Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт <u>Физико-технический</u> Направление подготовки <u>14.03.02 Ядерные физика и технологии</u> Кафедра Физико-энергетические установки

БАКАЛАВРСКАЯ РАБОТА

Тема работы

Проектирование биологической защиты для нейтронного источника

УДК 539.125.5:614.8:57

Студент

Группа	ФИО	Подпись	Дата
0Α2Γ	Артемов Евгений Вадимович		

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ассистент каф. ФЭУ ФТИ	Чурсин С.С.			

КОНСУЛЬТАНТЫ:

По разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент каф. МЕН	Сечина А.А.	к. х. н.,		
ИСГТ	Ссчина А.А.	доцент		

По разделу «Социальная ответственность»

	Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ac	ссистент каф. ПФ ФТИ	Гоголева Т.С.	к.фм.н.		

ДОПУСТИТЬ К ЗАЩИТЕ:

Зав. кафедрой	ФИО	Ученая степень, звание	Подпись	Дата
ФЭУ ФТИ	ФЭУ ФТИ Долматов О.Ю.	к.фм.н.,		
Φ35 Φ111	долматов О.10.	доцент		

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ООП

Код	Результат обучения
результата	(выпускник должен быть готов)
результата	Общекультурные компетенции
P1	Демонстрировать культуру мышления, способность к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения; стремления к саморазвитию, повышению своей квалификации и мастерства; владение основными методами, способами и средствами получения, хранения, переработки информации, навыки работы с компьютером как средством управления информацией; способность работы с информацией в глобальных компьютерных сетях.
P2	Способность логически верно, аргументировано и ясно строить устную и письменную речь; критически оценивать свои достоинства и недостатки, намечать пути и выбирать средства развития достоинств и устранения недостатков.
P3	Готовностью к кооперации с коллегами, работе в коллективе; к организации работы малых коллективов исполнителей, планированию работы персонала и фондов оплаты труда; генерировать организационно-управленческих решения в нестандартных ситуациях и нести за них ответственность; к разработке оперативных планов работы первичных производственных подразделений; осуществлению и анализу исследовательской и технологической деятельности как объекта управления.
P4	Умение использовать нормативные правовые документы в своей деятельности; использовать основные положения и методы социальных, гуманитарных и экономических наук при решении социальных и профессиональных задач, анализировать социально-значимые проблемы и процессы; осознавать социальную значимость своей будущей профессии, обладать высокой мотивацией к выполнению профессиональной деятельности.
P5	Владеть одним из иностранных языков на уровне не ниже разговорного.
P6	Владеть средствами самостоятельного, методически правильного использования методов физического воспитания и укрепления здоровья, готов к достижению должного уровня физической подготовленности для обеспечения полноценной социальной и профессиональной деятельности.

Код	Результат обучения
результата	(выпускник должен быть готов)
	Профессиональные компетенции
P7	Использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования.
P8	Владеть основными методами защиты производственного персонала и населения от возможных последствий аварий, катастроф, стихийных бедствий; И быть готовым к оценке ядерной и радиационной безопасности, к оценке воздействия на окружающую среду, к контролю за соблюдением экологической безопасности, техники безопасности, норм и правил производственной санитарии, пожарной, радиационной и ядерной безопасности, норм охраны труда; к контролю соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям, требованиям безопасности и другим нормативным документам; за соблюдением технологической дисциплины и обслуживанию технологического оборудования; и к организации защиты объектов интеллектуальной собственности и результатов исследований и разработок как коммерческой тайны предприятия; и понимать сущность и значение информации в развитии современного информационного общества, сознавать опасности и угрозы, возникающие в этом процессе, соблюдать основные требования информационной безопасности, в том числе защиты государственной тайны).
P9	Уметь производить расчет и проектирование деталей и узлов приборов и установок в соответствии с техническим заданием с использованием стандартных средств автоматизации проектирования; разрабатывать проектную и рабочую техническую документацию, оформление законченных проектно-конструкторских работ; проводить предварительного технико-экономического обоснования проектных расчетов установок и приборов.
P10	Готовность к эксплуатации современного физического оборудования и приборов, к освоению технологических процессов в ходе подготовки производства новых материалов, приборов, установок и систем; к наладке, настройке, регулировке и опытной проверке оборудования и программных средств; к монтажу, наладке, испытанию и сдаче в эксплуатацию опытных образцов приборов, установок, узлов, систем и деталей.

Код	Результат обучения		
результата	(выпускник должен быть готов)		
P11	Способность к организации метрологического обеспечения		
	технологических процессов, к использованию типовых методов		
	контроля качества выпускаемой продукции; и к оценке		
	инновационного потенциала новой продукции.		
P12	Способность использовать информационные технологии при		
	разработке новых установок, материалов и приборов, к сбору и		
	анализу информационных исходных данных для		
	проектирования приборов и установок; технические средства		
	для измерения основных параметров объектов исследования, к		
	подготовке данных для составления обзоров, отчетов и научных		
	публикаций; к составлению отчета по выполненному заданию, к		
	участию во внедрении результатов исследований и разработок;		
	и проведения математического моделирования процессов и		
	объектов на базе стандартных пакетов автоматизированного		
	проектирования и исследований.		
P13	Уметь готовить исходные данные для выбора и обоснования		
	научно-технических и организационных решений на основе		
	экономического анализа; использовать научно-техническую		
	информацию, отечественный и зарубежный опыт по тематике		
	исследования, современные компьютерные технологии и базы		
	данных в своей предметной области; и выполнять работы по		
	стандартизации и подготовке к сертификации технических		
	средств, систем, процессов, оборудования и материалов;		
P14	Готовность к проведению физических экспериментов по		
	заданной методике, составлению описания проводимых		
	исследований и анализу результатов; анализу затрат и		
	результатов деятельности производственных подразделений; к		
	разработки способов применения ядерно-энергетических,		
	плазменных, лазерных, СВЧ и мощных импульсных установок,		
	электронных, нейтронных и протонных пучков, методов		
	экспериментальной физики в решении технических,		
	технологических и медицинских проблем.		
P15	Способность к приемке и освоению вводимого оборудования,		
	составлению инструкций по эксплуатации оборудования и		
	программ испытаний; к составлению технической		
	документации (графиков работ, инструкций, планов, смет,		
	заявок на материалы, оборудование), а также установленной		
	отчетности по утвержденным формам; и к организации рабочих		
	мест, их техническому оснащению, размещению		
	технологического оборудования.		
I	13/11- 11		

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт <u>Физико-технический</u> Направление подготовки <u>14.03.02</u> Ядерные физика и технологии Кафедра <u>Физико-энергетические установки</u>

УТВЕРЖДАЮ: Зав. кафедрой ФЭУ

O.Ю. Долматов (Подпись) (Дата) (Ф.И.О.)

ЗАДАНИЕ на выполнение выпускной квалификационной работы

Бакалаврской работы				
Студенту:				
Группа ФИО				
0А2Г Артемову Евгению Вадимовичу		вгению Вадимовичу		
Тема работы: Проектирование биологической защиты для нейтронного источника				
Утверждена приказом про	ректора-директора	18.02.2016 №1333/c		
(директора) (дата, номер)	10.02.2010 1121333/6			

Срок сдачи студентом выполненной работы:	20.06.2016

ТЕХНИЧЕСКОЕ ЗАДАНИЕ:

В форме:

Исходные данные к работе	 источник быстрых нейтронов ИБН-10; биологическая защита должна удовлетворять требованиям СанПин 2.6.1.2523-09; оборудование лаборатории неразрушающего контроля.
Перечень подлежащих исследованию, проектированию и разработке вопросов	 анализ нормативно-правовых документов по вопросам организации и функционирования систем физической защиты, учета и контроля ядерных материалов на ядерном объекте; анализ использования защитных материалов; расчет защиты; проведение измерений.
Перечень графического материала	Схема ИБН-10 – обязательный чертеж.
Консультанты по разделам выпускной	квалификационной работы:
Раздел	Консультант
Финансовый менеджмент, ресурсоэффективность и	Сечина Ася Александровна

ресурсосбережение	
Социальная ответственность	Гоголева Татьяна Сергеевна
Названия разделов, которые должны б	ыть написаны на иностранном языке:
нет	

Дата выдачи задания на выполнение выпускной	16.05.2016
квалификационной работы по линейному графику:	10.03.2010

Задание выдал руководитель:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ассистент каф. ФЭУ ФТИ	С.С. Чурсин			16.05.2016

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
0Α2Γ	Артемов Евгений Вадимович		16.05.2016

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ»

Студенту:

Группа	ФИО
0Α2Γ	Артемову Евгению Вадимовичу

Институт	ФТ	Кафедра	ФЭУ
Уровень образования	Бакалавр	Направление/специальность	14.03.02 Ядерные
			физика и технологии

Тема дипломной работы: «Проектирование биологической защиты для нейтронного источника»

	Исходные данные к разделу «Финансовый менеджмент, ресурсоэффективность и			
pecy	урсосбережение»:			
(3	Стоимость ресурсов научного исследования (НИ): материально-технических, энергетических, финансовых, информационных и человеческих	– стоимость расходных материалов;– стоимость расхода электроэнергии;– норматив заработной платы.		
	Нормы и нормативы расходования ресурсов	– тариф на электроэнергию;– коэффициенты для расчета заработной платы.		
C	Используемая система налогообложения, ставки налогов, отчислений, цисконтирования и кредитования	- отчисления во внебюджетные фонды (27,1%); - расчет дополнительной заработной платы (12%).		
Пер	речень вопросов, подлежащих исследовани	ию, проектированию и разработке:		
2. I	Оценка коммерческого потенциала, перспективности и альтернатив проведения НИ с позиции ресурсоэффективности и ресурсосбережения Планирование и формирование бюджета научных исследований	 -потенциальные потребители результатов исследования; - анализ конкурентных технических решений; - SWOT-анализ. - структура работ в рамках научного исследования; - определение трудоемкости выполнения работ и разработка графика проведения научного исследования; - Бюджет научно-технического исследования (НТИ). 		
(Определение ресурсной ресурсосберегающей), финансовой, бюджетной, социальной и экономической оффективности исследования	 – определение интегрального финансового показателя разработки; – определение интегрального показателя ресурсоэффективности разработки; – определение интегрального показателя эффективности. 		

Перечень графического материала (с точным указанием обязательных чертежей):

- 1. Оценка конкурентоспособности технических решений
- 2. Матрица SWOT
- 3. Альтернативы проведения НИ
- 4. График проведения и бюджет НИ
- 5. Оценка ресурсной, финансовой и экономической эффективности НИ

Дата выдачи задания для раздела по линейному графику

Задание выдал консультант:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент	Сечина Ася Александровна	Доцент, кандидат		
	Сечина Ася Александровна	химических наук		

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
0Α2Γ	Артемов Е.В.		

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ»

Студенту:

Группа	ФИО
0А2Г	Артемову Евгению Вадимовичу

Институт	ФТ	Кафедра	ФЭУ	
Уровень образования	Бакалавр	Направление/специальность	14.03.02 Ядер	ные
			физика и техноло	гии

Исходные данные к разделу «Социальная ответс	гвенность»:
1. Описание рабочего места (рабочей зоны) на предмет возникновения:	- вредные факторы производственной среды: повышенный уровень электромагнитных полей, отклонение показателей микроклимата от оптимальных, ионизирующее излучение от ПЭВМ и источника ионизирующего излучения ИБН-10; - опасные факторы производственной среды: вероятность возникновения пожара, вероятность поражения электрическим током.
2. Знакомство и отбор законодательных и нормативных документов по теме	 – электробезопасность; – пожарная безопасность; – радиационная безопасность; – требование охраны труда при работе с ПЭВМ.
Перечень вопросов, подлежащих исследованию, п	гроектированию и разработке:
1. Анализ выявленных вредных факторов проектируемой производственной среды:	 действие фактора на организм человека; приведение допустимых норм с необходимой размерностью; предлагаемые средства защиты (коллективные и индивидуальные).
2. Анализ выявленных опасных факторов проектируемой произведённой среды в следующей последовательности	– электробезопасность (в т.ч. статическое электричество, средства защиты);– пожаровзрывобезопасность (причины, профилактические мероприятия).

Дата выдачи задания для раздела по линейному графику

Залание выдал консультант:

	- ** *			
Должность	ФИО	Ученая степень, звание	Подпись	Дата
		званис		
Ассистент каф. ПФ	Т.С. Гоголева	к.фм.н.		
ФТИ				

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
0Α2Γ	Артемов Евгений Вадимович		

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт Физико-технический

Направление подготовки (специальность) 14.03.02 Ядерные физика и технологии

Уровень образования высшее

Кафедра Физико-энергетические установки

Период выполнения (весенний семестр 2015/2016 учебного года)

Форма представления работы:

Бакалаврская работа

КАЛЕНДАРНЫЙ РЕЙТИНГ-ПЛАН выполнения выпускной квалификационной работы

Срок сдачи студентом выполненной ј	работы:	20.06.2016

Дата контроля	Название раздела (модуля) / вид работы (исследования)	Максимальный балл раздела
_		(модуля)
16.05.2016	Выдача задания	
19.05.2016	Расчет защиты	
26.05.2016	Проведение измерений детектором и анализ	
	полученных результатов	
09.06.2016	Определение требований к доступу и хранению	
	источников	
20.06.2015	Сдача работы	

Составил преподаватель:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ассистент каф. ФЭУ ФТИ	С.С. Чурсин			

СОГЛАСОВАНО:

Зав. кафедрой	ФИО	Ученая степень, звание	Подпись	Дата
ФЭУ	О.Ю. Долматов	к.фм.н.,		
403	оло. долматов	доцент		

Реферат

Дипломная работа состоит из 81 страниц, 9 рисунков, 42 таблиц, 3 приложений.

Ключевые слова: источник быстрых нейтронов, дозиметр-радиометр, защита от нейтронов, радиоактивные вещества, метод длин релаксации, факторы накопления, предельно допустимые дозы.

Объектом исследования является источник быстрых нейтронов ИБН-10.

Целью дипломной работы является проектирование биологической защиты для постоянного хранения источника быстрых нейтронов ИБН-10.

В процессе исследования были изучены теоретические основы защиты от нейтронного излучения, произведены измерения плотности потока нейтронного излучения при различных значениях толщины защиты, а также измерения вторичного гамма-излучения в защите из полиэтилена. Помимо этого спроектирована биологическая защита для постоянного хранения источника быстрых нейтронов ИБН-10 и разработан комплекс мер по учету и контролю ЗРИ.

Список используемых сокращений

ДПП – допустимая плотность потока;

ИБН – источник быстрых нейтронов;

РБ – радиационная безопасность;

РВ – радиоактивные вещества;

СО – средство обнаружения;

СФЗ – система физической защиты;

ТУК – транспортный упаковочный контейнер;

УиК – учет и контроль;

ФЗ – физическая защита;

ЯМ – ядерный материал;

РАО – радиоактивные отходы.

Оглавление

Введение	15
1 Обзор литературы	17
1.1 Нейтронное излучение	17
1.1.1 Взаимодействие нейтронов с веществом	17
1.2 Защита от нейтронного излучения	18
1.2.1 Материалы защиты	20
1.2.2 Метод длин релаксации для расчета защиты от излучения	21
1.2.3 Метод экспоненциальной призмы	22
1.3 Вторичное гамма-излучение	23
1.4 Нормативная база проектирования биологической защиты	25
1.4.1 Проектирование радиационных объектов	26
1.5 Дозиметр-радиометр	27
1.6 Источник быстрых нейтронов ИБН-10	32
2 Описание методов проведения эксперимента	32
2.1 Определение необходимости применения мероприятий по защите	33
2.2 Теоретический расчет защиты от нейтронов	33
2.3 Практические измерения защитных материалов	37
2.4 Вторичное гамма-излучение	40
2.5 Категорирование ЗРИ	42
2.6 Учет и физическая защита закрытого радионуклидного источника	43
3 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение	46
3.1 Оценка коммерческого потенциала и перспективности проведения научи	ных
исследований с позиции ресурсоэффективности и ресурсосбережения	47
3.2 SWOT-анализ	49
3.3 Определение возможных альтернатив проведения НИР	52
3.4 Планирование НИР	52
3.4.1 Планирование этапов и работ по выполнению НИР	53
3.5 Определение трудоемкости выполнения НИР	54
3.6 Разработка календарного плана работ	55

3.7 Бюджет научно-технического исследования
3.7.1 Расчет материальных затрат НТИ
3.7.2 Основная заработная плата исполнителей темы
3.7.2 Отчисление во внебюджетные фонды
3.8 Определение ресурсной (ресурсосберегающей), финансовой, бюджетной,
социальной и экономической эффективности исследования
4 Социальная ответственность
4.1 Анализ опасных и вредных производственных факторов
4.2 Обоснование и разработка мероприятий по снижению уровней опасного и
вредного воздействия и устранению их влияния при работе на ПЭВМ 62
4.2.1 Организационные мероприятия
4.2.2 Технические мероприятия
4.2.3 Условия безопасной работы
4.3 Радиационная безопасность
4.4 Электробезопасность
4.4 Пожарная и взрывная безопасность
Заключение
Список публикаций студента73
Список использованных источников

Введение

Использование свойств нейтронного излучения получило обширное применение в различных областях промышленности и науки. Но при этом нейтронное излучение является угрозой для жизни и здоровья человека, в связи с этим возникает потребность в использовании защиты от нейтронного излучения, при этом необходимо учитывать особенности данного излучения, так как его проникающая способность выше, чем у любого другого ионизирующего излучения.

Ha условии необходимости предприятиях, В использования радиоактивных веществ, встает задача защиты персонала от пагубного воздействия излучения. Для решения задач существует множество способов и методов проектирования защиты от излучения. Но существуют некоторые сложности (актуальность) с проектированием защиты от нейтронов. Во-первых, защиту от нейтронного излучения необходимо проектировать для каждого конкретного источника излучения ИЛИ источников похожими характеристиками. Во-вторых, необходимо учитывать требования нормативных документов, которые могут пересматриваться и дополняться.

Необходимость защиты от излучения прописано в федеральном законе от 21 ноября 1995 г. N 170-ФЗ «Об использовании атомной энергии» и федеральном законе «О санитарно-эпидемиологическом благополучии населения» от 30 марта 1999 г. № 52-ФЗ.

Ядерные и радиоактивные материалы должны помещаться в надежное и безопасное хранилище. Но для предотвращения пагубных последствий и поддержания режима ядерного нераспространения необходима физическая защита, а также учет и контроль радиоактивных веществ.

Целью дипломной работы является проектирование биологической защиты для постоянного хранения источника быстрых нейтронов ИБН-10

Для достижения результата, в соответствии с поставленной целью работы, необходимо решить следующие задачи:

- обзор теории и методов расчета защиты от ионизирующего излучения, а так же изучение принципа работы дозиметрарадиометра МКС-АТ1117М;
- разработка программы исследования и ее проведение;
- выбор проектного решения по построению защиты для источника излучения;
- предложения по построению физической защиты и учета и контроля радиоактивных веществ на основании нормативных документов.

1 Обзор литературы

В процессе исследовательской работы был проведен аналитический обзор литературы по теме дозиметрия и защита от излучения. Был проведен обзор нормативной документации по теме радиационной безопасности, радиоактивным веществам и учету и контролю радиоактивных веществ и РАО.

В работе [1] рассматриваются взаимодействие различных видов излучения с веществом: методы регистрации и дозиметрии ионизирующего излучения, методы расчета защиты от излучения.

В работе [2] рассмотрено современное состояние дозиметрии ионизирующих излучений, приборы для измерения излучения.

В работе [3] рассматриваются вопросы защиты от излучений.

1.1 Нейтронное излучение

1.1.1 Взаимодействие нейтронов с веществом

Нейтроны могут взаимодействовать с веществом двумя различными способами. Взаимодействуя с ядрами среды в результате соударения нейтронов, они рассеиваются на ядрах атомов. При этом возможно упругое и неупругое рассеяние.

Неупругое взаимодействие влечет за собой изменение природы соударяющихся частиц. Наблюдается ядерная реакция и деление тяжелых ядер.

Вероятность возникновения реакции характеризуется микроскопическим сечением. Микроскопическое сечение — это сечение сферы, описанной вокруг ядра. Пересекая эту сферу, возникает вероятность реакции с ядром.

В зависимости от энергии нейтроны разделяют на различные группы:

- ультрахолодные нейтроны энергия нейтронов меньше 10⁻⁻ эВ;
- холодные нейтроны нейтроны энергии $5*10^{-3}$ эВ;

- тепловые нейтроны нейтроны, находящиеся в равновесии с атомами окружающей среды;
- надтепловые нейтроны нейтроны с энергией от 0,1 эв до 0,5 кэВ.
 Проходя через среды их сечение взаимодействия подчиняется в основном закону 1/v, где v скорость нейтрона;
- нейтроны промежуточных энергий нейтроны с энергией от 0,5 кэВ
 до 0,2 МэВ. Наиболее типичным процессом взаимодействия с веществом для данных энергий является упругое рассеяние;
- быстрые нейтроны энергия нейтронов в диапазоне от 0,2 МэВ до
 20 МэВ. Обладают свойством упругого и неупругого рассеяния;

Ультрахолодные и холодные отличаются наличием большой проникающей способностью проходя через поликристаллические вещества.

1.2 Защита от нейтронного излучения

Проектирование защиты от нейтронного излучения включает в себя несколько обязательных условий. Быстрые нейтроны должны быть замедлены промежуточным рассеянием легкими веществами с содержанием водорода (полиэтилен, вода, парафин, графит, бетон), в связи с тем, что при упругом рассеянии потеря энергии на легких ядрах наибольшая. Быстрые должны быть замедлены на тяжелых ядрах при неупругом рассеянии, в связи с тем, что на тяжелых ядрах с увеличением энергии нейтрона сечение неупругого рассеяния вольфрам, возрастает. Тяжелые элементы такие как свинец, молибден используются числе вторичного TOM ДЛЯ уменьшения потоков гамма-излучения в защите.

После проведения мероприятий по замедлению быстрых нейтронов, необходимо произвести мероприятия по обеспечению поглощения тепловых и медленных нейтронов поглотителями с большим сечением сечения поглощения тепловых нейтронов, такими материалами являются кадмий, бор, гадолиний.

Тепловые нейтроны, проникая в защиту, могут как выйти за проделы защиты, так и поглощены в этой защите. При этом образуется вторичное гамма-излучение, которое следует учитывать при расчете защиты, так как оно несет.

Математическое описание ослабления плотности потока пучка нейтронного излучения описано в формуле:

$$\varphi(x) = \varphi_0 \exp\{-n\sigma_t x\} = \varphi_0 \exp\{-\Sigma_t x\},\tag{1.1}$$

где φ_0 — начальная плотность потока нейтронов;

 $\varphi(x)$ — плотность потока нейтронов после прохождения материала толщиной x.

Полное микроскопическое сечение взаимодействия нейтронов с ядрами:

$$\sigma_t = \sigma_{se} + \sigma_{si} + \sigma_{\gamma} + \sigma_f + \sigma_p + \sigma_{\alpha} + ..., \tag{1.2}$$

где σ_{γ} – сечение радиационного захвата (n, γ) ;

 σ_{se} — сечение упругого рассеяния (n,n);

 σ_{si} – сечение неупругого рассеяния (n,n');

 σ_{α} – сечение реакции (n,α) ;

 σ_f – сечение деления;

 σ_p – сечение реакции (n, p);

 $\sigma_a = \sigma_c + \sigma_f$ — сечение поглощения;

 $\sigma_c = \sigma_{\gamma} + \sigma_p + \sigma_{\alpha} + \dots -$ сечение захвата.

Плотность потока нейтронов на расстоянии R от точечного изотропного источника быстрых нейтронов, испускающего N_0 нейтронов в секунду, определяется выражением:

$$\varphi(R) = \frac{N_0 f}{4\pi r^2} \exp\left\{-\frac{R}{\lambda}\right\} = \frac{\varphi_0}{r^2} \exp\left\{-\frac{R_m}{\lambda_m}\right\},\tag{1.3}$$

где $\lambda=1/\Sigma_t$ — линейная длина релаксации нейтронов в веществе, см; $\lambda_m=\lambda\cdot\rho$ — «массовая» длина релаксации, $R_m=R\cdot\rho$ — «массовое» расстояние, г/см².

1.2.1 Материалы защиты

Защитные материалы должны обеспечивать максимально возможную плотность. Плотность обеспечивает максимальное ослабление первичного и вторичного гамма-излучения и замедление быстрых нейтронов. Вся или значительная часть плотности должна быть постоянна и гомогенна. Должно поддерживаться высокое содержание водорода. При этом должно наблюдаться минимальный выход вторичного излучения.

В материалах защиты должна быть реализована максимальная радиационная и термическая стойкость. А так же механическая прочность на сжатие материала. Должна быть жаростойкость и огнестойкость и водонепроницаемость.

Вода часто используется как замедлитель нейтронов в качестве защитного материала от нейтронного излучения в связи с наличием высокой плотности атомов водорода. После многих столкновений с атомами водорода быстрый нейтрон замедляется до тепловой энергии, а затем поглощается средой.

Полиэтилен имеет плотность 0,93 г/см³ является лучшим замедлителем, чем вода. Полиэтилен выполняют в виде листов.

Графит обладает достаточной прочностью, легко поддается механической обработке, используется в защите в виде блоков. При облучении графита нейтронами повреждается его кристаллическая решетка.

Свинец используется для защиты от нейтронов в виде листов, отливок, дроби. Из относительно недорогих материалов свинец показывает наилучшие защитные свойства от гамма-излучения.

Кадмий хороший поглотитель нейтронов с энергией меньше 0,5 эВ. Лист кадмия толщиной 0,1 см ослабляет плотность потока тепловых нейтронов в 10^9 раз. Но в связи со свойствами кадмия возникает захватное гамма-излучение с энергией до 7,5 МэВ. Кадмий обладает плохими механическими свойствами. Поэтому чаще применяют сплав кадмия со свинцом, который наряду с хорошими защитными свойствами от нейтронного и гамма-излучений имеет лучшие механические свойства, чем свойства чистого кадмия.

Бетон чаще всего применяется для защиты от излучений, когда его масса и размер не ограничиваются. Бетон содержит заполнители, связанные между цементом. В состав цемента входят кальций, кремний, алюминий, железо и легкие ядра, которые хорошо поглощают гамма-излучение и замедляют быстрые нейтроны в результате упругого и неупругого столкновений.

1.2.2 Метод длин релаксации для расчета защиты от излучения

Для практических расчетов с хорошей точностью изменение нейтронного поля может использоваться метод длин релаксации. В зависимости от толщины защиты, формулу ослабления нейтронов можно представить в виде

$$\varphi(x) = \varphi_0 * \exp(-\frac{x}{L}) \tag{1.4}$$

где ϕ_0 – плотность потока нейтронов без защиты;

L – длина релаксации нейтронов в среде материала защиты.

Длинна релаксации зависит от энергии нейтронов источника, геометрии защиты, толщины слоя материала, энергии нейтронов и других условий задач

На начальном участке на расстояниях (2-3) L от источника кривая ослабления может отличаться от экспериментального. Данное отличие учитывают введением коэффициента f, который характеризует отклонение от экспоненциального вида кривой ослабления на начальных расстояниях от источника.

C учетом коэффициента f, плотность потока нейтронов точечного изотропного источника, испускающего q_0 нейтронов в единицу времени за защитой толщиной X, когда источник и детектор находятся c разных сторон защиты на одной нормали k ее поверхности может быть определена из соотношения:

$$\Phi(x) = \frac{q_0 * f}{4 * \pi * x^2} \exp\left(-\sum_{i=1}^{m} \frac{\Delta x_i}{L_i}\right).$$
 (1.6)

1.2.3 Метод экспоненциальной призмы

Метод относится к экспериментальным методам измерения параметров нейтронных потоков.

Под призмой подразумевается прямоугольный параллелепипед подкритических размеров. Для определения характеристик защиты призму изготавливают таким образом, что внутренняя геометрия призмы и ее материальный состав соответствуют таким же характеристикам, как и биологическая защита.

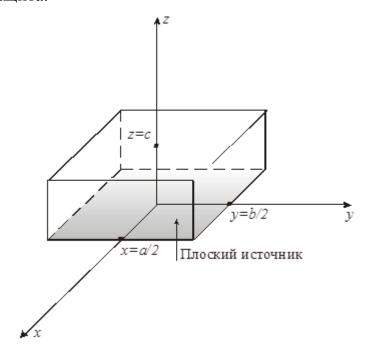


Рисунок 1.1 – Схема прямоугольной призмы

На рисунке 1.1 приведена схема прямоугольной призмы в декартовой системе координат. Размеры a, b, c — экстраполированные размеры призмы: a = a' + d; b = b' + d; c = c' + d, где a', b', c' — реальные размеры призмы, d — длина экстраполяции. Предположим, что на нижнем торце призмы (на плоскости z=0) помещен источник тепловых нейтронов.

Измерения проводятся с использованием дозиметра-радиометра. Источником нейтронов служит лабораторный плутоний-бериллиевый источник мощностью 10^6 – 10^7 нейтр./с, который размещается внутри призмы под каналом, предназначенным для проведения измерений.

Размещение детектора на различных расстояниях от источника производится с помощью дистанцирующих полиэтиленовых дисков различной толщины. Комбинируя диски, проводятся измерения в экспериментальном канале призмы, начиная с дна данного канала и заканчивая верхним торцом призмы через 2 см.

На каждом расстоянии проводятся два типа измерений: «детектор без кадмиевого чехла» и «детектор с кадмиевым чехлом».

1.3 Вторичное гамма-излучение

Вторичное излучение – это ионизирующее излучение, которое возникает в результате взаимодействия первичного излучения с рассматриваемой средой.

Одним из наиболее проникающих видов вторичного излучения является вторичное гамма-излучение в защите, сопровождающее захват и не упругое рассеяние нейтронов на ядрах изотопов конструкционных, строительных материалов и материалов биологической зашиты.

Высокие потоки нейтронов в защитах ядерно-технических установок могут создавать высокую плотность источников вторичного гамма-излучения. Поэтому, в ряде случаев радиационная обстановка за защитой ядерно-технических установок целиком определяется вторичным гамма-излучением.

В легких средах отношение $\dot{H}_{\text{макс.n}}/\dot{H}_{\text{макс.n}}$ растет с ростом толщины среды d, проходит при некотором d_o через i и с дальнейшим ростом d становится больше i. Величина d_o для нейтронов спектра деления при измерении дозовых характеристик равняется 36 см для воды, 50 см для водорода, 67 см для гидрида лития, 54 см для борированной воды с массовой долей бора 1 %.

Для тяжелых веществ $\dot{H}_{\text{макс.}\gamma}/\dot{H}_{\text{макс.}n}$ с толщиной защиты d изменяется слабо.

Отношение $\dot{H}_{\text{макс.}\gamma}/\dot{H}_{\text{макс.}n}$ как функция толщины защиты практически не зависит от углового распределения нейтронов на входе в защиту для широкого класса азимутально-симметричных угловых распределений излучения источников нейтронов.

Гамма-излучение, сопровождающее неупругое рассеяние нейтронов на ядрах, обычно вносит значительный вклад в характеристики поля вторичного гамма-излучения, когда на входе в среду имеется жесткий спектр нейтронов.

Задание спектра гамма-излучения, генерируемого при радиационном захвате, не зависящим от энергии захватываемых нейтронов, может приводить к погрешностям зависимости $\dot{H}_{\text{макс},\nu}/\dot{H}_{\text{макс},n}$ от d до 30-40 %.

К существенным погрешностям расчетов может приводить не определение вклада в поле вторичного гамма-излучения различных изотопов примесей с большими сечениями захвата, особенно для материалов, имеющих, подобно свинцу, небольшие сечения радиационного захвата.

Наилучшими с точки зрения минимума выхода вторичного гамма-излучения являются среды, состоящие из смеси легких и тяжелых веществ.

Для снижения выхода захватного гамма-излучения можно использовать гомогенное или гетерогенное борирование среды.

1.4 Нормативная база проектирования биологической защиты

Проектирование биологической защиты должно основываться на нормах СанПин 2.6.1.2523-09.

Согласно данным нормам годовая доза облучения населения не должна превышать основные пределы доз для персонала.

Радиационная безопасность считается обеспеченной, в том случае, если соблюдаются главные принципы радиационной безопасности, такие как обоснование, нормирование и оптимизация, а также требования радиационной защиты № 3-ФЗ «О радиационной безопасности населения».

Принцип обоснования используется для проектирования новых источников и радиационных объектов, а также при изменении условий их эксплуатации.

РБ персонала обеспечивается:

- ограничениями допуска к работе с источниками излучения по возрасту, полу, состоянию здоровья, уровню предыдущего облучения и другим показателям;
- знанием и соблюдением правил работы с источниками излучения;
- защитными барьерами, экранами и расстоянием от источников излучения, а также ограничением времени работы с источниками излучения;
- созданием условий труда, отвечающих требованиям НРБ-99/2009 и настоящих Правил;
- применением индивидуальных средств защиты;
- соблюдением установленных контрольных уровней;
- организацией радиационного контроля;
- организацией системы информации о радиационной обстановке;
- проведением эффективных мероприятий по защите персонала при планировании повышенного облучения в случае аварии.

1.4.1 Проектирование радиационных объектов

Проектная документация на радиационные объекты должна содержать обоснование мер безопасности при конструировании, строительстве, реконструкции, эксплуатации, выводе из эксплуатации, а также в случае аварии, и её рассмотрение и утверждение должно проводиться в соответствии с действующим законодательством.

В проектной документации радиационного объекта для каждого помещения при работе с ЗРИ указывается радионуклид, его вид, активность, допустимое количество источников излучения на рабочем месте и их суммарная активность, характер планируемых работ.

Проектирование защиты от внешнего облучения персонала и населения необходимо проводить с коэффициентом запаса по годовой эффективной дозе не менее 2. При этом необходимо учитывать наличие других источников излучения и перспективное увеличение их мощности.

Проектирование защиты от внешнего ионизирующего излучения должно выполняться с учетом назначения помещений, категорий облучаемых лиц и длительности облучения с коэффициентом запаса, k, по годовой эффективной дозе не менее 2. При расчете защиты проектная мощность эквивалентной дозы излучения H на поверхности защиты определяется по формуле:

$$H = \frac{1000*D}{k*T};\tag{1.7}$$

где D – предел дозы для персонала или населения, мЗв в год;

Т – продолжительность облучения, часов в год;

k – коэффициент запаса.

1.5 Дозиметр-радиометр

В работе используется носимый комбинированный многофункциональный дозиметр-радиометр МКС-АТ1117М, который предназначен для измерения амбиентного эквивалента дозы и мощности амбиентного эквивалента дозы рентгеновского, гамма-излучения и нейтронного излучения, поверхностной активности и плотности потока альфа-частиц и бетачастиц с загрязненных поверхностей, а также плотности потока нейтронов.

В зависимости от выполняемых задач, прибор комплектуется выносными блоками детектирования различного назначения. В качестве элемента управления и индикации может использоваться блок обработки информации (БОИ/БОИ2), КПК или персональный компьютер.

Рисунок 1.2 – Общий вид блоков обработки информации

MKC-AT1117M Дозиметр-радиометр собой представляет многофункциональное носимое средство измерения с цифровой индикацией показаний, включающее в себя блок обработки и индикации информации БОИ и/или БОИ2 (со встроенным счетчиком Гейгера-Мюллера) и внешние интеллектуальные блоки детектирования: БДПА-01, БДПБ-01, БДПС-02, БДКН-01, БДКН-03, БДКР-01, БДКГ-01, БДКГ-03, БДКГ-04, БДКГ-05, БДКГ-09, БДКГ-17.

Информация с блока детектирования по специальному кабелю поступает на блок обработки информации и индицируется на жидкокристаллическом индикаторе.

В БОИ и БОИ2 предусмотрена возможность записи и хранения в энергонезависимой памяти до 99 результатов измерений, а также передача их в персональный компьютер при помощи специального ПО.

Присутствует звуковая и визуальная сигнализация превышения пороговых уровней по дозе, мощности дозы, плотности потока, флюенса и поверхностной активности. Алгоритм работы обеспечивает непрерывность процесса измерения и статистическую обработку результатов в режиме реального времени. В блоки обработки БОИ и БОИ2 встроены узлы детектирования, позволяющие обеспечить измерение дозы и мощности дозы гамма-излучения в месте нахождения оператора. В таблицах 1.1-1.13 приведены параметры МКС-АТ1117М и блоков детектирования, входящих в комплект.

Таблица 1.1 – Диапазон измерения мощности амбиентной эквивалентной дозы рентгеновского и гамма-излучения

Блок	Диапазон измерения
БОИ, БОИ2	1 мк3в/ч — 10 м3в/ч
БДПС-02	0,1 мк3в/ч — 30 м3в/ч
БДКР-01	0,05 — 100 мкЗв/ч
БДКГ-01	0,1 мкЗв/ч — 10 Зв/ч
БДКГ-03	0,03 — 300 мкЗв/ч
БДКГ-04	0,05 мкЗв/ч — 10 Зв/ч
БДКГ-05	0,03 — 100 мкЗв/ч

Таблица 1.2 — Диапазон измерения амбиентной эквивалентной дозы рентгеновского и гамма-излучения

Блок	Диапазон измерения
БОИ, БОИ2	10 мкЗв ÷ 10 Зв
БДПС-02	0,1 мкЗв ÷ 1 Зв
БДКР-01	0,05 мкЗв ÷ 5 мЗв
БДКГ-01, БДКГ-09	0,1 мк3в ÷ 10 3в

Продолжение таблицы 1.2

БДКГ-03	0,03 мкЗв ÷ 1 Зв
БДКГ-04	0,05 мкЗв ÷ 10 Зв
БДКГ-05	0,03 мк3в ÷ 0,3 м3в
БДКГ-17	1 мкЗв ÷ 100 Зв

Таблица 1.3 – Диапазон измерения плотности потока бета-частиц с поверхности

Блок	Диапазон измерения
БДПБ-01	1 ÷ 5·105 част./(мин.·см2)
БДПС-02	6 ÷ 106 част./(мин. см2)

Таблица 1.4 – Диапазон измерения амбиентной эквивалентной дозы нейтронного излучения:

Блок	Диапазон измерения
БДКН-01 (от Pu-Ве источников)	0,1 мкЗв ÷ 10 Зв
БДКН-03 (0,025 эВ ÷ 14 МэВ)	0,1 мкЗв ÷ 10 Зв

Таблица 1.5 – Диапазон измерения плотности потока нейтронов

Блок	Диапазон измерения	
БДКН-01	0,1 ÷ 104 нейтр/(с·см2)	
БДКН-03	0,1 ÷ 104 нейтр/(с·см2)	

Таблица 1.6 – Диапазон энергии рентгеновского и гамма-излучения

Блок	Диапазон измерения
БДКР-01	5 ÷ 160 кэВ
БОИ, БОИ2, БДКГ-01, БДКГ-09, БДКГ-17	60 кэВ ÷ 3 МэВ
БДПС-02, БДКГ-04	20 кэВ ÷ 3 МэВ
БДКГ-01, БДКГ-09	60 кэВ ÷ 3 МэВ
БДКГ-03, БДКГ-05	50 кэВ ÷ 3 Мэв

Таблица 1.7 – Диапазон энергии регистрируемых альфа-частиц

Блок	Диапазон измерения	Блок
БДПС-02	4 ÷ 7 МэВ	БДПС-02
БДПА-01	3 ÷ 7 МэВ	БДПА-01

Таблица 1.8 – Диапазон энергии регистрируемых бета-частиц

Блок	Диапазон измерения
БДПС-02	155 кэВ ÷ 3,5 МэВ

Продолжение таблицы 1.8

БДПБ-01	155 кэВ ÷ 3,5 МэВ
---------	-------------------

Таблица 1.9 – Диапазон энергии регистрируемых нейтронов

Блок	Диапазон измерения
БДКН-01	0,025 эВ ÷ 14 МэВ
БДКН-03	0,025 эВ ÷ 14 МэВ

Таблица 1.10 – Основная погрешность измерения

Значения	Погрешность	
Мощности дозы, не более	± 20%	
Плотности потока, не более	± 20%	

Таблица 1.11 – Энергетическая зависимость при измерении

Значение	Диапазон
Мощности дозы относительно 137Cs, не более	не более ±15 %
плотности потока относительно 90Sr+90Y, не более	не более ±50 %
Диапазон рабочих температур	-30 ÷ +50°C
Относительная влажность воздуха при температуре 35оС, до	до 98 %
Класс защиты	IP65
Напряжение питания	
блок Ni-MH аккумуляторов	6 Вт
Сеть переменного тока, частота 50 Гц	220 B
сеть постоянного тока	12 B
Время непрерывной работы	24 ч

Таблица 1.12 – Масса оборудования

Блок	Macca
БОИ	1,1 кг
БОИ2, БДПА-01, БДПБ-01, БДКР-01, БДКГ- 04, БДКГ-09	0,5 кг
БДПС-02, БДКГ-17	0,3 кг
БДКН-01	2,5 кг
БДКН-03	7 кг
БДКГ-01	0,42 кг
БДКГ-03	0,6 кг
БДКГ-04	0,5 кг

БДКГ-05	1,2 кг
---------	--------

Таблица 1.13 – Габариты блоков дозиметра-радиометра МКС-АТ-1117М

Блок	Размеры		
БОИ	177х85х124 мм		
БОИ2	92х62х52 мм		
БДПС-02	138х86х60 мм		
БДПА-01	ø80х196 мм		
БДКН-01	ø90x290 мм		
БДКН-03	ø220x312 мм		
БДКР-01, БДКГ-01, БДКГ-09	ø54х255 мм		
БДКГ-03	ø60x295 мм		
БДКГ-04	ø60x200 мм		
БДКГ-05	ø60x320 мм		
БДКГ-17	ø51х167 мм		

Область применения детектора относится к различным областям науки, таким как радиоэкология, санэпиднадзор, радиационная медицина, атомная промышленность, пожарные службы, аварийно-спасательные службы, гражданская оборона, научные исследования, таможенный контроль, досмотровая рентгеновская техника, рентгенография и радиография.

обладает свойств Дозиметр-радиометр множеством такими как многофункциональность, высокая чувствительность и широкий диапазон, быстрая адаптация к изменению уровней радиационного фона, источников рентгеновского, гамма-, альфа-, бета- и нейтронного излучения, интеллектуальные блоки детектирования (интерфейс RS 232), система встроенной светодиодной стабилизации В сцинтилляционных блоках детектирования, звуковая и визуальная сигнализация превышения пороговых уровней по дозе, мощности дозы и плотности потока возможность работы в широком температур В условиях, большой диапазоне полевых специализированный цифро-аналоговый ЖК-индикатор с подсветкой, хранение

в энергонезависимой памяти прибора и передача в ПЭВМ до 100 результатов измерения, два варианта блока обработки информации: БОИ и БОИ2.

1.6 Источник быстрых нейтронов ИБН-10

ИБН-10 имеет измеренное значение потока быстрых нейтронов от источника в телесный угол $4\pi - 1{,}01*10^7$ нейтр./с и среднюю энергию нейтронов 4,5 МэВ. Основные характеристики представлены в таблице 1.14.

Тип источника ИБН-10 35 Диаметр источника, мм 45 Высота источника, мм 27 Диаметр активной части, мм 27 Высота активной части, мм $2.5*10^{11}$ Максимальная активность Ри-239, Бк Максимальная активность Pu-239, Ки 6,8 Поток быстрых нейтронов $1,01 \cdot 10^7$ в телесный угол 4π , нейтр./(см²*с)

Таблица 1.14 – Характеристики источника быстрых нейтронов ИБН-10

Применение источников нейтронного излучения осуществляется для решения таких задач, как:

- нейтронно-активационный анализ;
- анализа в полевых и стационарных условиях;
- поточного анализа состава и расхода различных насыпных материалов;
- исследование породы;
- для измерения влажности воздуха.

3 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение

В данном разделе ВКР выполняется анализ и расчет основных параметров для реализации успешных конкурентоспособных изделий, которые бы приносили доход и являлись не только коммерчески привлекательным продуктом, но и соответствовали требованиям ресурсосбережения и ресурсоэффективности. Объектом, который рассматривается в данной дипломной работе является проектные решение по созданию биологической защиты источника нейтронов.

Данный объект должен обладать рядом характеристик, такими, как – размеры, стоимость, надежность. Эти характеристики будут зависеть от качества материалов, их количества и рационального использования материалов.

В работе рассмотрены три варианта технического исполнения защиты: защита из полиэтилена, защита из свинца, защита из бетона. Для каждого варианта рассмотрены различные достоинства и недостатки.

Чтобы решить ряд задач, связанных с финансовой оценкой продукта, его ресурсоэффиктивности и ресурсосбережение, в данном разделе ВКР нужно:

- провести анализ и исследования рынка покупателей;
- подобрать возможные альтернативы научного исследования;
- провести планирование НИР.

3.1 Оценка коммерческого потенциала и перспективности проведения научных исследований с позиции ресурсоэффективности и ресурсосбережения

Потенциальные потребители результатов исследования

Произведем анализ рынка потенциальных потребителей. Данная разработка может оказаться нужной предприятиям ядерного-топливного цикла, использующие в своих исследованиях радиоактивные вещества. Разработка может быть направлена для продажи коммерческим организациям.

Технология QuaD

Технология QuaD (QUality ADvisor) представляет собой гибкий инструмент измерения характеристик, описывающих качество новой разработки и ее перспективность на рынке и позволяющие принимать решение целесообразности вложения денежных средств в научноисследовательский проект.

Показатели оценки качества и перспективности новой разработки подбираются исходя из выбранного объекта исследования с учетом его технических и экономических особенностей разработки, создания и коммерциализации.

В соответствии с технологией QuaD каждый показатель оценивается экспертным путем по стобалльной шкале, где 1 — наиболее слабая позиция, а 100 — наиболее сильная. Веса показателей, определяемые экспертным путем, в сумме должны составлять 1.

Значение Π_{cp} позволяет говорить о перспективах разработки и качестве проведенного исследования. Если значение показателя Π cp получилось от 100 до 80, то такая разработка считается перспективной. Если от 79 до 60 — то перспективность выше среднего. Если от 69 до 40 — то перспективность средняя. Если от 39 до 20 — то перспективность ниже среднего. Если 19 и ниже то перспективность крайне низкая.

Таблица 3.1 – Оценочная карта для сравнения конкурентных технических решений (разработок)

Критерии оценки	Вес критерия	Баллы	Максим альный	Относительно е значение	Средневзвешенное значение
			балл		
1. Надежность	0,2	100	100	1,00	20
2. Уровень материалоемкости	0,1	75	100	0,75	7,5
3. Безопасность	0,1	90	100	0,90	9
4. Простота эксплуатации	0,1	100	100	1,00	10
5. Конкурентоспосо бность продукта	0,08	80	100	0,80	6,4
6. Перспективность рынка	0,1	75	100	0,75	7,5
7. Цена	0,12	85	100	0,85	10,2
8. Послепродажное обслуживание	0,05	90	100	0,90	4,5
9. Финансовая эффективность научной разработки	0,1	85	100	0,85	8,5
10. Срок выхода на рынок	0,05	90	100	0,90	4,5
Итого	1	870	1000	1	88,1

В данном случае, разработка считается перспективной, так как значение показателя качества и перспективности научной разработки 88,1.

3.2 SWOT-анализ

SWOT-анализ — (strengths, weaknesses, opportunities, threats — сильные стороны, слабые стороны, возможности, угрозы) — представляет собой комплексный анализ научно-исследовательского проекта, который применяют для исследования внешней и внутренней среды проекта.

Сильные стороны — это факторы, характеризующие конкурентоспособную сторону научно-исследовательского проекта.

Сильными сторонами данной работы можно назвать следующие свойства и особенности:

- возможность использования данной разработки в предприятиях ядерно-топливного цикла, в связи с тем, что разработка учитывает все нормы и правила действующие на территории РФ;
 - меньшие размеры установки, по сравнению с конкурентными;
 - готовность проекта к внедрению в производство.

Слабые стороны – это недостаток, упущение или ограниченность научно-исследовательского проекта, которые препятствуют достижению его целей.

Слабыми сторонами разрабатываемой работы можно назвать следующие свойства и особенности:

- малый спектр использования разработки;
- необходимость внесения в коррективы в установку при помещении в нее более мощного источника нейтронов.

Возможности включают в себя любую предпочтительную ситуацию в настоящем или будущем, возникающую в условиях окружающей среды проекта, например, тенденцию, изменение или предполагаемую потребность, которая поддерживает спрос на результаты проекта и позволяет руководству проекта улучшить свою конкурентную позицию.

К возможностям данной разработки можно отнести:

– снижение размеров установки;

- предоставление дополнительных рабочих мест;
- улучшение радиационной безопасности сотрудников.

Угроза представляет собой любую нежелательную ситуацию, тенденцию или изменение в условиях окружающей среды проекта, которые имеют разрушительный или угрожающий характер ДЛЯ его конкурентоспособности в настоящем или будущем. В качестве угрозы может выступать барьер, ограничение или что-либо еще, что может повлечь за собой проблемы, разрушения, вред или ущерб, наносимый проекту.

К угрозам можно отнести:

- природные катаклизмы: землетрясения, цунами, смерчи;
- снижение государственного финансирования развития атомной энергетики и модернизации систем радиационной защиты;
- угроза диверсионных и террористических действий в отношении источников нейтронов.

В таблице 3.2 представлена интерактивная матрица проекта, в которой показано соотношение сильных сторон с возможностями, что позволяет более подробно рассмотреть перспективность разработки.

Таблица 3.2 – Интерактивная матрица проекта

Сильные стороны проекта						
		C1	C2	C3		
Возможности	B1	+	+	+		
проекта	B2	+	_	_		
	В3	+	+	_		

В матрице пересечения сильных сторон и возможностей имеет определенный результат: «плюс» — сильное соответствие сильной стороны и возможности, «минус» — слабое соотношение.

В таблице 3.3 представлен SWOT-анализ виде таблицы, так же показаны результаты пересечений сторон, возможностей и угроз.

Таблица 3.3 – SWOT-анализ

	Сильные стороны научно- исследовательского проекта: Сил1. Возможность использования данной разработки в предприятиях ядерно-топливного цикла, в	Слабые стороны научно- исследовательского проекта: Сл1. Малый спектр использования разработки; Сл2. Необходимость внесения в коррективы в установку при
	связи с тем, что разработка учитывает все нормы и правила действующие на территории РФ Сил2. Меньшие размеры	помещении в нее более мощного источника нейтронов.
	установки, по сравнению с конкурентными Сил3. Готовность проекта к внедрению в производство	
Возможности:	1. Внедрение разработки для	1. Высококвалифицированный
В1. Снижение размеров	достижения уровней	персонал повысит качество
установки;	безопасности, требования	работы, безопасность.
В2. Предоставление рабочих	санитарных правил.	2.Размеры установки позволяют
мест.	2. Создания систем защиты	вносить при необходимости
ВЗ. Улучшение радиационной	приведет к необходимости	коррективы.
безопасности сотрудников.	привлечения дополнительных кадров.	
Угрозы: У1. Природные катаклизмы. У2. Снижение государственного финансирования развития атомной энергетики и ввода в эксплуатацию новых типов установок. У3. Наличие угрозы несанкционированных	1. Возможность использования нейтронного источника влечет за собой привлечение действий террористического и диверсионного характеров. 2. Отсутствие возможности привлечения дополнительных кадров.	1. Отсутствие жестких опор делает его уязвимым перед природными катаклизмами. 2. Наличие действующих работающих систем безопасности и высокая конкуренция.
действий в отношении ЯЭУ.		
П	LITD	

Проанализировав характер HTP можно сделать вывод, что наиболее оптимальной стратегией выхода разработки на рынок является стратегия совместной предпринимательской деятельности. Совместная предпринимательская деятельность — это стратегия, которая основана на соединении общих усилий фирмы с коммерческими предприятиями страныпартнера для создания производственных и маркетинговых мощностей. Данная стратегия выбрана ввиду того, что предприятие, заинтересованное на российском рынке, одно (Росэнергоатом). В свою очередь, данное предприятие требует тесного взаимодействия с другими производственными компаниями.

3.3 Определение возможных альтернатив проведения НИР

Морфологический подход основан на систематическом исследовании всех теоретически возможных вариантов, вытекающих из закономерностей строения (морфологии) объекта исследования.

Таблица 3.4 – Морфологическая матрица

Вариант исполнения	1	2	3
Исполнение 1	Полиэтилен	Кадмий	Ручка
Исполнение 2	Свинец	Кадмий	Ручка
Исполнение 3	Бетон	Кадмий	Ручка

3.4 Планирование НИР

3.4.1 Планирование этапов и работ по выполнению НИР

Для выполнения научных исследований сформирована рабочая группа, в состав которой входят научный руководитель и студент. Порядок составления этапов и работ приведен в табл. 3.1.

Таблица 3.5 – Порядок составления этапов и работ

Основные этапы	№ раб.	Содержание работ	Должность исполнителя
Разработка технического задания на НИР	1	Составление и утверждение технического задания	руководитель
D 5	2	Подбор и изучение материалов по теме	руководитель, студент
Выбор направления исследования	3	Выбор направления исследования	руководитель
киньводования	4	Календарное планирование работ по теме	руководитель
	5	Ознакомление с особенностями расчета защиты	студент
Теоретические и экспериментальные	1 U MI		руководитель, студент
исследования	7	Проведение экспериментов	студент
	8	Проведение расчетов и анализ полученных данных	студент
Обобщение и оценка результатов	9	Оценка эффективности полученных результатов	руководитель, студент

Продолжение таблицы 3.5

	10	Определение целесообразности проведения НИР	руководитель студент
Оформление отчёта по НИР	11	Составление пояснительной записки	студент
	12	Подготовка темы к защите	руководитель студент

3.5 Определение трудоемкости выполнения НИР

Трудоемкость выполнения НИР оценивается экспертным путем в человеко-днях и носит вероятностный характер, поскольку зависит от множества трудно учитываемых факторов. Для определения ожидаемого (среднего) значения трудоемкости работ $t_{\text{ож}}$ используется следующая формула:

$$t_{o \to ci} = \frac{3t_{\min i} + 2t_{\max i}}{5} \,, \tag{3.1}$$

где t_{omi} – ожидаемая трудоемкость выполнения i-ой работы, чел.-дн.;

 $t_{\min i}$ — минимально возможная трудоемкость выполнения заданной i-ой работы (оптимистическая оценка: в предположении наиболее благоприятного стечения обстоятельств), чел.-дн.;

 $t_{\max i}$ — максимально возможная трудоемкость выполнения заданной i-ой работы (пессимистическая оценка: в предположении наиболее неблагоприятного стечения обстоятельств), чел.-дн.

Исходя из ожидаемой трудоемкости работ, определяется продолжительность каждой работы в рабочих днях T_p , учитывающая параллельность выполнения работ несколькими исполнителями. Такое вычисление необходимо для обоснованного расчета заработной платы, так как удельный вес зарплаты в общей сметной стоимости научных исследований составляет около 65 %.

$$T_{pi} = \frac{t_{ooci}}{Y_i}, \tag{3.2}$$

где T_{pi} – продолжительность одной работы, раб. дн.;

 $t_{\mathit{ox}i}$ – ожидаемая трудоемкость выполнения одной работы, чел.-дн.;

 \mathbf{q}_i — численность исполнителей, выполняющих одновременно одну и ту же работу на данном этапе, чел.

Результаты расчетов трудоёмкости и продолжительности одной работы сведены в табл. 3.2.

3.6 Разработка календарного плана работ

Так как научная тема является сравнительно небольшой относительно объема работ, в этом случае наиболее удобным и наглядным будет являться построение ленточного графика проведения НИР в форме диаграммы Ганга. Для удобства построения календарного план-графика, длительность этапов в рабочих днях переводится в календарные дни и рассчитывается по следующей формуле:

$$T_{ki} = T_{pi} \times k \,, \tag{3.3}$$

где T_{Ki} — продолжительность выполнения одной работы в календарных днях; T_{pi} — продолжительность одной работы в рабочих днях;

k — коэффициент календарности, предназначен для перевода рабочего времени в календарное.

Коэффициент календарности рассчитывается по формуле:

$$k = \frac{T_{\kappa 2}}{T_{\kappa 2} - T_{\theta \partial} - T_{n \partial}} \tag{3.4}$$

где $T_{\kappa z}$ – количество календарных дней в году;

 $T_{\it ed}$ – количество выходных дней в году;

 $T_{n\partial}$ – количество праздничных дней в году.

В данной работе число праздничных и выходных дней принимается равным 116 дней. Исходя из этого, коэффициент календарности равен:

$$k = \frac{365}{365 - 116} = 1,47$$

Длительность этапов в календарных днях сведена в табл. 3.6.

Диаграмма Ганта — горизонтальный ленточный график, на котором работы по теме представляются протяженными во времени отрезками, характеризующимися датами начала и окончания выполнения данных работ.

Таблица 3.6 – Временные показатели проведения НИР

	t _{min}	t _{max}	t _{oж}	Исполнители	Т _{р,}	T_{κ}
			4.0		раб. дн.	кал. дн
1	4	6	4,8	руководитель	4,8	7,11
2	15	18	16,2	руководитель студент	8,1	12,00
3	2	3	2,4	руководитель	2,76	4,08
4	3	5	3,8	руководитель студент	1,9	2,81
5	8	11	9,2	студент	9,2	13,63
6	6	8	6,8	руководитель студент	3,4	5,04
7	12	15	13,2	студент	14,28	21,16
8	20	21	20,4	студент	20,76	30,76
9	4	8	5,6	руководитель студент	2,8	4,15
10	3	5	3,8	руководитель студент	1,9	2,81
11	10	11	10,4	студент	10,4	15,41
12	8	11	9,2	руководитель студент	4,6	6,82

3.7 Бюджет научно-технического исследования

3.7.1 Расчет материальных затрат НТИ

Расчет материальных затрат осуществляется по следующей формуле:

$$3_{\rm M} = (1 + kT) * \Sigma \coprod_{i} N_{\rm pacx} i; \qquad (3.5)$$

где m — количество видов материальных ресурсов, потребляемых при выполнении научного исследования;

 $N_{\text{расх}i}$ — количество материальных ресурсов i-го вида, планируемых к использованию при выполнении научного исследования (шт., кг, м, м 2 и т.д.);

 \coprod_i – цена приобретения единицы i-го вида потребляемых материальных

ресурсов (руб./шт., руб./кг, руб./м, руб./м 2 и т.д.); kT — коэффициент, учитывающий транспортно-заготовительные расходы.

Таблица 3.7 – Расходы на материалы для Исполнения 1

Наименование	Единица	Количество	Цена за ед,	Затраты на
	измерения		руб.	материалы, руб
Полиэтилен	КГ	154	50	7700
Кадмий	КГ	3	193	579
Канцелярские товары	ШТ	1	220	220
Итого, руб	8499			

Таблица 3.8 – Расходы на материалы для Исполнения 2

Наименование	Единица	Количество	Цена за ед,	Затраты на
	измерения		руб.	материалы, руб
Свинец	КГ	13129	6393	984675
Кадмий	КГ	3	193	579
Канцелярские товары	ШТ	1	220	220
Итого, руб	985474			

Таблица 3.9 – Расходы на материалы для Исполнения 3

Наименование	Единица	Количество	Цена за ед,	Затраты на
	измерения		руб.	материалы, руб
Бетон	КГ	1604	8,97	14400
Кадмий	КГ	3	193	579
Канцелярские товары	ШТ	1	220	220
Итого, руб	15199			

3.7.2 Основная заработная плата исполнителей темы

Величина расходов по заработной плате определяется исходя из трудоемкости выполняемых работ и действующей системы окладов и тарифных ставок. В состав основной заработной платы включается премия, выплачиваемая ежемесячно из фонда заработной платы в размере 20 –30 % от тарифа или оклада.

Среднедневная заработная плата определяется по формуле:

$$3_{3\pi i} = D + D*K/F;$$
 (3.6)

где D – месячный оклад работника (в соответствии с квалификационным уровнем профессиональной квалификационной группы);

К – районный коэффициент (для Томска – 30%);

F – количество рабочих дней в месяце (в среднем 22 дня).

Оклад руководителя от ТПУ для ассистента без степени составляет 14 584,32 рубля. Стипендия студента составляет 2 000 руб.

Для руководителя:

$$C_{3\pi 1} = 14584,32 + 15584,32*0,3/22 = 920,9 \text{ py6}.$$

Для студента:

$$C_{3\pi 1} = 2000 + 2000*0,3/22 = 118,2 \text{ py6}.$$

Основная заработная плата исполнителей, непосредственно участвующих в проектировании разработки:

$$C_{\text{осн зп}} = \Sigma t_i \cdot C_{\text{зп}i}, \tag{3.7}$$

где t_i - затраты труда, необходимые для выполнения i-го вида работ, в рабочих днях;

 $C_{\mbox{\tiny 3пi}}$ - среднедневная заработная плата работника, выполняющего і-ый вид работ, (руб./день).

Таблица 3.10 – Расчет основной заработной платы

Исполните	Оклад	Средняя	Трудоемкость,		Основная заработная плат		ая плата,	
ЛЬ		заработна	раб.дн.			руб		
		я плата,	Исп1	Исп.2	Исп.3	Исп1	Исп.2	Исп.3
		руб./дн.						
P	14584,32	920,9	53	48	51	48807,7	44203,2	46965,9
С	2000,00	118,2	146	126	125	17257,2	14893,2	14775

3.7.2 Отчисление во внебюджетные фонды

Величина отчислений во внебюджетные фонды определяется исходя из следующей формулы:

$$3_{\text{внеб}} = k_{\text{внеб}} \cdot (3_{\text{осн}} + 3_{\text{лоп}}) \tag{3.6}$$

где $k_{\text{внеб}}$ — коэффициент отчислений на уплату во внебюджетные фонды (пенсионный фонд, фонд обязательного медицинского страхования и т.д.).

Для учреждений, осуществляющих образовательную и научную деятельность вводится пониженная ставка -30 %.

Таблица 3.12 – Отчисления во внебюджетные фонды

Исполнитель	квнеб,	Заработная плата, руб			Страховые взносы, руб			
	%		И2	И3	И1	И2	ИЗ	
Руководитель	30	31165,39	30942,33	32876,13	14642,3	1 13260,96	14089,77	
Студент		12080,04	10425,24	10342,5	5177,16	4467,96	4432,5	
Итого:					19819,47	17728,92	18522,27	

Накладные расходы рассчитаем, как:

$$3_{\text{накл}} = (3_{\text{внеб}} + 3_{\text{доп}} + 3_{\text{осн}}) * k_{\text{нр}}$$
(3.7)

где $k_{\text{нр}}$ – коэффициент, учитывающий накладные расходы, руб.

Для исполнения 1:

$$3_{\text{накл1}} = (19819,47+48807,7+17257,2) * 0,5 = 42942,18 \text{ руб.}$$

Для исполнения 2:

$$3_{\text{HAK},12} = (17728,92+44203,2+14893,2) * 0,5 = 38412,66 \text{ py}6.$$

Для исполнения 3:

$$3_{\text{накл3}} = (18522,27+46965,9+14775) * 0,5 = 40131,58 \text{ руб.}$$

Таблица 3.11 – Формирование бюджета затрат научно-исследовательского проекта

Наименование	Сумма,руб					
статьи	Исполнение 1	Исполнение 2	Исполнение 3			
Материальные затраты НТИ	8499	985474	15199			
Затраты по основной 3/п	66064,9	59096,4	61740,9			
Затраты по доп. з/п	14235	12577	12912			
Отчисления во внебюджетные фонды	19819,47	17728,92	18522,27			
Накладные расходы	42942,18	38412,66	40131,58			
Бюджет затрат НТИ	372882,55	2286800,98	356754,8			

В результате приведенных выше расчетов были посчитаны основные и дополнительные заработные платы научного руководителя и студента, накладные расходы, отчисления во внебюджетные фонды и общий бюджет затрат НТИ, который при исполнении 1 составляет 372882,55 руб., при исполнении 2 – 2286800,98 руб., при исполнении 3 – 356754,8 руб.

3.8 Определение ресурсной (ресурсосберегающей), финансовой, бюджетной, социальной и экономической эффективности исследования

Интегральный финансовый показатель рассчитывается как:

$$I_{\phi \text{инр}}^{\text{исп.}i} = \frac{\Phi_{pi}}{\Phi_{max}} \tag{3.8}$$

где $\Phi_{p,i}$ – стоимость і-го варианта исполнения;

 $I_{\mathrm{финр}}^{\mathrm{исп.}i}$ – интегральный финансовый показатель разработки;

Интегральный показатель ресурсоэффективности можно определить следующим образом:

$$I_{Pi} = \sum a_i b_i \tag{3.9}$$

где $I_{p,i}$ – интегральный показатель ресурсоэффективности для i-го варианта разработки;

аі – весовой коэффициент і-го варианта разработки;

b_i – бальная оценка i-го варианта исполнения разработки;
 устанавливаемая экспертным путем по выбранной шкале оценивания;

n – число параметров сравнения.

Расчет интегральных показателей ресурсоэффективности приведен в таблице 3.12. Сравнительная оценка характеристик вариантов исполнения проекта приведена в таблице 3.13.

Исходя из проведенного анализа, можно отметить, что Исполнение №1 является наиболее эффективным вариантом решения для ВКР с позиции финансовой и ресурсной эффективности.

Таблица 3.12 – Расчет интегральных показателей ресурсоэффективности

Критерии	Весовой	Исполнение	Исполнение 2	Исполнение 3
	коэффициент	1		
	параметра			
Простота сборки	0,15	5	3	3
Надежность	0,15	4	5	5
Материалоемкость	0,25	5	3	3
Актуальность	0,20	5	4	4
использования				
Размеры	0,25	5	3	3
Итого	1	24	18	18
Ipi		4,85	3,41	3,5

Таблица 3.13 — Сравнительная оценка характеристик вариантов исполнения проекта

Показатели	Исп.1	Исп.2	Исп.3
Интегральный финансовый показатель	1	1	1
разработки $I_{ m \phiинp}$			
Интегральный показатель ресурсоэффективности разработки I_p	4,85	3,41	3,5
Интегральный показатель эффективности <i>I</i>	4,85	3,41	3,5
Сравнительная эффективность вариантов исполнения	1,42	0,98	0,72

Список публикаций студента

- 1. Артемов Е. В. Расчет защиты от нейтронного источника ИБН-10 // Образование, наука, инновации: вклад молодых исследователей: материалы X (XLII) Международной научной конференции студентов, аспирантов и молодых ученых, Кемерово, 21-24 Апреля 2015. Кемерово: КемГУ, 2015 С. 2762-2766.
- 2. Артемов Е. В. Расчет защиты от нейтронного излучения [Электронный ресурс] // Физико-технические проблемы в науке, промышленности и медицине: сборник тезисов докладов VII Международной научно-практической конференции, Томск, 3-6 Июня 2015. Томск: ТПУ, 2015 С. 258-259.
- 3. Артемов E. B. Description of the procedures for access to the source of neutron radiation in a nuclear non-proliferation // Addressing Emerging Nonproliferation Challenges: Proceedings of Young Scholars Interdisciplinary Forum, Astana, October 9, 2015. Astana: Nuclear Society of Kazakhstan, 2015 p. 30-31.
- 4. Артемов Е. В. Исследование вторичного гамма-излучение в защите из полиэтилена [Электронный ресурс] // Физико-технические проблемы в науке, промышленности и медицине: сборник тезисов докладов VIII Международной научно-практической конференции, Томск, 1-3 Июня 2016. Томск: ТПУ, 2016 С. 180-181.
- 5. Егорова М. С., Артемов Е. В. Формы и системы заработной платы // Молодой ученый. 2015. №11.4. С. 82-84.
- 6. Артемов Е. В., Егорова М. С. Общие принципы оплаты труда в современных условиях // Молодой ученый. 2015. №11.4. С. 13-15.
- 7. Артемов Е. В., Егорова М. С. Энергоэффективность и молодежное движение // Молодой ученый. 2015. №9. С. 509-511.