СПИСОК ЛИТЕРАТУРЫ

- Медведев А.В., Победаш П.Н. Применение z-преобразования и дискретного принципа максимума к анализу модели реальных инвестиций // Вестник Сибирского государственного аэрокосмического университета имени академика М.Ф. Решетнева. – 2006. – № 4 (11). – С. 32–37.
- Медведев А.В. Применение z-преобразования к исследованию многокритериальных линейных моделей регионального эко-
- номического развития. Красноярск: Изд-во СибГАУ им. акад. М.Ф. Решетнева, 2008. 228 с.
- 3. Пропой А.И. Элементы теории оптимальных дискретных процессов. М.: Наука, 1973. 256 с.
- 4. Подиновский В.В., Ногин В.Д. Парето-оптимальные решения многокритериальных задач. М.: Наука, 1982. 256 с.

Поступила 24.11.2009 г.

УДК 519.865

ПЛОТНОСТЬ РАСПРЕДЕЛЕНИЯ КАПИТАЛА НЕКОММЕРЧЕСКОГО ФОНДА ПРИ ГИСТЕРЕЗИСНОМ УПРАВЛЕНИИ КАПИТАЛОМ

К.И. Лившиц, Я.С. Бублик*

Томский государственный университет *Филиал Кемеровского государственного университета в г. Анжеро-Судженске E-mail: kim47@mail.ru

Получены уравнения, определяющие плотность распределения капитала некоммерческого фонда при гистерезисном управлении капиталом. Найдено решение уравнений при экспоненциальном распределении поступающих в фонд премий и в случае малой нагрузки премии.

Ключевые слова:

Некоммерческий фонд, гистерезисное управление, плотность распределения капитала, малая нагрузка премии.

Key words:

Uncommercial fund, hysteresis control, distribution density of funds capital, small premium load.

Математическая модель изменения капитала фонда

Под некоммерческим фондом понимается организация, созданная для сбора и распределения денежных средств без получения прибыли. К некоммерческим фондам могут быть отнесены, в частности, все государственные внебюджетные фонды РФ. Построению и исследованию моделей некоммерческих фондов посвящены, например, работы [1–4]. В упомянутых работах исследование характеристик деятельности фонда проводилось в предположении, что управление капиталом фонда является релейным. В настоящей работе рассматривается более общий случай, когда управление капиталом фонда является гистерезисным.

Основной характеристикой состояния фонда является его капитал S(t) в момент времени t. В работе предполагается, что с капиталом S(t) могут происходить следующие изменения:

- 1. В фонд поступают денежные средства. Будем считать, что моменты поступления денежных средств образуют пуассоновский поток с интенсивностью λ . Поступающие денежные суммы (премии) являются независимыми одинаково распределенными величинами с плотностью распределения $\phi(x)$, средним значением $M\{x\}=a$ и вторым моментом $M\{x^2\}=a_2$.
- 2. Фонд расходует поступившие денежные средства. Будем считать, что расходование денеж-

ных средств происходит непрерывно во времени со скоростью b(s), так что за время Δt выплата составляет $b(s)\Delta t$. Предполагается, что управление расходованием денежных средств определяется следующим образом. Устанавливаются два пороговых значения капитала S_1 и S_2 , причем $S_1 < S_2$. В области $S(t) < S_1$ $b(s) = b_0$, в области $S(t) > S_2$ $b(s) = b_1$. Так как фонд не имеет целью получение прибыли, то естественно считать, что

$$b_0 < \lambda a, \ b_1 > \lambda a.$$
 (1)

Таким образом, при $S < S_0$ фонд расходует в среднем меньше средств, чем собирает, а при $S > S_0$ расходует в среднем больше средств, чем него поступает.

Что касается области $S_1 \le S \le S_2$, то здесь устанавливается $b(s) = b_0$ или $b(s) = b_1$ в зависимости от того, как процесс S(t) вошел в эту область. Если он вошел в нее через порог S_1 снизу вверх, то остается $b(s) = b_0$; если же он вошел в эту область через порог S_2 сверху вниз, то остается $b(s) = b_1$. Таким образом, значение $b(s) = b_1$ устанавливается при достижении капиталом S(t) значения S_2 и оканчивается при уменьшении капитала до значения S_1 . Область $S_1 \le S \le S_2$ и представляет собой область гистерезиса в управлении капиталом.

Наконец, будем считать, что при S<0 фонд не прекращает своей деятельности, но наступает период неплатежеспособности фонда, обязательства фонда выполняются по мере поступления денежных средств.

Плотность распределения капитала фонда

Выпишем уравнения, определяющие плотность вероятностей P(S) величины капитала во всех этих областях в стационарном режиме. Так как сумма поступающих премий представляет собой сложнопуассоновский процесс [5], то процесс изменения капитала в каждой области есть сумма линейной составляющей и сложно-пуассоновского процесса. Поэтому плотность P(S) существует и может иметь разрывы лишь в точках S_1 и S_2 . Перенесем для удобства начало отсчета в точку $S=S_1$ и обозначим $S_0=S_2-S_1$. При этом нижний порог $S_1=0$.

Начнем с области S<0. В этой области плотность вероятностей P(S) будем обозначать как $P_0(S)$. Рассмотрим два близких момента времени t и $t+\Delta t$. За время Δt с капиталом фонда могли произойти следующие изменения. С вероятностью $1-\lambda \Delta t + o(\Delta t)$ премии в фонд не поступали и, следовательно, капитал фонда уменьшился на величину $b_0\Delta t$. С вероятностью $\lambda \Delta t + o(\Delta t)$ в фонд поступила случайная премия x, и капитал фонда увеличился на величину $x-b_0\Delta t$. Остальные события имеют вероятность $o(\Delta t)$. Откуда по формуле полной вероятности получим

$$P_0(S) = (1 - \lambda \Delta t) P_0(S + b_0 \Delta t) +$$

$$+ \lambda \Delta t \int_0^\infty P_0(S - x) \varphi(x) dx + o(\Delta t).$$

Переходя к пределу при $\Delta t \rightarrow 0$, будем иметь

$$b_0 \dot{P}_0(S) = \lambda P_0(S) - \lambda \int_0^\infty P_0(S - x) \varphi(x) dx.$$
 (2)

Решение уравнения (2) должно удовлетворять граничному условию $P_0(-\infty)=0$.

Перейдем к рассмотрению области $0 \le S \le S_0$. Здесь возможны два варианта $b(s) = b_0$ и $b(s) = b_1$.

Рассмотрим сначала случай $b(s)=b_0$. Обозначим

$$g_0(S) = P\{S < S(t) \le S + dS, b(S) = b_0\} / dS.$$

В этом случае значение капитала S в момент времени может быть получено в следующих ситуациях. В момент времени t капитал фонда равнялся $S+b_0\Delta t$, и за время Δt премии не поступали. В момент времени t капитал фонда равнялся $S+b_0\Delta t-x<0$, и за время Δt поступила случайная премия x. В момент времени t капитал фонда равнялся $S+b_0\Delta t-x>0$, и за время Δt поступила случайная премия x. Выписывая вероятности соответствующих событий, по формуле полной вероятности получим

$$g_0(S) = (1 - \lambda \Delta t)g_0(S + b_0 \Delta t) +$$

$$+ \lambda \Delta t \int_0^S g_0(S - x)\varphi(x)dx +$$

$$+ \lambda \Delta t \int_S^\infty P_0(S - x)\varphi(x)dx + o(\Delta t). \tag{3}$$

Переходя к пределу при $\Delta t \rightarrow 0$, будем иметь

$$b_0 \dot{g}_0(S) = \lambda g_0(S) - \lambda \int_0^S g_0(S - x) \varphi(x) dx - \lambda \int_S^\infty P_0(S - x) \varphi(x) dx.$$
 (4)

Решение уравнения (4) должно удовлетворять граничному условию $g_0(S_0)=0$, которое вытекает из того, что при $b(s)=b_0$ на эту границу возможны переходы только снизу и, следовательно, при $S=S_0$ в правой части соотношения (3) должно отсутствовать первое слагаемое.

Обозначим далее

$$g_1(S) = P\{S < S(t) \le S + dS, b(S) = b_1\} / dS.$$

Аналогично предыдущему получим, что функция $g_1(S)$ удовлетворяет уравнению

$$b_1 \dot{g}_1(S) = \lambda g_1(S) - \lambda \int_0^S g_1(S - x) \varphi(x) dx.$$
 (5)

Рассмотрим, наконец, область $S>S_0$. Обозначим в этой области плотность распределения вероятностей P(S) как $P_2(S)$. Функция $P_2(S)$ соответствует уравнению

$$b_{1}\dot{P}_{2}(S) = \lambda P_{2}(S) - \lambda \int_{0}^{S-S_{0}} P_{2}(S-x)\varphi(x)dx - \lambda \int_{S-S_{0}}^{S} \left[g_{0}(S-x) + g_{1}(S-x)\right]dx - \lambda \int_{S}^{\infty} P_{0}(S-x)\varphi(x)dx$$
(6)

с граничными условиями $P_2(S_0)=g_1(S_0)$ и $P_2(\infty)=0$.

Решение системы уравнений (2), (4)—(6) должно отвечать условию нормировки

$$\int_{-\infty}^{0} P_0(S)dS + \int_{0}^{S_0} [g_0(S) + g_1(S)]dS + \int_{S_0}^{\infty} P_2(S)dS = 1(7)$$

и условию сшивания на границе S=0, которое может быть получено интегрированием уравнений (2), (4)—(6) по соответствующим областям,

$$b_0 P_0(0) = b_0 g_0(0) + b_1 g_1(0). (8)$$

Экспоненциальное распределение страховых премий

В случае, когда распределение поступающих денежных сумм (страховых премий) является экспоненциальным

$$\varphi(S) = \frac{1}{a} \exp\left(-\frac{S}{a}\right),\,$$

точное решение системы уравнений (2), (4)—(6) может быть найдено стандартным путем. Это решение после перехода к старому началу координат имеет вид

$$P(S) = \begin{cases} B\left(\frac{\lambda a}{b_{0}} - e^{-\omega_{0}(S_{2} - S_{1})}\right) e^{\omega_{0}(S - S_{1})}, & S < S_{1}, \\ B(1 - e^{\omega_{0}(S - S_{2})}) + B\frac{b_{0}\omega_{0}}{b_{1}\omega_{1}} \left(1 - \frac{\lambda a}{b_{1}} e^{-\omega_{1}(S - S_{1})}\right), \\ S_{1} \leq S \leq S_{2}, \\ B\frac{b_{0}\omega_{0}}{b_{1}\omega_{1}} \left(e^{\omega_{1}(S_{2} - S_{1})} - \frac{\lambda a}{b_{1}}\right) e^{-\omega_{1}(S - S_{1})}, & S > S_{2}, (9) \end{cases}$$

где

$$\omega_{0} = \frac{\lambda a - b_{0}}{b_{0}a}, \ \omega_{1} = \frac{b_{1} - \lambda a}{b_{1}a},$$

$$B = \frac{b_{1} - \lambda a}{(b_{1} - b_{0})(S_{2} - S_{1} + a)}.$$
(10)

Зная плотность распределения капитала фонда, можно найти такие его характеристики, как вероятности неплатежеспособности и повышенных выплат. Неплатежеспособность фонда наступает тогда, когда его капитал становится отрицательным. Поэтому вероятность неплатежеспособности фонда

$$P_{H} = \int_{-\infty}^{0} P(s)ds = \frac{B}{\omega_{0}} \left(\frac{\lambda a}{b_{0}} e^{-\omega_{0} S_{1}} - e^{-\omega_{0} S_{2}} \right). \tag{11}$$

Повышенные выплаты фонд производит в двух случаях. Либо когда капитал фонда $S>S_2$, либо при $S_1 \le S \le S_2$, когда траектория изменения капитала, начавшись при $S=S_2$, еще не достигла значения S_1 . Поэтому вероятность повышенных выплат

$$P_{n} = \int_{S_{1}}^{\infty} P(s)ds + \int_{S_{1}}^{S_{2}} g_{2}(s)ds = \frac{\lambda a - b_{0}}{b_{1} - b_{0}}.$$
 (12)

Как следует из соотношения (10), вероятность P_n не зависит от порогов алгоритма.

Плотность распределения капитала фонда при малой нагрузке страховой премии

При произвольном распределении страховых премий $\varphi(x)$ получить точное решение системы уравнений (2), (4)—(6) не удается. Однако, в этом случае можно построить приближенное решение уравнений при некоторых дополнительных предположениях. Введем параметр θ , где $0 \le \theta \le 1$, и будем считать, что

$$b_0 = (1 - \theta)\lambda a, \quad b_1 = (1 + \theta)\lambda a. \tag{13}$$

Параметр θ имеет тот же смысл, что и нагрузка страховой премии в задачах страхования [6]. Рассмотрим далее асимптотический случай, когда нагрузка страховой премии θ <<1. Практически это означает, что при любом значении капитала S фонд расходует почти столько же денежных средств, сколько в него поступает. При этом естественно считать, что пороги S_1 и S_2 , определяющие гистерезисное управление капиталом, зависят от нагрузки θ . Более точно будем считать, что при $\theta \rightarrow 0$ разность порогов $S_0(\theta) = S_2(\theta) - S_1(\theta) \rightarrow \infty$, но существует конечный предел $z_0 = \lim_{\theta \rightarrow 0} \theta S_0(\theta)$. Опять перенесем начало отсчета в точку $S = S_1$ и рассмотрим область S<0. Решение уравнения (2) в этой области будем искать в виде

$$P_0(S) = \theta f_0(\theta S, \theta), \tag{14}$$

где $f_0(z,\theta)$ — некоторая функция. Подставляя (12) в (2) и делая замену переменных $\theta S = z$, получим уравнение относительно функции $f_0(z,\theta)$

$$\theta b_0 \dot{f}(z,\theta) = \lambda f(z,\theta) - \lambda \int_0^\infty f_0(z-\theta x,\theta) \varphi(x) dx.$$
 (15)

Считая функцию $f_0(z,\theta)$ дважды дифференцируемой по z и равномерно непрерывной по θ , раскладывая подынтегральное выражение в ряд Тейлора по первому аргументу и ограничиваясь первыми тремя членами разложения, получим, учитывая (13), что

$$\ddot{f}_0(z,\theta) - \omega_0 \dot{f}_0(z,\theta) + \frac{o(\theta^2)}{\theta^2} = 0,$$

где $\omega_0 = \frac{2a}{a_2}$.

Обозначим

$$f_0(z) = \lim_{\theta \to 0} f_0(z, \theta).$$

Переходя к пределу при $\theta \rightarrow 0$, получим уравнение относительно $f_0(z)$

$$\ddot{f}_0(z) - \omega_0 \dot{f}_0(z) = 0.$$

Откуда

$$f_0(z) = A_1 + A_2 e^{\omega_0 z}$$
.

С учетом граничного условия $P_0(-\infty)=0$ будем иметь, что

$$f_0(z) = Ae^{\omega_0 z},\tag{16}$$

где константа A определяется условиями сшивания.

Рассмотрим теперь область $0 \le S \le S_0$. Решение уравнения (4) в этой области будем искать в виде

$$g_0(s) = \theta \psi_0(\theta s, \theta), \tag{17}$$

где функция $\psi_0(z,\theta)$ считается дважды дифференцируемой по z и равномерно непрерывной по θ . Подставляя (14) и (17) в уравнение (4), получим после замены переменных $\theta S = z$

$$\theta b_0 \dot{\psi}_0(z,\theta) = \lambda \psi_0(z,\theta) - \lambda \int_0^\infty \psi_0(z-\theta x,\theta) \varphi(x) dx + \frac{1}{2} \psi_0(z-\theta x,\theta) \varphi(x) dx + \frac{1}{2} \psi_0(z,\theta) = \frac{1}{2} \psi_0(z,\theta) - \frac{1}{2} \psi_0(z,\theta) = \frac{1}{2} \psi_0(z,\theta) - \frac{1}{2} \psi_0(z,\theta) + \frac{1}{2} \psi_0$$

$$+\lambda \int\limits_{\frac{z}{\theta}}^{\infty} \psi_0(z-\theta x,\theta) \varphi(x) dx - \lambda \int\limits_{\frac{z}{\theta}}^{\infty} f_0(z-\theta x,\theta) \varphi(x) dx.$$

Раскладывая функцию $\psi_0(z-\theta x,\theta)$ в ряд по первому аргументу и ограничиваясь первыми тремя членами разложения, получим

$$\frac{a_2}{2}\ddot{\psi}_0(z,\theta) - a\dot{\psi}_0(z,\theta) +
+ \frac{\lambda}{\theta^2} \int_{\frac{z}{\theta}}^{\infty} \psi_0(z - \theta x, \theta) \varphi(x) dx -
- \frac{\lambda}{\theta^2} \int_{\frac{z}{\theta}}^{\infty} f_0(z - \theta x, \theta) \varphi(x) dx + \frac{o(\theta^2)}{\theta^2} = 0.$$
(18)

Функция $\psi_0(z,\theta)$ является дифференцируемой и, следовательно, ограниченной. Поэтому

$$\frac{1}{\theta^2} \int_{\frac{z}{2}}^{\infty} \psi_0(z - \theta x) \varphi(x) dx \le$$

$$\leq \max_{y} \psi_{0}(y,\theta) \frac{1}{z^{2}} \frac{z^{2}}{\theta^{2}} \int_{\frac{z}{\theta}}^{\infty} \varphi(x) dx \leq$$

$$\leq \max_{y} \psi_{0}(y,\theta) \frac{1}{z^{2}} \int_{\frac{z}{\theta}}^{\infty} x^{2} \varphi(x) dx \underset{\theta \to 0}{\longrightarrow} 0,$$

т. к. второй момент $M\{x^2\}=a_2$ по условию существует. Аналогично может быть оценен второй интеграл, входящий в (18).

Обозначим

$$\psi_0(z) = \lim_{\theta \to 0} \psi_0(z, \theta). \tag{19}$$

Переходя в (18) к пределу при $\theta \rightarrow 0$, получим уравнение относительно функции $\psi_0(z)$

$$\dot{\psi}_0(z) - \omega_0 \dot{\psi}_0(z) = 0. \tag{20}$$

Откуда

$$\psi_0(z) = B_1 + B_2 e^{\omega_0 z}$$
.

Граничное условие $g_0(S_0)=0$ дает теперь $\psi_0(z_0)=0$. Поэтому.

$$\psi_0(z) = B(1 - e^{\omega_0(z - z_0)}).$$
 (21)

При выводе уравнения (20) неявно предполагалось, что $S \neq 0$. Пусть теперь S = 0. Тогда из уравнения (4) получим

$$\theta b_0 \dot{\psi}_0(0,\theta) = \lambda \psi_0(0,\theta) - \lambda \int_0^\infty f_0(-\theta x,\theta) \varphi(x) dx.$$

После предельного перехода при $\theta \rightarrow 0$ получим, что $\psi_0(0)=f_0(0)$. Откуда находим связь между константами A и B.

$$A = B(1 - e^{-\omega_0 z_0}). \tag{22}$$

Решение уравнения (5) относительно функции $g_1(s)$ будем искать в виде.

$$g_1(s) = \theta \psi_1(\theta s, \theta). \tag{23}$$

Функция $\psi_1(z,\theta)$ удовлетворяет уравнению

$$\theta b_1 \dot{\psi}_1(z,\theta) = \lambda \psi_1(z,\theta) - \lambda \int_0^{\frac{z}{\theta}} \psi_1(z-\theta x,\theta) \varphi(x) dx.$$

Опять, считая функцию $\psi_1(z,\theta)$ дважды дифференцируемой по z и равномерно непрерывной по θ , раскладывая в уравнении подынтегральное выражение в ряд по первому аргументу и обозначая

$$\psi_1(z) = \lim_{\theta \to 0} \psi_1(z, \theta),$$

получим после предельного перехода при $\theta \rightarrow 0$ уравнение относительно $\psi_1(z)$

$$\ddot{\psi}_{1}(z) + \omega_{0}\dot{\psi}_{1}(z) = 0$$
,

решение которого имеет вид

$$\psi_1(z) = C_1 + C_2 e^{-\omega_0 z}$$
.

Условие сшивания решений на границе S=0 даст теперь $\psi_1(0)=0$. Откуда $C_2=-C_1$ и

$$\psi_1(z) = C(1 - e^{-\omega_0 z}).$$
 (24)

Рассмотрим, наконец, область $S > S_0$. В ней плотность распределения капитала фонда должна удовлетворять уравнению (6). Решение уравнения (6) будем искать в виде

$$P_2(S) = \theta f_2(\theta S, \theta), \tag{25}$$

где функция $f_2(z,\theta)$ будет, очевидно, удовлетворять уравнению

$$\theta b_1 \dot{f}_2(z,\theta) = \lambda f_2(z,\theta) - \lambda \int_0^{\frac{z-z_0}{\theta}} f_2(z-\theta x,\theta) \varphi(x) dx - \frac{1}{2} \int_0^{\frac{z-z_0}{\theta}} f_2(z-\theta x,\theta) dx - \frac{1}{2} \int_0^{\frac{z-z_0}{\theta}} f_2(z-\theta x,\theta) dx - \frac{1}{2} \int_0^{\frac{z-z$$

$$-\lambda \int_{\frac{z-z_0}{\theta}}^{\frac{z}{\theta}} \left[\psi_0(z-\theta x,\theta) + \psi_1(z-\theta x,\theta) \right] p(x) dx -$$

$$-\lambda \int_{\frac{z}{\theta}}^{\infty} f_0(z-\theta x,\theta) \varphi(x) dx.$$

Считая функцию $f_2(z,\theta)$ дважды дифференцируемой по z и равномерно непрерывной по θ , разлагая подынтегральные функции в ряд по первому аргументу и переходя к пределу при $\theta \rightarrow 0$, получим уравнение относительно

$$f_2(z) = \lim_{\theta \to 0} f_2(z, \theta)$$

в области $z > z_0$, где $z_0 = \lim_{\theta \to 0} \theta S_0$,

$$\ddot{f}_2(z) + \omega_0 \dot{f}_2(z) = 0.$$

Откуда

$$f_2(z) = D_1 + D_2 e^{-\omega_0 z}$$
.

Граничные условия $P_2(+\infty)=0$ и $P_2(S_0)=g_1(S_0)$ данот $f_2(+\infty)=0$ и $f_2(z_0)=\psi_1(z_0)$. Откуда

$$f_2(z) = C(1 - e^{-\omega_0 z_0}) e^{-\omega_0 (z - z_0)}.$$
 (26)

Для определения связи между константами B и C рассмотрим уравнения (4)—(6) при $S=S_0$. Из них вытекает, что при $S=S_0$ должно выполняться условие

$$b_1\dot{P}_2(S_0) = b_1\dot{g}_1(S_0) + b_0\dot{g}_0(S_0),$$

которое при $\theta \rightarrow 0$ дает

$$\dot{f}_2(z_0) = \dot{\psi}_1(z_0) + \dot{\psi}_2(z_0).$$

Откуда следует, что C=B. Наконец, из условия нормировки (7) при $\theta \rightarrow 0$ получим

$$\int_{-\infty}^{0} f_0(z)dz + \int_{0}^{z_0} [\psi_0(z) + \psi_1(z)]dz + \int_{z_0}^{+\infty} f_2(z)dz = 1.$$

Откуда

$$B = \frac{1}{2z_0}. (27)$$

Учитывая теперь соотношения (14), (16), (17), (21), (23)—(26), получим, что при θ <<1 плотность распределения капитала фонда P(S) имеет вид (после перехода к старому началу координат)

$$P(S) = \frac{1 - e^{-\theta\omega_{0}(S_{2} - S_{1})}}{2(S_{2} - S_{1})} e^{\theta\omega_{0}(S - S_{1})} + o(\theta), \quad S < S_{1},$$

$$= \frac{2 - e^{-\theta\omega_{0}(S - S_{1})} - e^{\theta\omega_{0}(S - S_{2})}}{2(S_{2} - S_{1})} + o(\theta), \quad S_{1} \le S \le S_{2},$$

$$\frac{1 - e^{-\theta\omega_{0}(S_{2} - S_{1})}}{2(S_{2} - S_{1})} e^{\theta\omega_{0}(S - S_{2})} + o(\theta), \quad S > S_{2}.$$
(28)

СПИСОК ЛИТЕРАТУРЫ

- 1. Змеев О.А. Математическая модель фонда социального страхования с детерминированными расходами на социальные программы (диффузионное приближение) // Известия вузов. Физика. 2003. Т. 46. № 3. С. 83—87.
- Лившиц К.И., Шифердекер И.Ю. Математическая модель деятельности некоммерческого фонда при релейном управлении капиталом // Вестник Томского государственного университета. Приложение. – 2006. – № 18. – С. 302–308.
- Лившиц К.И., Шифердекер И.Ю. Диффузионная аппроксимация математической модели деятельности некоммерческого фонда при релейном управлении капиталом // Вестник Томского государственного университета. 2006. № 293. С. 38–44.

Построенная аппроксимация (28) решения системы уравнений (2), (4)—(6) может быть улучшена за счет учета дополнительных членов разложения функций $f_i(z,\theta)$ и $\psi_i(z,\theta)$ в ряд по степеням θ .

Заключение

Предложена и исследована математическая модель деятельности некоммерческого фонда при гистерезисном управлении его капиталом. Получены уравнения, определяющие плотность распределения капитала, найдено решение уравнений при экспоненциальном распределении поступающих в фонд премий и в случае малой нагрузки премии.

- Лившиц К.И., Сухотина Л.Ю., Шифердекер И.Ю. Пуассоновская модель деятельности некоммерческого фонда при релейном управлением капиталом // Вестник Томского государственного университета. Приложение. 2006. № 19. С. 302–312.
- 5. Феллер В. Введение в теорию вероятностей и ее приложения. В $2\ \text{т.}-M$.: Мир, $1967.-T.\ 1.-498\ c.$
- 6. Глухова Е.В., Змеев О.А., Лившиц К.И. Математические модели страхования. Томск: Изд-во ТГУ, 2004. 180 с.

Поступила 26.10.2009 г.

УДК 65.012.122

ОПТИМИЗАЦИЯ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ С ПЕРЕМЕННОЙ ИНТЕНСИВНОСТЬЮ, ЗАВИСЯЩЕЙ ОТ ВРЕМЕНИ ОЖИДАНИЯ

Л.И. Самочернова

Томский политехнический университет E-mail: am@am.tpu.ru

Изучена однолинейная система массового обслуживания с переменной интенсивностью обслуживания, зависящей от времени ожидания заявки, находящейся первой в очереди. Проведена оптимизация системы при учете потерь на ожидание и амортизацию.

Ключевые слова:

Система, обслуживание, время ожидания, амортизация, оптимальный момент.

Key words:

System, service, queuing time, depreciation, optimal moment.

Введение

Задача изучения управляемых систем массового обслуживания (СМО) является актуальной, поскольку функционирование многих реальных технических систем описывается с их помощью. Большое число работ посвящено изучению систем массового обслуживания, в которых интенсивность обслуживания, моменты включения и отключения резервных приборов, зависят от длины очереди или от

числа заявок в системе [1–5]. Класс СМО с управлением по времени ожидания является пока мало изученным, хотя именно такие системы являются наилучшими моделями многих реальных объектов, в частности, вычислительных систем, используемых для обработки медико-биологической информации, систем связи. Существуют лишь отдельные работы, например [6–9], в которых изучены СМО с управлением по времени ожидания.