Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт: Энергетический

Направление подготовки Кафедра 13.03.01 Теплоэнергетика и теплотехника Атомных и тепловых электростанций

БАКАЛАВРСКАЯ РАБОТА

Тема работы
Анализ работы испарительной установки в составе энергоблока К-780-240

УДК 621.184.2:621.311.2

Студент

Группа	ФИО	Подпись	Дата
3-5Б11	АЛЕКСЕЕВА Татьяна Викторовна		

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
доцент кафедры АТЭС	А.А. Матвеева	к.т.н., доцент		

консультанты:

По разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»

	Должность	ФИО	Ученая степень, звание	Подпись	Дата
К	ст. преподаватель афедры менеджмента	Н.Г. Кузьмина	-		

По разделу «Социальная ответственность»

The passenty we odinamental ordered behinder by				
Должность	ФИО	Ученая степень, звание	Подпись	Дата
доцент кафедры экологии и безопасности жизнедеятельности	М.Э. Гусельников	к.т.н., доцент		

Нормоконтроль

Должность	ФИО	Ученая степень, звание	Подпись	Дата
ст. преподаватель кафедры атомных и тепловых электростанций	В.Н. Мартышев	-		

допустить к защите:

	r 1	1		
Зав. кафедрой	ФИО	Ученая степень, звание	Подпись	Дата
атомных и тепловых электростанций	А.С. Матвеев	к.т.н., доцент		

Запланированные результаты обучения выпускника образовательной программы бакалавриата по направлению 13.03.01 «Теплоэнергетика и теплотехника»

Код	
резу	Результат обучения
ль-	(выпускник должен быть готов)
тата	
	Универсальные компетенции
P1	Осуществлять коммуникации в профессиональной среде и в обществе в целом, в том
rı	числе на иностранном языке, разрабатывать документацию, презентовать и защищать результаты комплексной инженерной деятельности.
P2	Эффективно работать индивидуально и в коллективе, в том числе междисциплинарном, с делением ответственности и полномочий при решении комплексных инженерных задач.
Р3	Демонстрировать <i>личную</i> ответственность, приверженность и следовать профессиональной этике и нормам ведения <i>комплексной</i> инженерной деятельности с соблюдением правовых, социальных, экологических и культурных аспектов.
P4	Анализировать экономические проблемы и общественные процессы, участвовать в общественной жизни с учетом принятых в обществе моральных и правовых норм.
P5	К достижению должного уровня экологической безопасности, энерго- и ресурсосбережения на производстве, безопасности жизнедеятельности и физической подготовленности для обеспечения полноценной социальной и профессиональной деятельности.
P6	Осознавать необходимость и демонстрировать способность к самостоятельному обучению в течение всей жизни, непрерывному самосовершенствованию в инженерной профессии, организации обучения и тренинга производственного персонала.
	Профессиональные компетенции
P7	Применять <i>базовые</i> математические, естественнонаучные, социально-экономические знания в профессиональной деятельности <i>в широком</i> (в том числе междисциплинарном) контексте в <i>комплексной</i> инженерной деятельности в производстве тепловой и электрической энергии.
P8	Анализировать научно-техническую информацию, ставить, решать и публиковать результаты решения задач <i>комплексного</i> инженерного анализа с использованием <i>базовых</i> и специальных знаний, нормативной документации, современных аналитических методов, методов математического анализа и моделирования теоретического и экспериментального исследования.
P9	Проводить предварительное технико-экономическое обоснование проектных разработок объектов производства тепловой и электрической энергии, выполнять комплексные инженерные проекты с применением базовых и специальных знаний, современных методов проектирования для достижения оптимальных результатов, соответствующих техническому заданию с учетом нормативных документов, экономических, экологических, социальных и других ограничений.
P10	Проводить комплексные научные исследования в области производства тепловой и электрической энергии, включая поиск необходимой информации, эксперимент, анализ и

	интерпретацию данных, и их подготовку для составления обзоров, отчетов и научных публикаций с применением <i>базовых и специальных</i> знаний и <i>современных</i> методов.
P11	Использовать информационные технологии, использовать компьютер как средство работы с информацией и создания новой информации, осознавать опасности и угрозы в развитии современного информационного общества, соблюдать основные требования информационной безопасности.
P12	Выбирать и использовать необходимое оборудование для производства тепловой и электрической энергии, управлять технологическими объектами, использовать инструменты и технологии для ведения комплексной практической инженерной деятельности с учетом экономических, экологических, социальных и других ограничений.
	Специальные профессиональные
P13	Участвовать в выполнении работ по стандартизации и подготовке к сертификации технических средств, систем, процессов, оборудования и материалов теплоэнергетического производства, контролировать организацию метрологического обеспечения технологических процессов теплоэнергетического производства, составлять документацию по менеджменту качества технологических процессов на производственных участках.
P14	Организовывать рабочие места, управлять малыми коллективами исполнителей, к разработке оперативных планов работы первичных производственных подразделений, планированию работы персонала и фондов оплаты труда, организовывать обучение и тренинг производственного персонала, анализировать затраты и оценивать результаты деятельности первичных производственных подразделений, контролировать соблюдение технологической дисциплины.
P15	Использовать методики испытаний, наладки и ремонта технологического оборудования теплоэнергетического производства в соответствии с профилем работы, планировать и участвовать в проведении плановых испытаний и ремонтов технологического оборудования, монтажных, наладочных и пусковых работ, в том числе, при освоении нового оборудования и (или) технологических процессов.
P16	Организовывать работу персонала по обслуживанию технологического оборудования теплоэнергетического производства, контролировать техническое состояние и оценивать остаточный ресурс оборудования, организовывать профилактические осмотры и текущие ремонты, составлять заявки на оборудование, запасные части, готовить техническую документацию на ремонт, проводить работы по приемке и освоению вводимого оборудования.

Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт Энергетический

Направление подготовки **13.03.01 Теплоэнергетика и теплотехника** Кафедра **«Атомных и тепловых электростанций»**

УТВЕРЖДАЮ Зав. кафедрой АТ А.С. Матвеев	
(Подпись)	(Дата)

ЗАДАНИЕ на выполнение выпускной квалификационной работы

В форме:		
	бакалаврской работн	ы
(6)	бакалаврской работы, /работы, магистерско	ой диссертации)
Студенту:		
Группа		ФИО
3-5Б11 АЛЕКСЕЕВА Татьяна Викторовна		на Викторовна
Тема работы:		
Анализ работы и	спарительной установки в сос	таве энергоблока К-780-240
Утверждена приказом директора (дата, номер)		
Срок сдачи студентом выполненной работы: 25 мая 2016 года		

ТЕХНИЧЕСКОЕ ЗАДАНИЕ:

Исходные данные к работе	Материалы практик, литературы, справочников
Перечень подлежащих исследованию,	1. Введение.
проектированию и разработке	2. Обзор существующих типов испарителей.
вопросов	3. Включение испарителей в тепловую схему.
(аналитический обзор по литературным источникам с целью выяснения достижений мировой науки техники в рассматриваемой области; постановка задачи исследования, проектирования, конструирования; содержание процедуры исследования, проектирования, конструирования; обсуждение результатов выполненной работы; наименование дополнительных разделов, подлежащих разработке; заключение по работе).	 4. Расчет принципиальной схемы с различными вариантами включения испарителей. 5. Социальная ответственность. 6. Финансовый менеджмент, ресурсоэффективность и ресурсобережение. 7. Выводы и заключения.

Перечень графического мат	гериала 1. Полная тепловая схема блока с вариантами включения испарителей – 1 лист формата A1.			
(с точным указанием обязательных чертеж				
Консультанты по разделам (с указанием разделов)	выпускной квалификационной работы			
Раздел	Консультант			
Финансовый менеджмент	Кузьмина Н.Г. старший преподаватель кафедры менеджмента			
Социальная	Гусельников М.Э. доцент кафедры экологии и			
ответственность	безопасности жизнедеятельности			
Названия разделов, котор языках:	 рые должны быть написаны на русском и иностранном			

Дата выдачи задания на выполнение выпускной	11 января 2016 года
квалификационной работы по линейному графику	

Задание выдал руководитель:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент кафедры АТЭС	Матвеева А.А.	к.т.н.		

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
3-5Б11	АЛЕКСЕЕВА Татьяна Викторовна		

РЕФЕРАТ

Выпускная квалификационная работа _____86 ___ с., ___12 ___ рис., $\underline{5}$ табл., 12 источников, __0 прил.

Ключевые слова: <u>пар, вода, испарительная установка, энергоблок,</u> <u>тепловая схема, отбор пара, отпуск электроэнергии, КПД энергоблока, анализ.</u>

Объектом исследования является энергоблок К-780-240 МВт

Цель работы — <u>анализ работы испарительной установки энергоблока</u> K-780-240 MB

В процессе исследования проводились расчеты различных схем включения испарителя в тепловую схему энергоблока К-780-240 МВт

В результате исследования сделаны выводы и заключения о работе испарительной установки, определена оптимальная схема включения испарителя.

Основные конструктивные, технологические и техникоэксплуатационные характеристики: предусмотрено включение испарителя в тепловую схему энергоблока К-780-240 МВт

Степень внедрения: <u>данная схема включения используется в настоящее</u> <u>время</u>

Область применения: теплоэнергетическая область

Экономическая эффективность/значимость работы: <u>определена схема</u> включения испарителя, дающая максимальный КПД энергоблока

В будущем планируется использовать данную схему

Определения, обозначения, сокращения, нормативные ссылки.

ВСП – верхний сетевой подогреватель

И - испаритель

К – конденсационная турбина

КЕО – коэффициент естественного освещения

КПД – коэффициент полезного действия

ЛМЗ – Ленинградский металлический завод

НИР – научно – исследовательская работа

НСП – нижний сетевой подогреватель

ОУ – охладитель уплотнений

ОЭ – охладитель эжектора

ПВД – подогреватель высокого давления

ПНД – подогреватель низкого давления

ПТБ – правила техники безопасности

ПТЭ – правила технической эксплуатации

ПП - пароперегреватель

ППБ – правила промышленной безопасности

РД – руководящий документ

ТКЗ – Таганрогский котлостроительный завод

ТЭС – тепловая электрическая станция

Содержание

	Введение	10
1	Обзор существующих типов испарителей	11
1.1	Вертикальный испаритель поверхностного типа	11
1.2	Испаритель с вынесенной зоной кипения	16
1.3	Испарительные установки мгновенного (адиабатного) вскипания	19
2	Включение испарительной установки в тепловую схему	21
2.1	Схема «без потерь потенциала»	21
2.2	Схема с испарителями мгновенного вскипания	22
3	Расчет принципиальной тепловой схемы с различными	24
	вариантами включения испарителей	
3.1	Анализ тепловой схемы энергоблока	24
3.2	Построение температурного графика теплосети	25
3.3	Расчет тепловой схемы блока с подключением испарителя	27
	поочередно к отборам 4,5,6,7	
3.4	Построение процесса расширения пара в турбине в h,s-диаграмме	32
3.5	Составление сводной таблицы параметров воды и пара	38
3.6	Расчет схемы отпуска теплоты	41
3.7	Предварительная оценка пара на турбину	43
3.8	Составление общих уравнений материального баланса	44
3.9	Расчет вспомогательных элементов тепловой схемы	46
3.10	Расчет турбопривода питательного насоса	49
3.11	Составление и решение уравнений материального и теплового	50
	балансов подогревателей регенеративной системы	
3.12	Определение расхода пара на турбину	56
3.13	Расчет показателей тепловой экономичности	59
4	Социальная ответственность	65
4.1	Производственная безопасность	65

4.2	Экологическая безопасность	71
4.3	Безопасность в чрезвычайных ситуациях	72
4.4	Правовые и организационные вопросы обеспечения безопасности	73
5	Финансовый менеджмент, ресурсоэффективность и	78
	ресурсосбережение	
5.1	Временные оценки работ НИР	78
5.2	Расчет затрат на проектирование	79
5.3	Оценка экономической эффективности данной работы	83
6	Выводы и заключения	84
	Список литературы	85

Введение

В наше время вопросы, касающиеся повышения экономичности работы тепловой электрической станции являются наиболее актуальными. Поэтому цель данной бакалаврской работы - провести анализ работы испарительной установки в составе энергоблока К–780 -240 МВт и определить оптимальный вариант включения испарителя в тепловую схему блока, позволяющий получить максимальный КПД.

Объект исследования – тепловая электрическая станция.

Предмет исследования – испарительная установка

Задачи исследования — рассмотреть основные типы испарительных установок; изучить различные варианты включения испарителей в тепловую схему блока; произвести расчеты КПД блока при различных схемах включения испарителя; выявить оптимальную схему.

Методы исследования - изучить материалы практик; проанализировать необходимую литературу; провести сравнительный анализ результатов расчета различных схем включения испарителя.

1 Обзор существующих типов испарителей

На тепловых электрических станциях испарители применяются для получения вторичного пара из химически обработанной воды. Этот пар идет на нужды внешних потребителей или вводится в цикл станции для восполнения потерь рабочего тела после конденсации его основным конденсатом.

В основном на ТЭС используют испарители поверхностного типа. Также находят применение испарители с вынесенной зоной кипения и испарители мгновенного вскипания.

1.1 Вертикальные испарители поверхностного типа

Испарители поверхностного типа маркируются буквой И с указанием площади поверхности теплообмена греющей секции, м², например, И-250. Дополнительно в маркировке может стоять римская цифра II, обозначающая наличие в испарителе двух паропромывочных листов, и буквы О или М, обозначающие применение испарителя в одно - или многоступенчатой установке. На рисунке 1[1] показана типовая схема испарителя поверхностного типа.

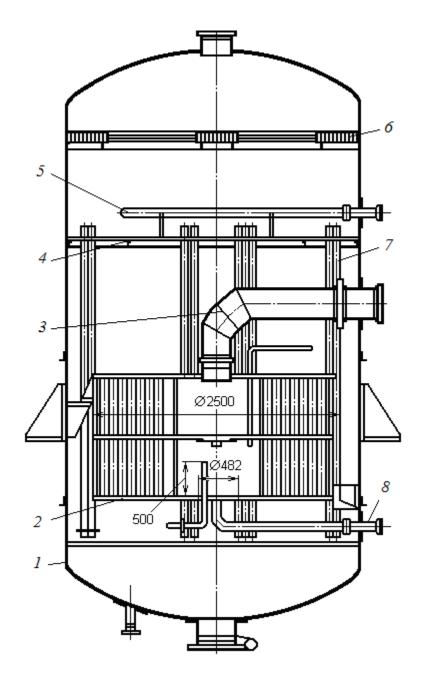


Рисунок 1 – Конструкция испарителя поверхностного типа

1 — корпус; 2 — греющая секция; 3 — подвод греющего пара; 4 — паропромывочный дырчатый лист; 5 — водораспределительное устройство; 6 — жалюзийный сепаратор; 7 — опускные трубы; 8 — отвод конденсата греющего пара

Работа испарителя протекает следующим образом.

Через регулирующий клапан питательная вода поступает в водораспределительное устройство 5 над паропромывочным дырчатым листом 4, откуда по опускным трубам 7 сливается в нижнюю часть корпуса и

заполняет корпус 1 и трубки греющей секции 2. Первичный пар из отбора турбины по трубе 3 проходит между трубами греющей секции 2, где отдает тепло воде в трубах, конденсируется, и конденсат пара сливается из греющей секции по трубе 8. Испарение части воды в трубках происходит за счет теплоты конденсации первичного пара, в результате чего образуется пароводяная смесь. За счет парообразования в трубках греющей секции создается подъемное движение воды, а в кольцевом зазоре между корпусом и греющей секцией – опускное, т.е. осуществляется естественная циркуляция жидкой фазы. Образовавшийся вторичный пар, проходит через слой воды над греющей секцией, поступает в паровое пространство испарителя, промывочной проходит через слой воды над одним или двумя паропромывочными листами, жалюзийный сепаратор и отводится из Для обеспечения устойчивой естественной циркуляции и испарителя. уменьшения выбросов капельной влаги в паровое пространство, уровень воды в корпусе поддерживается системой регулирования выше верхней трубной доски греющей секции на 500 мм. Испаритель оборудован дополнительно устройствами контроля и регулирования уровней воды над паропромывочными листами (60...100 мм) и уровня конденсата в греющей секции (150...200 мм).

Основные характеристики испарителей поверхностного типа (заводизготовитель – ТКЗ) приведены в таблице 1.1.

Таблица 1.1 - Основные характеристики испарителей поверхностного типа (завод-изготовитель – ТКЗ)

Типоразмер	Площадь	Трубки	греющей	Живое	Рабочее д	цавлени	e,	Номиналь	Габарит	ы, мм	Ma
	поверхно	секции сечение МПа						_		cca	
	сти	Число,	Длина,	перфорации	макс.	втор.	перв	произв-ть	Высота	Диаметр	cyx
	теплообм	шт.	MM	промывочного	допуст.	пара	пара	по втор.		корпуса	ого
	ена, м ²			устройства,%				пару, кг/с			апп
											apa
											та,
											T
И-120-0,6-І	120	902	1590	2,2	0,59	0,2-	0,12	Не более	10000	2050	16
						0,4	0,25	1,7			
И-120-0,6-				3,1	0,59	0,27-	0,12-	2,5-3,5			
III						1,26	0,27				
И-120-1,6-ІІ				2,4	1,57	0,5-	0,27-	2,5-5,0			
						1,57	0,63				
И-250-0,6-І	250	1736	1625	1,0	0,59	0,31-	0,25-	Не более	11000	2850	30
						0,59	0,43	3,1			
И-250-0,6-ІІ				2,0	0,59	0,2-	0,12-	3,3-5,0			
						0,59	0,36				
И-250-1,6-ІІ				2,0	1,57	0,59-	0,36-	5,0-7,5			
						1,57	0,82				
И-350-0,6-І	350	1764	2290	1,6	0,59	0,35-	0,25-	Не более	11500	2850	30
						0,59	0,42	5,0			
И-350-0,6-ІІ				3,0	0,59	0,18-	0,12-	Не более			
						0,35	0,25	5,0			
И-600-0,6-І	600	1764	3590	1,6	0,59	0,35-	0,25-	Не более	13000	2850	45
						0,59	0,48	5,0			
И-600-0,6-ІІ				2,8	0,59	0,16-	0,12-	5,0-8,9			

						0,58	0,4				
И-600-1,6-ІІ				2,8	1,57	0,58-	0,4-	8,9-13,3			
						1,57	0,98				
И-1000-0,6-	1000	2726	3590	3,1	0,59	0,34-	0,25-	11,9-13,9	13000	3450	63
I						0,59	0,42				
И-1000-0,6-				4,2	0,59	0,18-	0,12-	9,7-16,4			
II						0,59	0,4				
И-1000-1,6-				4,2	1,57	0,59-	0,4-	16,4-23,3			
II						1,57	0,98				

1.2 Испарители с вынесенной зоной кипения

Испарители данного типа работают под давлением греющего пара, близким к атмосферному и позволяют использовать в качестве питательной «сырую» воду. Это достигается за счет того, что вторичный пар образуется не на поверхностях нагрева, а в объеме, куда вводится так называемая «затравка» (мелкодисперсный мел). Примеси в этих условиях выпадают на частичках затравки, которая циркулирует в контуре. Количество примесей можно регулировать продувкой. На рисунке 2 [2] показана конструкция испарителя с вынесенной зоной кипения.

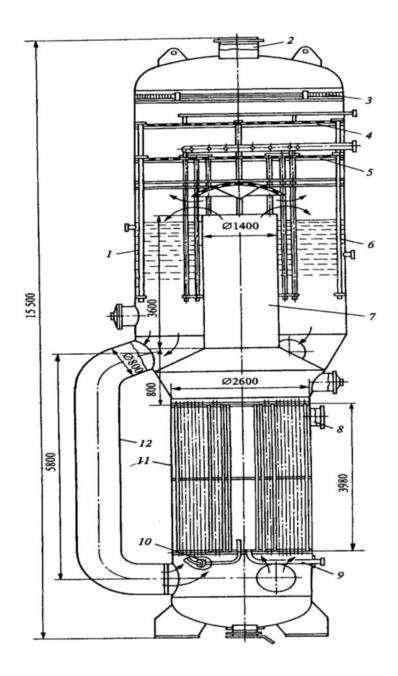


Рисунок 2 - Общий вид испарителя с вынесенной зоной кипения

1 — корпус, 2 — отвод вторичного пара, 3 — жалюзийный сепаратор, 4,5 — паропромывочные устройства, 6 — опускные трубы, 7 — подъемная труба, 8 — подвод греющего пара, 9 — отвод конденсата греющего пара, 10 — отвод неконденсирующихся газов, 11 — греющая секция, 12 — опускная труба.

Работа испарителя протекает следующим образом: греющий пар из отбора турбины подается в межтрубное пространство греющей секции, где конденсируется на поверхности трубок. Конденсат греющего пара отводится в систему регенерации турбины. Питательная вода заполняет

трубки греющей секции и корпус испарителя до уровня на 200 - 250 мм ниже высоты подъемной трубы. Проходя трубки греющей секции, вода нагревается (без парообразования) до перегретого состояния по отношению к давлению насыщения в сепараторе корпуса. При выходе из подъемной трубы она вскипает, образуется вторичный пар. Невскипевшая часть воды смешивается с питательной, проходит опускной участок корпуса и по опускным циркуляционным трубам снова поступает в трубки греющей секции. Образовавшийся пар проходит паропромывочные устройства, жалюзийный сепаратор, отводится от испарителя в конденсатор. В качестве промывочной воды в данных испарителях используется питательная вода цикла(конденсат).

1.3 Испарительные установки мгновенного (адиабатного) вскипания

В наши дни на ТЭС используются также испарители мгновенного (адиабатного) вскипания. Принцип работы и конструкция такого испарителя показана на рисунке 3 [2].

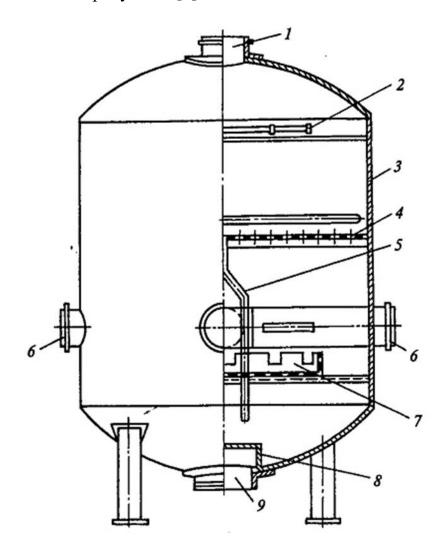


Рисунок 3 - Конструкция испарителя мгновенного вскипания

1 — отвод вторичного пара, 2 — жалюзийный сепаратор, 3 — корпус, 4 — паропромывочный лист, 5 — опускная труба, 6 — подвод воды от основного подогревателя, 7 — распределительная тарелка, 8 — успокоительный лист, 9 — отвод неиспарившейся воды.

Работа испарителя такого типа протекает следующим образом.

Питательная вода («сырая») нагревается в головном подогревателе паром из отбора турбины до состояния перегрева по отношению к давлению в

Поступая объем корпусе испарителя-расширителя. В испарителяобразуя частично вскипает, вторичный расширителя, она Неиспарившаяся часть воды, смешиваясь с питательной, вновь поступает в головной подогреватель. Для предотвращения отложений примесей на стенках корпуса И других элементах испарителя-расширителя циркуляционный корпус вводится «затравка», а концентрация примесей поддерживается продувкой.

2 Включение испарительной установки в тепловую схему

2.1 Схема «без потерь потенциала»

Широко распространенная схема включения испарителя в цикл конденсационной электростанции – схема «без потерь потенциала». В ней греющим паром испарителя является часть пара одного из регенеративных отборов турбины. Вторичный пар отводится в конденсатор испарителя, установленный перед регенеративным подогревателем, используется в качестве греющего. Конденсатором испарителя служит обычно дополнительно устанавливаемый теплообменник. В этом случае не происходит вытеснения пара регенеративных отборов тепловая экономичность не нарушается.

Производительность испарительной установки, включенной в соответствии со схемой, представленной на рисунке 4 [2], определяется путем совместного решения уравнений теплового баланса для испарителя и его конденсатора.

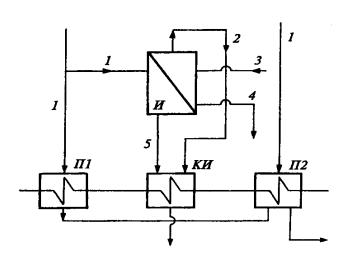


Рисунок 4 - Схема включения испарителя в тепловую схему блока

И – испаритель, КИ – конденсатор испарителя, П1, П2 – подогреватели низкого давления, 1 – подвод греющего пара, 2 – отвод вторичного пара, 3 – подвод питательной воды, 4 – продувка, 5 – отвод конденсата греющего пара.

$$D_u (h''_{6m} - h_{ne}) + p (h'_{6m} - h_{ne}) = k_u \Delta t_u F_u;$$

$$D_u (h''_{6m} - h'_{6m}) \eta_{\kappa,u} = D_{o,\kappa} (h_{o,\kappa 2} - h_{o,\kappa 1}),$$

где h''_{em} , h'_{em} — энтальпии пара и его конденсата при давлении вторичного пара, кДж/кг; $h_{o,\kappa 2}$, $h_{o,\kappa l}$, h_{ne} — энтальпии соответственно основного конденсата на входе в конденсатор и выходе из него и питательной воды испарителя, кДж/кг; D_u — производительность установки, равная потерям пара и конденсата в цикле электростанции, кг/с; D_u — расход основного конденсата через конденсатор испарителя, кг/с; k_u — коэффициент теплопередачи в испарителе, $Bt/(M^2\cdot K)$; Δt_u - температурный напор в испарителе, °C; F_u — площадь поверхности нагрева испарителя, M^2 ; p — продувка испарителя; $\eta_{\kappa u}$ — КПД конденсатора испарителя, учитывающий потери в окружающую среду.

2.2 Схема с испарителями мгновенного вскипания

Включение испарительной установки с испарителем мгновенного вскипания в тепловую схему турбоустановки приведено на рисунке 5 [2].

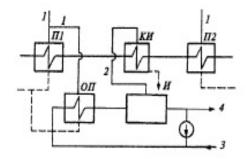


Рисунок 5 - Схема включения испарителя мгновенного вскипания

 $O\Pi$ — основной подогреватель, U — испаритель, $\Pi1$, $\Pi2$ — подогреватели низкого давления, KU — конденсатор испарителя, 1 — подвод греющего пара, 2 — отвод вторичного пара, 3 — подвод питательной воды, 4 — продувка.

Часть отборного пара, поступающего в регенеративный подогреватель, направляется в основной подогреватель испарительной установки, где

подогревает исходную воду. Подогретая исходная вода поступает в испаритель-расширитель, давление в котором ниже давления насыщения подогретой воды.

Образовавшийся испарителе-расширителе пройдя В пар, сепарационные устройства, отводится в конденсатор испарителя, где конденсируется потоком конденсата турбоустановки. основного Дистиллят от установки поступает на восполнение потерь цикла; не испарившаяся в испарителе вода частично сбрасывается в виде продувки, частично смешивается с поступающей в основной подогреватель исходной водой.

Данная схема практически не отличается от схемы с поверхностными испарителями «без потерь потенциала». Принцип выбора места включения испарительной установки также не отличается.

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ»

Студенту:

Группа	ФИО
3-5Б11	Алексеевой Татьяне Викторовне

Институт	Энергетический	Кафедра	АТЭС
Уровень образования	Бакалавр	Направление/специальность	13.03.01 Теплоэнергетика и
		•	теплотехника

1. Стоимость ресурсов научного исследования (НИ): материально-технических, энергетических, финансовых, информационных и человеческих	I Анализ работы испарительной установки энергоблока К-780-240 МВт Прочие расходы: Проектировщик - инженер Руководитель – доцент
2. Нормы и нормативы расходования ресурсов	Принять на основании произведенных расчетов и из анализа объекта исследования
3. Используемая система налогообложения, ставки налогов, отчислений, дисконтирования и кредитования	Отчисления на собственные нужды – 30% Районный коэффициент – 30%
Перечень вопросов, подлежащих исследованию,	, проектированию и разработке:
1. Оценка коммерческого потенциала, перспективности и альтернатив проведения НИ с позиции ресурсоэффективности и ресурсосбережения	Формирование плана разработки проекта.
2. Планирование и формирование бюджета научных исследований	Смета затрат на проектирование.
3. Определение ресурсной (ресурсосберегающей), финансовой, бюджетной, социальной и экономической эффективности исследования	Анализ проведенного исследования.

Дата выдачи задания для раздела по линейному графику	10.03.16
--	----------

Задание выдал консультант:

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Ст. преподаватель	Кузьмина Н.Г.			
кафедры менеджмента				

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
3-5Б11	Алексеева Татьяна Викторовна		

5 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение

Все этапы разработки должны быть упорядочены во времени. Необходимо определить последовательность работ, являющуюся наиболее рациональной с точки зрения минимальных затрат времени на осуществление всего комплекса работ.

Планирование работы заключается в следующем: составление перечня работ, необходимых для достижения поставленной задачи; определение участников работы; установление продолжительности работы в рабочих днях

Для осуществления проектирования необходимо рассчитать следующие затраты: на заработную плату проектировщику и руководителю, социальные отчисления, затраты на амортизацию оборудования, материальные затраты, накладные издержки, прочие издержки.

5.1 Временные оценки работ НИР

В таблице 4 представлен учет рабочего времени для расчета заработной платы.

Таблица 5.4 - Временные оценки работ НИР

Наименование работ	Исполнители	Коли	чество дней для
		выпо.	лнения работ
1 Постановка задачи	руководитель	1	
2 Сбор данных	инженер	20	
3 Анализ исходной	инженер	15	
информации			
4 Составление	инженер	4	
алгоритма расчетов			
5 Утверждение	руководитель	1	
расчетов			
6 Расчет различных	инженер	15	
вариантов включения			
испарителя в тепловую			
схему энергоблока К-			
780-240 МВт			
7 Проверка расчетов	руководитель	2	
руководителем			
8 Исправление	инженер	6	
замечаний			
9 Утверждение ВКР	руководитель	2	
руководителем			
Итого:	руководитель		6
	инженер		60

5.2 Расчет затрат на проектирование

Определяем затраты на проектирование по формуле:

$$K_{np} = U_{Mam} + U_{aM} + U_{c.o.} + U_{np} + U_{3n} + U_{Hakn},$$
 (5.1)

где $U_{a_{M}}$ – амортизация оборудования;

 $\mathcal{U}_{c.o.}$ - социальные отчисления;

 U_{np} - прочие издержки;

 U_{3n} - затраты на заработную плату;

 ${\it H}_{\it накл}$ - накладные издержки;

 $U_{\text{мат}}$ – материальные затраты.

5.2.1 Расчет материальных затрат

Принимаем материальные затраты $U_{mam} = 1250 \ py \delta$.

5.2.2 Расчет затрат на амортизацию.

Определим издержки на амортизацию оборудования:

$$U_{aM} = \frac{T_{ucn}}{T_{Kan}} \cdot II_m \cdot \frac{1}{T_{cn}} = \frac{60}{365} \cdot 68000 \cdot \frac{1}{5} = 2235,6 \, py 6., \tag{5.2}$$

где $T_{\it ucn}$ — время использования персонального компьютера и принтера, 60 дней;

 $T_{\kappa an}$ — число дней в календарном году, 365 дней;

 $II_{\kappa m}$ — стоимость персонального компьютера и принтера 68 тыс. рублей;

 $T_{\it cn}$ – срок службы персонального компьютера и принтера, 5 лет.

5.2.3 Расчет затрат на заработную плату.

Затраты на заработную плату рассчитываются как

$$\Phi 3\Pi = 3\Pi_{_{DVK}} + 3\Pi_{_{UHSK}},\tag{5.3}$$

где: $3\Pi_{\it py\kappa}$ — заработная плата руководителя;

 $3\Pi_{{\scriptscriptstyle U\!H\!M\!C}}$ — заработная плата инженера.

Заработная плата руководителя рассчитывается как:

$$U_{3\Pi}^{\text{Mec}} = (3\Pi_0 \cdot K_1 + \mathcal{I}) \cdot K_2, \tag{5.4}$$

где $3\Pi_0$ – месячный оклад 23300 руб.;

 $K_{\scriptscriptstyle 1}$ – коэффициент учитывающий отпуск 10%;

 \mathcal{A} – доплата за интенсивность труда 2200 руб.;

 K_2 – районный коэффициент 30%;

$$M_{3\Pi}^{py\kappa.mec} = (23300 \cdot 1, 1 + 2200) \cdot 1, 3 = 36179$$
рублей. (5.5)

Фактическая зарплата руководителя

$$\mathcal{U}_{3\Pi}^{py\kappa.\phi\alpha\kappa m} = \frac{\mathcal{U}_{3\Pi}^{py\kappa.mec}}{21} \cdot n_{\phi}; \tag{5.6}$$

где $M_{3II}^{\textit{мес}}$ – Заработанная плата руководителя за месяц;

 n_{ϕ} — количество дней консультации у руководителя по факту, принимаем из таблицы 6.1

$$M_{3II}^{\phi} = \frac{M_{3II}^{\text{мес}}}{21} \cdot n_{\phi} = \frac{36179}{21} \cdot 6 = 10336, 8$$
 рублей.

Заработная плата инженера рассчитывается как

$$U_{3\Pi}^{\text{\tiny Mec}} = 3\Pi_0 \cdot K_1 \cdot K_2 \tag{5.7}$$

где $3\Pi_0$ – месячный оклад 14500 руб.;

 K_1 – коэффициент учитывающий отпуск 10%;

 K_2 – районный коэффициент 30%.

$$U_{3II}^{\text{инж.мес}} = 14500 \cdot 1, 1 \cdot 1, 3 = 20735 \text{ pyb.}$$

Так как работа для инженера длится 60 дней (согласно таблице 6.1), рассчитаем зарплату:

$$H_{3\Pi}^{\text{инж}} = \frac{H_{3\Pi}^{\text{инж.мес}}}{21} \cdot n_{\phi} = \frac{20735}{21} \cdot 60 = 59242,8$$
 рублей

И тогда издержки на заработную плату составят:

$$\Phi 3\Pi = H_{3\Pi}^{py\kappa,\phi a\kappa m} + H^{uh\varkappa,mec}_{3\Pi} + H_{3\Pi}^{uh\varkappa,\phi a\kappa m} =$$

$$= 10336,8 + 20375 + 52242,8 = 90314,6 py6$$
(5.9)

5.2.4 Расчет социальных отчислений.

Социальные отчисления рассчитываются как

$$M_{co} = \Phi 3\Pi \cdot 0, 3 = 90314, 6 \cdot 0, 3 = 27094, 38 \text{ py6.}$$
 (5.10)

5.2.5 Расчет прочих затрат.

Прочие затраты рассчитываются как

$$U_{npoq} = 0.1 \cdot (U_{Mam} + U_{AM} + U_{AM} + U_{CO}) = 0.1 \cdot (1250 + 2235.6 + 90314.6 + 27094.38) =$$

$$= 120894.6 \text{ pv6}. \tag{5.11}$$

5.2.6 Расчет накладных расходов.

Накладные расходы рассчитываются как

$$U_{\text{HAKF}} = 200\% \cdot \Phi 3\Pi = 200\% \cdot 90314, 6 = 180629, 2 \text{ py6}.$$
 (5.12)

Тогда смета затрат на проект составит

$$K_{np} = U_{Mam} + U_{aM} + U_{3n} + U_{co} + U_{np} + U_{Hakn} =$$

= 1250 + 2235,6 + 90314,6 + 27094,4 + 120894,6 + 180629,2 = 422418,4 py6.

Все расчеты по затратам на работу приведены в таблице 5.

Таблица 5.5 - Данные затрат на выполнение ВКР

Вид затрат	Стоимость, руб.
Материальные затраты	1250
Амортизационные затраты	2235,6
Затраты на заработную плату	90314,6
Социальные отчисления	27094,4
Прочие затраты	120894,6
Накладные расходы	180629,2
Итого	422418,4

5.3 Оценка экономической эффективности данной работы

Для проведения анализа работы испарительной установки в составе энергоблока К-780-240 МВт, рассматривались различные варианты включения испарителя в тепловую схему блока, т.е. испаритель поочередно был подключен к отборам пара из турбины № 4,5,6,7. В ходе расчета были определены расходы пара на испаритель и КПД турбоустановки для всех вариантов подключения. По максимальному КПД блока была найдена оптимальная схема включения испарителя.