L и высота их подвеса h_C . В зависимости от типа светильников отношение L/h_C при расположении светильников прямоугольником может быть равным 1,4-2,0.

При $h_C = 0.3$ м; L = 0.6 м.

$$\frac{L}{h_c} = \frac{0.6}{0.3} = 0.2 \tag{4.1}$$

Высота светильников над рабочей поверхностью

$$H_c = h - h_c - h_p \tag{4.2}$$

Где Н-общая высота помещения;

h_C- высота подвеса светильников;

h_P - высота от пола до освещаемой поверхности.

$$H_c = 3 - 0.3 - 0.8 = 1.9 \,\mathrm{M}$$

Находим расстояние между рядами светильников

$$L = 1.4 \cdot H_c$$

$$L = 1.4 \cdot 1.9 = 2.66$$
(4.3)

Определяем площадь помещения

$$S = A \cdot B$$

$$S = 4.5 \cdot 10 = 45 M^{2}$$
(4.4)

Коэффициент запаса, предусматривающий уменьшение световой отдачи ламп при старении и загрязнении, принимаем равным 1,5. В качестве источника света используются УСП-35 с двумя лампами ЛБ-80. В зависимости от уровня освещенности, площади помещения, и высоты подвеса принимаем удельную мощность лампы W=20 Bт/м².

Общая установочная мощность:

$$P = S \cdot W P = 45 \cdot 20 = 900Bm$$
 (4.5)

Находим количество ламп:

$$n = \frac{P}{N} \tag{4.6}$$

N – мощность одной лампы, равна 80 Вт.

$$n = \frac{900}{80} = 12 \text{ IIIT.} \tag{4.7}$$

Светильники устанавливаются в три ряда.

$$F_{pacy} = F_{ma\delta_3} + (-)10\% \tag{4.8}$$

При расчете общего равномерного освещения принимаем метод коэффициента использования.

Величина светового потока лампы определяется по формуле:

$$F = \frac{E \cdot K \cdot S \cdot Z}{n \cdot q} \tag{4.9}$$

Где Е – минимальная освещенность;

k – коэффициент запаса;

n – число ламп в помещении;

q – коэффициент использования;

Z - коэффициент равномерности.

Для определения значения коэффициента использования необходимо знать индекс помещения, который вычисляется по формуле:

$$i = \frac{S}{H_c \cdot (A+B)} \tag{4.10}$$

где S – площадь помещения, 45 м 2 ;

 H_c – высота расположения светильника над рабочей поверхностью, 1,9 м;

А и В – стороны помещения, м.

$$i = \frac{45}{1.9 \cdot \left(4.5 + 10\right)} = 1.6$$

По таблице определяем коэффициент использования q=45 (g_{потолка}=70 и g_{стен}=50), коэффициент равномерности освещения Z=0.9.

$$F = \frac{E \cdot K \cdot S \cdot Z}{n \cdot a} = \frac{400 \cdot 1.5 \cdot 45 \cdot 0.9}{12 \cdot 0.45} = \frac{24300}{5.4} = 4500 \, \text{nm};$$

Так как весь процесс автоматизирован, то присутствие обслуживающего персонала при нормальной работе оборудования не обязательно.

Регламентом технологического процесса предусмотрено не реже одного раза за 2 часа в смену, обходить рабочее место, границы которого также указаны в регламенте.

Рекомендуемая освещенность для работы в ночное время составляет 80 лк. В местах отбора проб приборов КИПиА, расположенных "по месту" освещенность должна составлять 200 лк.

4.6. Шумы и вибрации

На данном производстве источниками шума и вибрации являются: машинный зал компрессорной, насосной и печи подогрева нефти.

Повышение уровня шума и вибрации оказывает вредное воздействие на организм человека, производственное оборудование, коммуникации и сооружения. Все это предусматривает необходимость разработки и осуществления комплекса инженерно-технических и организационных мероприятий для снижения шума и вибрации до величин, установленных санитарными нормами и [21].

Для постоянных рабочих мест и рабочей зоны в производственном помещении и на территории предприятия допустимый уровень шума - 85 ДбА. Уровень шума в боксах составляет максимально 90 и 100 ДбА. Помещения внутри боксов не являются постоянными рабочими местами. Боксы своими стенами из металла и полиуретанового пенопласта препятствуют выходу наружу шума. Обслуживающий персонал находится в боксах только при пуске и контрольных обходах. Контроль за нормальной работой машин в боксах производится из операторной. Снижение уровня шума в боксах при длительном пребывании, например, при ремонтах, достигается индивидуальными средствами защиты от шума. Для постоянных рабочих мест и рабочей зоны в производственном помещении и на территории предприятия допустимый уровень шума - 85 ДбА.

Снижение шума и вибрации достигается:

- уменьшением шума и вибрации в источнике их образования;
- изоляцией источников средствами звуко- и виброизоляцией, звуко и вибропоглащения;
- принятием архитектурно планировочных решений, предусматривающих рациональное размещение оборудования, машин и механизмов.

Средствами индивидуальной защиты от шума и вибрации являются ушные вкладыши, наушники и шлемофоны, а также сапоги на высокой прорезиненной подошве. Эффективность индивидуальных средств защиты зависит от

используемых материалов, конструкции, силы прижатия, правильности ношения. Ушные вкладыши вставляют в слуховой канал уха. Их изготовляют из легкого каучука, эластичных пластмасс, резины, эбонита и ультратонкого волокна. Они позволяют снизить уровень звукового давления на 10...15 дБ. В условиях повышенного шума применяют наушники, которые обеспечивают надежную защиту органов слуха. Так, наушники ВЦНИОТ снижают уровень звукового давления на 7...38 дБ в диапазоне частот 125...8000 Гц. Для предохранения от воздействия шума с общим уровнем 120 дБ и выше применяются шлемофоны, которые герметично закрывают всю околоушную область и снижают уровень звукового давления на 30...40 дБ в диапазоне частот 125...8000 Гц.

Для борьбы с вибрацией машин и оборудования, и защиты, работающих от вибрации, используют различные методы. Борьба с вибрацией в источнике возникновения связана с установлением причин появления механических колебаний и их устранением, например, замена кривошипных механизмов равномерно вращающимися, тщательный подбор зубчатых передач, балансировка вращающихся вибрации масс И Т.Π. Для снижения широко используют эффект вибродемпфирования – превращение энергии механических колебаний в другие виды энергии, чаще всего в тепловую. С этой целью в конструкции деталей, через которые передается вибрация, применяют материалы с большим внутренним трением: специальные сплавы, пластмассы, резины, вибродемпфирующие покрытия. Для предотвращения общей вибрации используют установку вибрирующих машин и оборудования на самостоятельные виброгасящие фундаменты. Для ослабления передачи вибрации от источников ее возникновения полу, рабочему месту, сиденью, рукоятке и т.п. широко применяют методы виброизоляции. Для этого на пути распространения вибрации вводят дополнительную упругую виброизоляторов из резины, пробки, войлока, асбеста, стальных пружин. В качестве защиты, работающих используют спец. средств индивидуальной обувь массивной резиновой подошве. Для защиты рук служат рукавицы, перчатки, вкладыши и прокладки, которые изготовляют из упругодемпфирующих материалов.

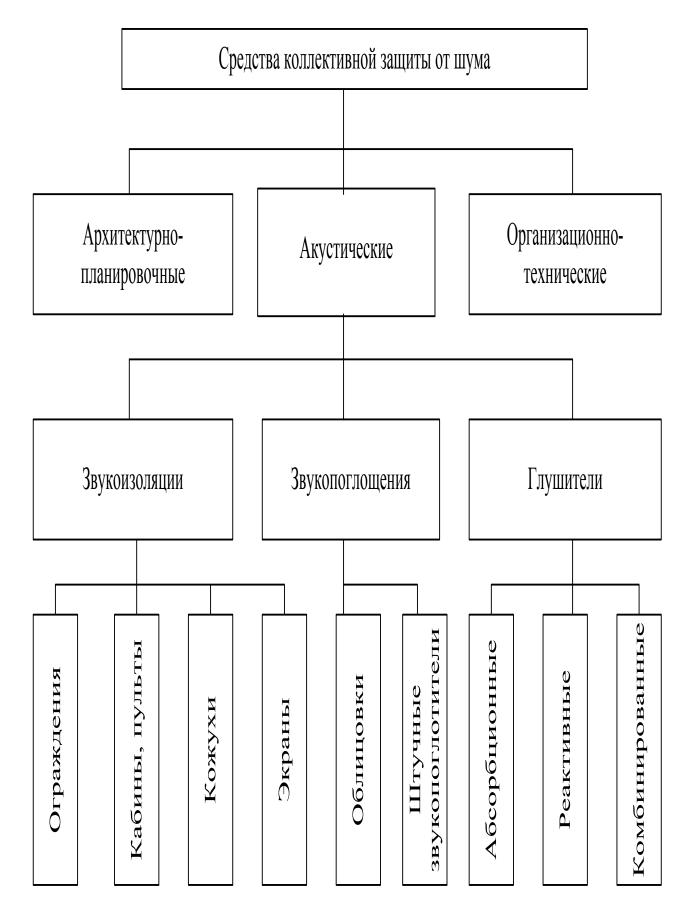


Рисунок 4.1 - Средства коллективной защиты от шума на пути его распространения.

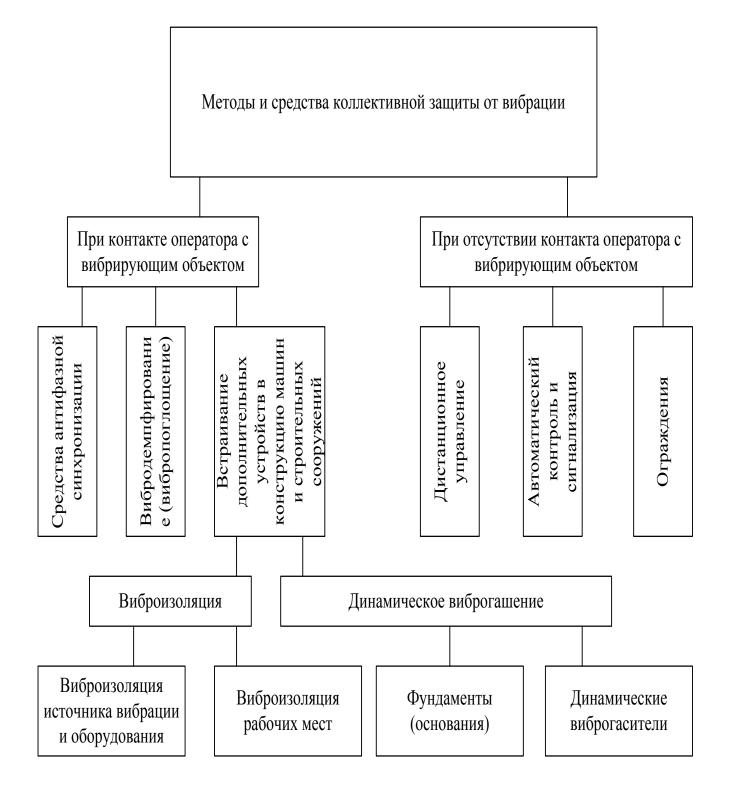


Рисунок 4.2 - Средства коллективной защиты от вибрации.

4.7 Техника безопасности технологического процесса

Среди большого числа отличающихся по характеру процессов химической технологии, можно выделить группу процессов, которые при определённых условиях, возникающих вследствие нарушения регламента, выходят в аварийные режимы с последствиями различной степени тяжести. К технологическому процессу подготовки нефти применимы общие требования безопасности согласно [20]. Процесс отделения нефти от газа является потенциально опасным.

Основные причины возникновения аварийных ситуаций в данном случае можно свести к следующим:

- 1. скорость химического превращения веществ растет, что приводит к увеличению количества выделяемого тепла, подъему температуры, интенсивному газовыделению;
- 2. нарушение режима удаления газов и паров, что приводит к увеличению давления.

Оба отклонения возникают при отказах средств автоматизации, оборудования, стоящего на линии отвода газов и паров из установки и при ошибках обслуживающего персонала.

Надёжное средство защиты потенциально опасных процессов - создание автоматических систем защиты. Параметры, характеризующие течение процесса, должны поддерживаться постоянными.

Все требования безопасности к производственному процессу закладываются при их проектировании и реализуются при организации и проведении технологического процесса. При этом они должны предусматривать следующее:

- 1. устранение непосредственного контакта работающих с исходными материалами, готовой продукцией и отходами производства;
- 2. герметизацию оборудования;
- 3. применение систем контроля и управления технологическим процессом, обеспечивающих защиту работающих и аварийное отключение производственного оборудования;
- 4. своевременное получение информации о возникновение опасных и вредных производственных факторов;

- 5. своевременное удаление и обезвреживание нефти в местах разлива;
- 6. применение средств индивидуальной защиты работающих.

Требования безопасности к технологическому процессу включают в нормативно - техническую и технологическую документацию. Основные требования безопасности:

- 1. запрещается затяжка фланцевых соединений, крышек, люков и другие ремонтные работы на аппаратах и трубопроводах, находящихся под давлением;
- 2. отбор проб нефти через неисправные пробоотборники не допускается;
- 3. запрещается оставлять пробоотборные краники открытыми в случае закоксования или замерзания;
- 4. при отборе проб находиться у запорной арматуры с наветренной стороны, ведя постоянное наблюдение за дренируемой жидкостью, не допуская выброса газа или нефтепродукта;
- 5. в случае образования ледяной пробки в дренаже аппарата или трубопровода, находящегося под давлением, необходимо отключить участок трубопровода или аппарат от общей системы и отпарить снаружи.

4.8. Безопасность технологического оборудования

Установка блочная сепарационная (УБС) относится к специализированному оборудованию отделения нефти от газа. Оборудование не должно быть источником неблагоприятных воздействий, оно должно быть разработано с учетом возможностей человека, оборудование должно отвечать требованиям безопасных условий труда при его эксплуатации и [22].

Наиболее частые причины аварий и взрывов сосудов, работающих под давлением:

- несоответствие конструкции максимально допустимому давлению и температуре;
- превышение давления сверх предельного;
- потеря механической прочности аппарата (коррозия, внутренние дефекты металла, местные перегревы);
- несоблюдение установленного режима работы аппарата;

- недостаточная квалификация обслуживающего персонала;
- отсутствие технического надзора.

Конструкция аппарата должна быть надежной, обеспечивать безопасность при эксплуатации и предусматривать возможность осмотра, очистки, промывки, продувки и ремонта.

Сосуды с внутренним диаметром более 800 мм снабжаются достаточным для осмотра и ремонта числом люков - лазов, расположенных в доступных местах.

Сварные швы сосудов выполняются только стыковыми. Швы должны быть доступны для контроля при изготовлении, монтаже, эксплуатации и ремонте сосудов и аппаратов.

Материалы, применяемые для изготовления сосудов и аппаратов, должны обладать хорошей свариваемостью, а также прочностными и пластическими характеристиками, обеспечивающими надёжную и долговечную работу сосудов и аппаратов в заданных условиях эксплуатации.

4.9 Электробезопасность

Электробезопасность в ЦППН в соответствии с [23] обеспечивается:

- конструкцией электроустановок;
- техническими способами и средствами защиты;
- организационными и техническими мероприятиями.

Отдельно или в сочетании с другими применяется:

- защитное заземление;
- зануление;
- защитное отключение;
- выравнивание потенциала;
- использование малых напряжений;
- изоляция токоведущих частей;
- электрическое разделение сетей;
- предупредительная сигнализация, блокировка;
- использование знаков безопасности;
- электрозащитные средства.

Для обеспечения безопасной работы в электроустановках выполняется комплекс организационных мероприятий:

- организуется инструктаж и обучение безопасным методам работы;
- проверка знаний правил безопасности;
- допуск к работе оформляется в соответствующем наряд-допуске.

Основными причинами поражения электрическим током являются:

- а) случайные прикосновения к токоведущим частям под напряжением в результате:
 - ошибочных действий при проведении работ;
 - неисправности защитных средств, которыми пострадавший касался токоведущих частей.
- б) появление напряжения на металлических конструктивных частях оборудования в результате:
 - повреждения изоляции токоведущих частей;
 - замыкание фазы сети на землю;
 - падение провода, находящегося под напряжением, на конструктивные части электрооборудования.
- в) появление напряжения на отключенных токоведущих частях в результате:
 - ошибочного включения отключенной установки;
 - замыкания между отключенными и находящимися под напряжением токоведущими частями;
 - разряда молнии в электроустановку и др.
- г) возникновение напряжения шага на участке земли, где находится человек в результате:
- замыкания фазы на землю;
- выноса потенциала протяженным токопроводящим предметом и др.

Вероятность исключения указанных причин зависит от обучения персонала.

Основными мероприятиями по защите от электротравм являются:

- обеспечение недоступности токоведущих частей путем использования изоляции, ограждений, расположения указанных частей на высоте, в корпусах и в оборудовании;
 - применение малых напряжений в местных и переносных источниках света;

- использование изоляции токоведущих частей;
- применение средств коллективной защиты от поражения электрическим током, таких как заземление, зануление, защитное отключение;
- обучение и аттестация персонала.

Для защиты от статического электричества и вторичных проявлений молний, аппараты, трубопроводы и металлоконструкции, имеющие контакт с пожаровзрывоопасными средами, должны быть заземлены.

СИЗ: для защиты персонала от поражения электрическим током применяются диэлектрические перчатки, коврики, сапоги, резиновые фартуки и прорезиненные костюмы, инструмент с изолированными ручками.

СКЗ: к средствам коллективной защиты от поражения электрическим током относятся: заземление, зануление, защитное отключение, изоляция, ограждение, блокировка, пониженные напряжения, сигнализация и плакаты, электрозащитные средства, электрическое разделение сетей.

4.9.1 Категории опасности помещений

В отношении опасности поражении людей электрическим током различают:

Помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную или особую опасность.

Помещения с повышенной опасностью, которые характеризуются наличием в них одного из следующих условий, создающих повышенную опасность:

- сырость;
- токопроводящая пыль;
- токопроводящие полы (металлические, земляные, железобетонные, кирпичные и т.п.);
- высокая температура;
- возможность одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям, технологическим аппаратам, с одной стороны, и к металлическим корпусам электрооборудования с другой.

В данном предприятии не имеются помещения с повышенной опасностью.

4.9.2 Первичные критерии электробезопасности

настоящего времени нет однозначных нормативных данных ПО допустимым для человека токов и напряжений. Это объясняется сложностью физиологических процессов при протекании тока через тело человека, неоднозначностью реакции организма отдельных людей на одинаковые токи и техническими трудностями выполнения наиболее жестких требований электробезопасности при разработке электроустановок.

4.10 Молниезащита

Разряды атмосферного электричества способны вызывать взрывы, пожары и разрушения зданий и конструкций.

Виды воздействия молний:

- первичное, вызывающее непосредственное разрушение;
- вторичное, посредством явлений статического электричества и электромагнитной индукции здания и сооружения подлежат молниезащите в соответствии с СН 305-77 для зданий и сооружений, отнесенных к 1-ой категории молниезащиты. Это здания и сооружения, где длительное время сохраняются и систематически возникают взрывоопасные смеси газов, паров, пыли, перерабатываются и хранятся взрывоопасные вещества.

На ЦППН предусмотрена защита зданий, сооружений, оборудования, трубопроводов от прямых попаданий ударов молнии путем присоединения корпусов установок, отдельных емкостей и аппаратов к заземляющему контуру и установкой молниеприемников.

4.11 Пожаровзрывоопасность

Пожаровзрывоопасность технологических процессов в значительной степени определяется физико-химическими свойствами сырья, промежуточных и конечных продуктов. Газ, который образуется в результате отделения нефти от газа в установке и имеющий концентрационные пределы воспламенения в воздухе, относится к горючим.

К опасным и вредным факторам, которые могут воздействовать на людей в результате пожара и взрыва, относятся: пламя, ударная волна, обрушение коммуникаций и оборудования, выход из поврежденных аппаратов, содержащихся в них вредных веществ и др.

Рекомендации ГОСТ определяют два основных принципа обеспечения пожаровзрывоопасности:

- предотвращение образования горючих и взрывоопасных концентраций сред;
- пожаро- и взрывозащита технологических процессов.

В целях пожаровзрывобезопасности на территории сепараторов применение для освещения факелов, спичек, керосиновых фонарей и других источников открытого огня. При отсутствии освещения разрешается пользоваться только пожаровзрывобезопасносными аккумуляторными фонарями. Использованный обтирочный материал складывать в металлические ящики и по окончании работ выносить в безопасное в пожарном отношении место. Курение на территории цеха разрешается только в специально отведенных местах.

Оборудование выбрано во взрывобезопасном исполнении.

4.11.1 Характеристика технологического процесса по взрывопожароопасности и вредности применяемого сырья, продуктов и материалов

Технологический процесс установки подготовки нефти по показателям пожаро- и взрывоопасное относится к взрывопожароопасному.

В аппаратах и трубопроводах установки одновременно может находиться до $14000~{\rm M}^3$ нефти.

Технологический процесс характеризуется наличием следующих опасных и вредных производственных факторов:

- процесс ведется при избыточном давлении (до 5,2 кгс/см²) и при повышенной температуре до 50 °C;
- температура пламени в печи нагрева нефти достигает 1600-1700 °C, продуктов сгорания, циркулирующих и омывающих змеевик 800 -900 °C, а отходящих дымовых газов 650 °C;
 - давление нагнетания насосов внешней перекачки составляет 28 37 кгс/см²;

- в качестве топлива для печей ПТБ-10 используется природный газ основное сырье и продукт установки - нефть, которая является легко воспламеняющейся жидкостью, состоящей из смеси углеводородов. В следствии довольно высокого содержания легких газовых фракций, особенно в сырой нефти, и способности их быстрого выделения в атмосферу, возможно образование взрывоопасных смесей.

Это особенно важно, так как обычное горение возникает и развивается только в паровой (газовой) фазе, и именно к этой фазе относятся показатели пожарной опасности нефтепродуктов.

Нефти способны при горении прогреваться в глубину, образуя все нарастающий гомотермический слой. Скорость выгорания их 9-12 см/час, скорость нарастания прогретого слоя при выгорании -24-36 см/час, температура прогретого слоя и пламени соответственно 130-160 и 1100 град С.

- применяемых метанолосодержащих химреагентов;
- возможностью образования взрывоопасных концентраций углеводородов при проведении зачистных или ремонтных работ в емкостях и резервуарах, а также при отпуске и приеме нефти открытым способом;
- возможностью накопления зарядов статического электричества при движении нефтепродуктов по трубопроводам, сливе и наливе автоцистерн, заполнении и откачке PBC и т.д.;
- возможность получения механических травм при нарушении правил обслуживания механизмов, движущихся и вращающихся частей;
- возможность поражения электрическим током при неисправности электрооборудования, а также при несоблюдении правил электробезопасности;
- возможность загорания смазочных масел и обтирочного материала при несоблюдении правил хранения и противопожарных норм;
- возможность разрушения коммуникаций и аппаратов при наличии гидравлических пробок;

- возможно коррозионное разрушение емкостей, арматуры и трубных коммуникаций.

Взрывопожароопасные, токсические свойства сырья, полупродуктов, готовой продукции и отходов производства приведены в таблице 4.1

Противопожарная и пожарная опасность, санитарная характеристика производственных зданий, помещений и наружных установок приведена в таблице 4.2.

Установка подготовки нефти укомплектована первичными средствами пожаротушения в соответствии с нормами (ППБО).

Также ЦППН оборудован автоматической системой пожаротушения (АСПТ).

Состав АСПТ:

- Установка охранно- пожарной сигнализации «ТОПАЗ»
- Извещатели пожарные автоматические тепловые ИП 103 4/1 (MAK —I)
- Извещатели пожарные автоматические ИП103-1В
- Извещатели пожарные ручные
- Щиты пожарной автоматики и сигнализации АСПТ
- Насосная водотушения
- Насосная пенотушения
- Трубопроводы подачи пены
- Трубопроводы подачи воды (на орошение)

Взрывопожароопасные, токсические свойства сырья, полупродуктов, готовой продукции и отходов производства - Таблица 4.1

	продукции и отходов производства - 1 аолица 4.1									
	, готовой			T	емпер	оатура	Конц цион пре взрыв т	іный едел аемос		Предел ьно – допуст имая концен
№ п/п	Наименование сырья, полу-продуктов, готовой продукции, отходов производства	Агрегатное состояние	Класс опасности (ГОСТ 12.1.007 – 76)	вспышки	воспламенения	самовоспламенения	Нижний предел	Верхний предел	Характеристика токсичности (воздействия на организм человека)	трация вещест в в воз- духе рабоче й зоны произв од- ственн ых помещ ений (ГОСТ 12.1.00 5-88)
1	2	3	4	5	6	7	8	9	10	11
1	нефть	жидкос	IV	35	20 0	230- 250	1.2	7.5	При работе с сырой нефтью возможны отравления или кожные поражения, т.к. пары парафиновых и нафтеновых углеводородов обладают наркотическим действием и вызывают судороги. При высоком содержании ароматических углеводородов возможно бензольное отравление, сопровождающе еся резким изменением состава крови.	300

2	метан этан пропан бутан изо- бутан	газ	IV			250- 300	5 2.9 2.1 1.8 1.8	15.7 15 9.5 9.1 38	Газ, попадая в организм человека, оказывает на него вредное физиологическо е воздействие. Это действие может быть удушающим, если оно обусловлено недостатком кислорода во вдыхаемом воздухе. Общий характер действия повышенных концентраций углеводородов.	300
3	пентан изо- пентан гексан	жидкос ть	IV	35	20 0	230- 250	1.4 1.3 1.2	1.8 28 7.5	Общий характер действия повышенных концентраций углеводородов.	300
4	метанол	жидкос	III	8	13	464	6	34.7	Метанол — сильнодействую щий яд, вызывающий поражение центральной нервной системы и сердечнососудистой системы. При попадании внутрь вызывает слепоту и смерть. Тяжелое отравление, сопровождающе еся слепотой, вызывает 5 – 10 см ³ .	5
5	этиловы й спирт	жидкос	IV				3.3	19		1000

6	бензол толуол	жидкос	III			1.4	6.11	Вызывают отравления, сопровождающи еся резким изменением состава крови.	5 50
7	ацетон	жидкос	IV			2.2	13		200
8	деэмуль гатор	жидкос	IV	8- 40				Деэмульгаторы относятся к токсическим веществам. При длительном воздействии его паров возможно отравление. Признаками отравления считаются головная боль, тошнота, головокружение , шум в ушах, общая слабость.	

№ п/ п	Наименование производственны х зданий, помещений, наружных установок	Категория взрывопожарно й и пожарной опасности помещений и зданий	Классификация вне помещений и устан электрооборудо Класс взрывоопасно й или пожароопасно й зоны	й для выбора ювки	Группа производственн ых процессов по санитарной характеристике
1	Склад хим.	3	В – 1г	II A, T 3	III б
	реагентов	Α.		,	
2	БРХ №1, №2, №3 Технологическая	A	B – 1a	II A, T3	Шб
3	площадка		В – 1г	II A, T3	Шб
4	Дренажные емкости ОГ - 200		В – 1г	II A, T 3	Шб
5	ΓΡΠ ΠΤБ – 10 №1, №2, №3	A	B – 1a	I, T 1	III б
6	Площадка подготовки топливного газа (ППТГ)		B – 1r	I, T 1	Шб
7	Факельная установка		В – 1г	I, T 1	III б
8	Сатурн №1, №2, <u>№3</u>	Д			1a
9	Дренажные емкости ЕПП №1 – 10		В – 1г	II A, 3	Шб
10	Kap∍ PBC №1, №2		В – 1г	II A, T 3	Шб
11	Kap∍ PBC №3, №4, №5, №6, №7, №8		В – 1г	II A, T 3	Шб
12	Насосная внешней перекачки	Б	B – 1a	II A, 3	Шб
13	Насосная внутренней перекачки	Б	B – 1a	II A, 3	III 6
14	Помещение КУУН	Б	B – 1a	II A, 3	Шб
15	Узел отпуска нефти		В – 1г	II A, 3	Шб
16	Насосная пенотушения	Д			
17	Насосная водотушения	Д			

18	Узел задвижек пены	Д		
19	Узел задвижек воды	Д		
20	Административн ое помещение	Д		I a
21	Станция азототушения	Д		I a
22	Операторная	Д		I a
23	Слесарная мастерская	Д		I a
24	Лаборатория КИПиА	Д		I a
25	Склад блочный	Д		
26	Помещение химико- аналитической лаборатории	Б		Шб
27	Кабинет начальника лаборатории	Д		
28	Вагон - сушилка	Д		
29	Склад-контейнер	Д		
30	Склад лаборатории	Б		
31	Кабинет начальника цеха	Д		I a

4.11.2 Система азотного пожаротушения

Система азотного пожаротушения состоит из двух ресиверов со сжатым азотом, объемом 25 м ³ каждый, оснащенных запорной арматурой, трубопроводами, приборами КИПиА, предназначенную при возникновении пожара производить тушение огня в закрытом объеме печи.

Азот концентрацией не ниже 95 % об. получают из воздуха непосредственно на производственной площадке с помощью мембранной воздухоразделительной установки типа АПТ - Мб - 95М и закачивают в ресиверы.

В случае возгорания азот поступает в технологический объем и обеспечивает быстрое и надежное тушение пожара без побочного воздействия на оборудование и персонал.

Первичные средства пожаротушения: огнетушители, кошма, противогазы, для защиты органов дыхания и зрения (фильтрующие с коробкой марки "А" и шланговые типа ПШ-1;2 применяются в воздухе с малым содержанием кислорода (менее 18% объемных)); фильтрующие противогазы марки БКФ при объемной доле свободного кислорода долее 18% и суммарной, объемной доле вредных газообразных веществ не более 0,5%.

4.12 Охрана окружающей среды

Генеральный план представляет собой вычерченную в масштабе схему предприятия с изображенными на ней проектируемыми и существующими зданиями и сооружениями, дорогами и проездами, благоустройством и озеленением территории. Цех удален на расстояние 1 км от поселка.

Природные условия района строительства:

- площадка строительства расположена в климатическом подрайоне 1B, с резко континентальным климатом, с продолжительной суровой снежной зимой и коротким летом.
 - абсолютная минимальная температура 55°C.
 - абсолютная максимальная температура + 36°C.

- высота снежного покрова 60 см.
- рельеф спокойный. Абсолютные отметки поверхности измеряются 125 -132,5 м. Грунты основания зданий относятся к средне и сильно пучистым.

На площадке вскрыты два водоносных горизонта. Верховода встречается на глубине 1-3 м и имеет мощность до 5 м. Грунтовые воды вскрыты на глубине 11-13 м. Амплитуда сезонных колебаний составляет 10 м.

С целью охраны воздушного бассейна выполнены следующие мероприятия:

- сброс углеводородных газов на факел с КСУ, освобождение оборудования для ремонта и в аварийных случаях производится на факельную установку;
 - высота дымовых труб и факельного ствола выбраны с учетом рассеивания вредных веществ, при выбросе их через трубы;
 - уплотнительные поверхности фланцев, трубопроводов, подающих углеводороды, имеют исполнение «шип-паз», «выступ-впадина»;
- компрессорные и основные насосы выполнены в герметичном исполнении и оборудованы системами блокировок, которые останавливают

аппарат при нарушении технологического процесса;

- факельная установка обеспечивает безопасное освобождение

производства от всех легких горючих сред [16].

Для бездымного горения углеводородов на факел подается водяной пар. Контроль наличия в воздухе углеводородов осуществляется датчиками довзрывных концентраций типа СТМ-10, которые установлены в местах возможного возникновения утечек.

4.12.1 Мероприятия по охране атмосферного воздуха от загрязнений

На территории месторождения основными загрязняющими атмосферу веществами являются диоксид азота, окиси углерода, углеводороды, образующиеся в результате сгорания газа на факельных установках, нефти в котельной, углеводороды нефти и попутного газа, обусловленные потерями за счет испарения в системах сбора, хранения и транспорта нефти, а также углеводороды, выделяющиеся в результате залповых выбросов. Залповые выбросы ИЗ технологических аппаратов происходят при проверке работоспособности предохранительных клапанов, а также при аварийных ситуациях. Залповые выбросы технологических OT аппаратов ПО существующей технологии направляются на факел сжигания газа.

Снижение концентрации загрязняющих веществ в приземном слое атмосферы обеспечивается безаварийной работой технологического оборудования в режиме нормальной эксплуатации промысла.

В целях предупреждения загрязнения атмосферного воздуха, проектными решениями предусматривается ряд мероприятий по сокращению выбросов вредных веществ в атмосферу:

- полная герметизация системы сбора и транспорта нефти и газа;
- стопроцентный контроль швов сварных соединений трубопроводов;
- защита оборудования от коррозии;
- частичная, а в перспективе полная утилизация попутного газа;
- оснащение предохранительными клапанами всей аппаратуры, в которой может возникнуть давление, превышающее расчетное;
- сброс нефти и газа с предохранительных клапанов в аварийные емкости или на факел;
- испытание оборудования на прочность и герметичность после монтажа;
- применение современного блочно-комплексного оборудования заводского изготовления.

4.12.2 Способ утилизации легких горючих

Количественное определение содержания вредных веществ в атмосферном воздухе осуществляется с использованием методик и инструкций Госкомприроды, Госкомгидромета и Минздрава. Весь комплекс организационно-технических мероприятий должен обеспечить соблюдение предельно-допустимых концентраций (ПДК) загрязняющих веществ в атмосферном воздухе.

Чистота атмосферного воздуха обеспечивается путем сокращения абсолютных выбросов газов и обезвреживанием выбросов, содержащих вредные вещества.

бурении рекомендуется При скважин использовать замкнутую герметичную систему циркуляции бурового применять раствора, герметичные закрытые емкости ДЛЯ хранения нефти и ГСМ, нейтрализовать и обезвреживать выхлопные газы ДВС, утилизировать попутный нефтяной газ, предупреждать газопроявления, предусмотреть автоматическое отключение нефтяных скважин при прорыве выкидной линии.

Таблица 4.4

№ п/п	Наименование	ПДК м.р. в	Класс	Парамет	ры выбросов
	загрязняющих	воздухе	опасности		
	веществ	населенных			
		мест, $M\Gamma/M^3$			
				г/сек	т/год
1.	Двуокись азота	0.085	2	0.078	1.230
2.	Окись углерода	5.000	4	0.220	4.88
3.	Углеводороды	50(ОБЦВ)	4	9.140	298.8
4.	Сажа	0.15	3	0	2
5.	Метанол	1	3	0.041	1.290

На аварийных факельных установках необходимо обеспечить полное и бездымное сгорание газов. По возможности факельные газы собирать в газгольдер для дальнейшего его использования, предусмотреть очистку сбрасываемого газа на факел от капельной нефти, оборудовать факела устройствами для дистанционного розжига горелок.

Необходимо обустроить площадь герметизированной системой сбора, подготовки и транспорта нефти. Продукты стабилизации нефти необходимо утилизировать, отправив их на рецикл, а не сжигать на факелах.

Нефтяные резервуары необходимо оборудовать клапанами в северном исполнении типа КДС в комплексе с дисками-отражателями и ГУС.

В качестве топлива рекомендуется использовать природный газ, процесс сжигания топлива следует оптимизировать.

О всех выбросах вредных веществ в случае аварии НГДУ должно сообщить в установленном порядке Комитету по охране природы по территориальной принадлежности.

4.12.3 Мероприятия по рациональному использованию и охране водных ресурсов

Отрицательное воздействие на химический состав поверхностных и подземных вод, на флору и фауну водоемов при эксплуатации объектов нефтедобычи оказывают разливы нефти и высокоминерализованных вод. При попадании нефти в водоемы образуется пленка на поверхности воды, препятствующая воздушному обмену. Стоки нефтяных промыслов, а также населенных пунктов в районе добычи углеводородного сырья содержат нефтепродукты, а также органические соединения фенола, СПАВ, ионы металлов, хлориды, сульфаты, разнообразные компоненты буровых растворов и другие загрязняющие вещества

Основные мероприятия, способствующие охране водоемов, сводятся к следующему:

- 1) запрещается сброс сточных вод в водные объекты, необходимо после доочистки использовать их в системе ППД для оборотного водоснабжения.
- 2) установление и поддержание водоохранных зон.
- 3) максимально возможное вынесение объектов из экологически уязвимых зон.

- 4) герметизированная система сбора и транспорта продукции скважин, своевременный профилактический осмотр, ремонт оборудования, трубопроводов, арматуры.
- 5) использование труб из синтетических материалов, соответствующих климатическим условиям района.
- 6) 100% контроль качества сварных стыков физическим методом, испытание трубопроводов на прочность и плотность.
- 7) переходы трубопроводов через водные преграды должны осуществляться подземно.
- 8) отсыпка кустовых площадок с учетом поверхностной системы стока.
- 9) бетонирование оснований технологических площадок с бортиком по периметру под оборудование, где возможны утечки нефтепродуктов.
- 10) сбор разлившихся нефтепродуктов в аварийную емкость с последующей передачей на ДНС.

4.13 Чрезвычайные ситуации

4.13.1 Производственные аварии

Аварии на ЦППН могут произойти из-за утечки взрывоопасной смеси через неплотности оборудования и трубопроводов, несоблюдения норм технологического режима, повреждения оборудования, замыкания электрооборудования и т.п.

При возникновении пожара обслуживающему персоналу необходимо:

- локализовать очаг возгорания;
- сообщить начальнику смены, позвонить по телефону в пожарную часть;
 - не входить в зону задымления при видимости менее 10 м;
 - при движении через горящее пространство накрыться с головой мокрым куском плотной ткани;

- тушение электрооборудования и электропроводки осуществляется только после их обесточивания, либо используя углекислотный огнетушитель;
- производство остановить, на щите в операторной нажать кнопку «стоп»,

что приведет к отработке команды (программы) «стоп» в автоматическом режиме;

- взрывоопасные участки отглушить.

При утечке вредных веществ необходимо быстро покинуть зону выброса перпендикулярно направлению ветра (движению облака газа). При необходимости использовать самоспасатель.

4.13.2 Стихийные бедствия

Возможные стихийные бедствия:

- Ураганы - ветры большой силы и значительной продолжительности, скорость

воздушного потока 32 м/сек;

- Наводнение;
- Снежные заносы и обледенения;
- Оползни;
- Пожары.

Стихийные бедствия - это такие явления природы, которые вызывают экстремальные ситуации, нарушают нормальную жизнедеятельность людей и работу объектов, к ним относятся:

- землетрясения - наиболее опасные и разрушительные стихийные бедствия. Область возникновения подземного удара является очагом землетрясения, в пределах которого происходит высвобождение накапливающейся энергии;

- наводнение временное затопление значительной части суши в результат действия сил природы. Наводнения могут быть вызваны: выпадением обильных осадков или интенсивным таянием снега;
- снежные лавины, заносы и обледенения одно из проявлений стихийных сил в зимний период. Они возникают в результате обильных

снегопадов, которые могут продолжаться от нескольких часов до нескольких суток;

- бури и ураганы - возникают при прохождении глубинных циклонов и представляют собой движение воздушных масс. Несут большие разрушения.

В случае перечисленных стихийных бедствий необходимо на ЦППН произвести аварийную остановку и срочно эвакуироваться согласно плана эвакуации.

ЗАКЛЮЧЕНИЕ

В результате проделанной работы был проведен технологический расчёт, целью которого явилось определение основных параметров нефтегазосепаратора: диаметра, длинны и объема аппарата, по которым был выбран стандартный нефтегазосепаратор.

Проведён конструктивный расчет, в котором был проведен расчет и подбор стандартных патрубков для ввода нефтегазовой эмульсии, вывода нефти и газа, для люк-лаза.

Проведён механический расчёт, где были рассчитаны толщины стенок: цилиндрической обечайки и эллиптических днищ. Были подобраны стандартные фланцы, и произведен прочностной расчет фланцевых соединений на прочность и герметичность. Проведен расчет укрепление отверстий патрубков штуцеров. Подобраны стандартные: люк-лаз, крышка и ручка к люк-лазу. Для аппарата были рассчитаны стандартные опоры.

Также, в дипломной работе представлены разделы: «Социальная ответственность», «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение».

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Г. С. Лутошкин. Сбор и подготовка нефти, газа и воды: Учебник для вузов. − 3-е изд., стереотипное. Перепечатка со второго издания 1979 г. − М.: ООО ТИД «Альянс», 2005. − 319 с.
- 2. ТУ 3615-001-85873787-2010 Аппараты емкостные цилиндрические для жидких и газовых неагрессивных сред.
- 3. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологию. Лю: Химия, 1987. 576 с..
- 4. ГОСТ 19281 89. Прокат из стали повышенной прочности.
- 5. ГОСТ P 52857.1 2007. Общие требования.
- 6. В.М.Беляев, В.М.Миронов В. В. Тихонов. Конструирование и расчёт элементов оборудования отрасли. Часть І. Аппараты с механическими перемешивающими. Томск: Изд-во Томского политехнического университета, 2009. 95 с.
- 7. М. Ф. Михалев, Н. П. Третьяков, А. И. Мильченко, В. В. Зобнин. Расчет и конструирование машин и аппаратов химических производств. Примеры и задачи: Учебное пособие для студентов втузов. ООО ТИД «АРИС», 2013. 312 с.
- 8. ГОСТ Р 52857.2 2007. Расчет обечаек и днищ.
- 9. ГОСТ 6533 78. Днища эллиптические отбортованные стальные для сосудов аппаратов и котлов. Основные размеры.
- 10. ГОСТ 12815 80. Фланцы арматуры, соединительных частей и трубопроводов.
- 11. ГОСТ Р 52857.4 2007 Расчет фланцевых соединений.
- 12. ГОСТ Р 52857.3 2007. Укрепление отверстий.
- 13. ОСТ 26–2006–83. Люки с фланцами, приварными встык, с уплотнительной поверхностью "шип-паз" стальных сварных сосудов и аппаратов.
- 14. OCT 26 2002.2

- 15. А. А. Лащинский, А. Р. Толчинский. Основы конструирования и расчет химической аппаратуры. Л., «Машиностроение», 1970г., 752с.1.
- 16. ГОСТ Р 52857.5 2007. Обечайки и днища от воздействия опорных нагрузок.
- 17. ГОСТ 12.0.002 83. Система стандартов безопасности труда. Термины и определения.
- 18. СН-2.2.4.584 96. Гигиенические требования к микроклимату производственных помещений.
- 19. ГОСТ 12.1.005 88. Воздух рабочей зоны. Общие санитарногигиенические требования
- 20. ГОСТ 12.4.021 75. Системы вентиляционные. Общие требования.
- 21. ГОСТ 12.1.003 83. Шум. Общие требования.
- 22. ГОСТ 12.3.002 75. Процессы производственные. Общие требования безопасности.
- 23. ГОСТ 12.1.019 79. Электробезопасность. Общие требования и номенклатура видов защиты.

приложение а

	Формал	Зона	<i>No3.</i>	l	Обозни	JY <i>PHU</i>	Наименование	Кол.	Приме- чание
Перв. примен.							Документация	7	
Перв.	Н						Пояснительная заг	Πυςκα	
	Я						Сборочный чертеж		
							(Sopoliulo odoliuli	,	
a	Н		1	E-8979	2_1		<u>Сборочные едениць</u> Желоб	2	
Справ. №	Н		2	E-8979			Желоб	2	
	Н		3	E-8979			Желоб	1	
	Н		4	E-8979			Желоб	2	
			5	E-8979			Желоб	1	
	П		6	E-8979			Желоб	2	
			7	E-8979	9-7		Отбойник	1	
			8	E-8979	7–8		Желоб	2	
D			9	E-8979	9-9		Желоδ	9	
Подп. и дата			10	E-8979	9-10		Желоб	2	
ди. п			11	E-8979	9–11		Желоб	2	
7			12	E-8979	WS D		Желоб	2	
107	Ш		13	E-8979	8770,000		Желоб	3	
№ дубл.	Ш			E-8979			Желоб	2	
NHB.			15	7 23 C1 02002-000-190	00 0000		Желоб	3	
_			16	E-8979			Слив	1	
UHB	Ш		17	E-8979			Лоток	1	
Взам. инв. №	Н		18				Колпак	1	
_	Н		19	E-8979	1–19		Штуцер		
Зата	Н		00	F 205	2 66		СПЕЦИОЛЬНЫЙ	1	
Подп. и дата	Н	Ш	20	E-8979	1-20		Κοροδκα	1	
Noō									
оди:		Λυα πραδ		№ докцм.	Подп.	Дата		Лит. Лист	/lucmot
№ подл.							F		1
NHB.	Н.К. Ута	OHM) B	7.						

Формал	Зона	Nos.	Обозначение	Наименование	Кол.	Прими чание
		21	E-8979-21	Опара	2	
			E-8979-22	Секция	<u> </u>	
	\Box			газоотбойника	4	
		23	E-8979-23	Секция		
	П			газоотбойника	6	
	4	24	E-8979-24	Люк-лаз 450-25	1	
			E-8979-25	Штуцер		
				СПЕЦИАЛЬНЫЙ	1	
		26	E-8979-26		1	
	_	_	E-8979-27	Уголок	1	
	_		E-8979-28	Уголок	1	
			E-8979-29	Уголок	1	
		_	E-8979-30	Уголок	1	
	1	31	E-8979-31	Уголок	1	
		32	E-8979-32	Уголок	1	
		33	E-8979-33	<i>Уголок</i>	1	
	_	34	E-8979-34	Косынка	2	
	3	35	E-8979-34-01	Косынка	2	
	_	36	E-8979-34-02	Косынка	2	
	_	37	E-8979-34-03	Косынка	2	
	_	<i>38</i>	E-8979-34-04	Косынка	2	
	_	<i>39</i>	<i>E-8979-34-05</i>	Косынка	2	
	4	40	E-8979-34-06	Косынка	2	
	4	41	E-8979-34-07	Косынка	2	
	1	42	E-8979-35	Прокладка	1	
		43	E-8979-36	Крючок	20	
Ш	4	44	E-8979-37	Лист	1	
	4	45	E-8979-38	Лист	1	
1/12	1					/
Из	м. Лисі	77	№ докум. Подп. Дата			

47 48 49	E-8979-39 E-8979-40 E-8979-41	Лист Лист	2	
48 49		Лист		
49	F-8979-41	7102111	1	
		Планка	4	
F	E-8979-42	Обечайка	1	
50	E-8979-43	Обечайка	1	
51	E-9200-1	Обечайка		
		<i>Dвнутр=3000 мм</i>		
		L=16000 MM		
		ПН-6*12 ГОСТ 19903-74	1	15781 KZ
		Лист 09Г2С-9 ГОСТ 19281-89		
52	E-9200-2	Днище 3000-10-750-09Г2С	1	
		ΓΟCT 6533-78		
53	E-9200-3	Днище 3000-10-750-09Г2С	1	
		ΓΟCT 6533-78		
54	E-9200-4	Παπρ <i>μδοκ l=317</i>		
		Патрубок 25х3 – 10Г2		
		ΓΟCT 4543-71	2	
55	E-9200-5	Παπρ <i>уδοκ l=345</i>		
		Патрубок 25х3 – 10Г2		
		ΓΟCT 4543-71	2	
56	E-9200-6	Патрубок l= 80.5		
		Παπρуδοκ 43x1 – 10Γ2		
		ΓΟCT 4543-71	4	
57	E-9200-7	Патрубок l=83		
		Патрубок 53х1.5 – 10Г2		
		ΓΟCT 4543-71	1	
58	E-9200-8	Παπρ <i>уδοκ l=139</i>		
		Патрубок 153х1 – 10Г2		
		ΓΟCT 4543-71	2	
7	102			Λυςι
	52 52 53 54 54 55 56	55 E-9200-5 56 E-9200-6 57 E-9200-7 58 E-9200-8 1 Nucm № доким. Подп. Дата	ВВНУТРЕЗООО ММ L=16000 ММ ПН-6*12 ГОСТ 19903-74 ЛИСТ 0972C-9 ГОСТ 19281-89 52 Е-9200-2 ДНИЩЕ 3000-10-750-09Г2С ГОСТ 6533-78 ДНИЩЕ 3000-10-750-09Г2С ГОСТ 6533-78 Лист 1000-10-750-09Г2С ГОСТ 6533-78 ДНИЩЕ 3000-10-750-09Г2С ГОСТ 6533-78 Патрубак 1=317 Патрубак 25х3 - 10Г2 ГОСТ 4543-71 Патрубак 1=345 Патрубак 25х3 - 10Г2 ГОСТ 4543-71 Татрубак 1=80.5 Патрубак 1=80.5 Патрубак 1=83 Патрубак 1=39 Патрубак 153х1 - 10Г2 ГОСТ 4543-71 Татрубак 153х1 - 10Г2 ГОСТ 4543-71	Ввнутр=3000 мм L=16000 мм ПН-6*12 ГОСТ 19903-74 1 Лист 0972С-9 ГОСТ 19281-89 1 Б2 Е-9200-2 Днище 3000-10-750-09Г2С 1 ГОСТ 6533-78 1 Б3 Е-9200-3 Днище 3000-10-750-09Г2С 1 ГОСТ 6533-78 1 Патрубок 1=317 Патрубок 25х3 - 10Г2 ГОСТ 4543-71 2 Б5 Е-9200-5 Патрубок 1=345 Патрубок 25х3 - 10Г2 ГОСТ 4543-71 2 Б6 Е-9200-6 Патрубок 43х1 - 10Г2 ГОСТ 4543-71 4 57 Е-9200-7 Патрубок 1=83 Патрубок 53х15 - 10Г2 ГОСТ 4543-71 1 58 Е-9200-8 Патрубок 153х1 - 10Г2 ГОСТ 4543-71 2 Патрубок 153х1 - 10Г2 ГОСТ 4543-71 2 ГОСТ 4543-71 2

DOMOD	Зона	Паз.	Обозначение	Наименование	Кол	Приме чание
·		<i>59</i>	E-9200-9	Патрубок l=148		
_		27	2 7200 7	Патрубок 360х5 09Г2С		
2				TOCT 5520-79		
-	╁					
				Стандартные изделия		
-	H	60		<i>Болт M12x35.58</i>		
				<i>FOCT 7798-70</i>	189	
-				Γαύκυ ΓΟСΤ 5915–70		
		61		M12.4	209	
		62		M16.10.20xH3A	8	
		63		M20.10.20xH3A	16	
		64		M24.10.20xH3A	32	
		<i>65</i>		M30.10.20xH3A	80	
	+	66		Заклепка 4х7.37		
2011				ΓΟCΤ 10302-80		
	7	85 - 2		Фланцы ГОСТ 12815-80		
3				Сталь ОЯГ 2С ГОСТ 5520-79	*	
	t	67		500-16	2	
		68		350-24	4	
Date: und 19				PAGE SECTION 15 1000 35 000 10 40 000		
+-				Фланцы ГОСТ 12815-80		
		ogran.		Сталь 10Г2 ГОСТ 4543-71		
		69		150–16	4	
		70		50–16	2	
		71		40–16	4	
		72		20–16	4	
<u> </u>	3м. Ли		№ докум. Подп. Дата			//

Фппмпп	Зона	Поз.	Обозн	<i>ачение</i>		Наименование	Кол	Приме Чание
		72				W - 5 40 D C 3		
_		73				<i>Шайба 12.В Ст.Зсп</i>	00	
						OCT 26-2042-96	20	
2						Кольца Н480-65		
						Лист ПН-6-12 ГОСТ 19903-74		
						09F2C-9 F0CT 5520-79		
		74				A-III-300-20-1520	3	
	П	<i>75</i>				A-III-620-20-1520	1	
		76				A-III-860-20-1520	2	
-		77				Б-III-760-20-1520	1	
						Шпильки		
						OCT 26-2040-96		
		78				1-1-M16x70-20xH3A	4	
	П	79				1-1-M20x80-20xH3A	8	
		80				1-1-M24x120-20xH3A	16	
		81				1-1-M30x150-20xH3A	40	
		82				Штуцер 150–16		
						OCT 26-02-2066-83	2	
						Заглушки СТП 63–71		
		83				3–150–16	2	
		84				4-II	4	
		85				4- V	4	
\vdash		86				4- <i>VI</i>	1	
	L							
	L							
					\dashv			
141		110 -						//
N3	BM. /IU	cm № ac	окум. Подп.	Дата	Копирова		DM <i>O</i> M	A4

формат	Зона	Паз		Обозначение	Наименование	Кол	Прими Чание
					Заглушки СТП 63-71		
					Паронит ПОН		
					ΓΟCT 481-80		
		87			1-150-16- I	1	
		88			1–350–16– I	1	
		89			<i>1–500–16–I</i>	2	
		90	E-9200	0–10	Лист опорный	2	
					Муфты СТП 50-71		
-		91			I-15x50-10Г2	3	
2		92	2		<i>I-15x80-10Γ2</i>	1	
3		93			I-20x80-10[2	1	
2					I ZONGO TOTZ		
		94			Прокладка		
					A-50-16 ПОН		
<u> </u>					CTN 64-72	1	
-					C/// G/ -/2		
-					Пробка СТП 50–71		
		95			I-15-10[2	4	
-		96			I-20-10Г2	1	
-		70			1 20 1012		
			7		Прокладки СТП 51–71	-	
<u> </u>		97	5		32/20-ПОН	4	
3		98			37/26-NOH	1	
<u> </u>		,,			37, 20 11011		
		99	T4. 55_	37	Сκοδα	1	
			222	electro.		1	
		Ц					/
Mar	<i>II</i> /I	C.T.	№ докцм.	Подр. Пата			/
VI3I	Y. /IU	L///	IV UUKUM.	Подп. Дата	Копировал Фи	рмат	A4

Фаамат	Зона	Поз	l	Обозна	TYPHUE	<u>-</u>	Н	аименован	HUP	Кол.	Приме чание
							<i></i> - 5	CTU 50	74		
								<i>i CTIT 58</i> -	/1		
		100					Шайба			4	
		101					Шайба			8	
		102					Шайба	7 32		8	
	П										
	П									1	
	Н										
_	H									1	
_	H									-	
3		6 - 6									
7											
	П										
n i											
	Н									1	
<u>.</u>										+	
IV UNDIV.										+	
<u> </u>										388	
JHO.											
_											
DAUM. UHU. IV											
300	Ш				_						
Q											
no o	П										
ווסחו: מ חמוות										1	
#/ 	H									+	
-	H										
WHU. IV* 110U/I.	Ļ										<u> </u>
N											ΛL
E VI	M. /lu	cm № da	אוואר	Подп.	Дата						