СПИСОК ЛИТЕРАТУРЫ

- Rudnev V.I., Loveless D.L. Longitudinal flux induction heating of slabs, bars and strips is no longer «Black Magic». P. 1, 2 // Industrial Heating. – 1995. – № 1–2. – P. 5–15.
- Вайнштейн Л.А. Электромагнитные волны. М.: Радио и связь, 1988. 440 с.
- Вольман В.И., Пименов Ю.В. Техническая электродинамика. – М.: Связь, 1971. – 234 с.
- Владимиров С.Н., Земан С.К., Рубан В.В. Аналитические соотношения, аппроксимирующие температурно-полевую зависимость магнитной проницаемости конструкционных сталей

// Известия Томского политехнического университета. – 2009. – Т. 315. – № 4. – С. 100–104.

- 5. Слухоцкий А.Е. Установки индукционного нагрева. Л.: Энергоиздат, 1981. 325 с.
- Владимиров С.Н., Земан С.К., Уваров А.Ф. Аналитические соотношения для практического расчета индукторных систем установок высокочастотного нагрева // Аппаратно-программные средства автоматизации технологических процессов. – Томск: Изд-во Том. ун-та, 2000. – С. 141–148.

Поступила 01.07.2009 г.

УДК 537.856

АНАЛИТИЧЕСКИЕ СООТНОШЕНИЯ, АППРОКСИМИРУЮЩИЕ ТЕМПЕРАТУРНО-ПОЛЕВУЮ ЗАВИСИМОСТЬ МАГНИТНОЙ ПРОНИЦАЕМОСТИ КОНСТРУКТИВНЫХ СТАЛЕЙ

С.Н. Владимиров*, С.К. Земан, В.В. Рубан

НИИ автоматики и электромеханики при Томском университете систем управления и радиоэлектроники *Томский государственный университет E-mail: vsn@mail.tsu.ru

Аппроксимирована зависимость относительной магнитной проницаемости сталей с содержанием углерода 0,5...1,0 % от напряженности магнитного поля 0...640 кА/м и температуры 0...800 °C.

Ключевые слова:

Индукционный нагрев, импедансные характеристики, численный эксперимент.

Key words:

Induction heating, impedance characteristics, numerical experiment.

Введение

Высокая эффективность технологий, в основу которых положен высокочастотный индукционный нагрев материалов и изделий является общепризнанной. Высокий электрический КПД, малые массогабаритные затраты, повышенная электробезопасность и ряд других не менее важных преимуществ позволяют высокочастотным индукционным технологиям решительно вытеснять традиционные технологии (основанные, например, на использовании индукционного нагрева токами промышленной частоты, электронагревателей, промышленного пара, и т. д.). Как показывает опыт авторов настоящей работы, экономический выигрыш может при корректной замене устаревших технологий достигать сотен процентов.

Несмотря на значительное количество публикаций, посвященных вопросам проектирования установок и систем высокочастотного индукционного нагрева, целый ряд проблем остается решенным лишь на качественном уровне, помогающий понять физику явлений, происходящих в процессе взаимодействия электромагнитной волны с поглощающей средой, но часто не позволяющем получать приемлемые количественные характеристики. Это, в свою очередь, требует проведения предварительного, чернового расчета системы и длительной, экспериментальной доводки, поглощающей материальные и временные ресурсы и, естественно, повышает трудозатраты на реализацию проекта.

В этом плане наиболее важной является проблемы, связанные с построением математических моделей, учитывающих нелинейные свойства ферромагнитных поглощающих сред. Известно [1–7], что относительная магнитная проницаемость μ таких сред является нелинейной функцией, как от напряженности магнитного поля H, так и от температуры Θ нагреваемой среды. Те или иные аппроксимации полевой зависимости $\mu(H)$ приведены в литературных источниках [1, 6], однако аналитические выражения для удовлетворительного описания температурных зависимостей $\mu(\Theta)$ до недавнего времени отсутствовали.

Насколько известно (из анализа открытых публикаций и личной переписки авторов с сотрудниками зарубежных фирм), аналитической зависимости $\mu(\Theta, H)$ нет в распоряжении даже таких известных в мире корпораций, разрабатывающих индукционное оборудование, как INDUCTOHEAT и RADYNE. И лишь в двух публикациях [7, 8] приведены небольшие фрагменты экспериментально снятых зависимостей $\mu(\Theta, H)$. Поэтому приводимые в данной работе аналитические соотношения получены впервые.

1. Аппроксимация полевой зависимости

Совершенно очевидна необходимость знания температурных свойств удельного сопротивления $\rho = \rho(\Theta)$ нагреваемой среды и ее относительной магнитной проницаемости, а также полевой зависимости $\mu(H)$. И если с температурной зависимостью удельного сопротивления проблем не возникает, то с двухмерной зависимостью $\mu = \mu(H, \Theta)$ появляются существенные трудности.

В реальных магнетиках процесс намагничивания является результатом протекания ряда сложных физических процессов [2, 3, 9]. Процессы смещения доменных границ, вращения вектора намагниченности внутри доменов и парапроцессы накладываются друг на друга, причем характер проявления различных механизмов в значительной степени зависит от структурных особенностей и конкретных физических свойств магнетика. В результате проявления указанных процессов зависимость $\mu(H)$ имеет ярко выраженный нелинейный характер.

Отметим, что к настоящему времени отсутствуют удовлетворительные соотношения, полученные из общефизических соображений и описывающие полевые зависимости $\mu(H)$. Широко известный подход к решению данной проблемы, предложенный Л.Р. Нейманом (переход от полевой зависимости к координатной) [1], не может в настоящее время считаться удовлетворительным, поскольку носит лишь качественный характер, весьма неточен и, как следствие, требует длительной экспериментальной доводки спроектированных систем индукционного нагрева.

В нашей работе [4] приведена усредненная таблица полевой зависимости магнитной проницаемости в диапазоне магнитных полей $H_a \sim (300...640 \cdot 10^3)$ А/м для конструкционных, инструментальных и иных сталей с содержанием углерода порядка 0,5...1,0 %. В дальнейшем нами были проведены дополняющие измерения в диапазоне $H_a \sim (0...500)$ А/м и уточняющие измерения в области более высоких напряженностей магнитного поля. Измерения проведены и усреднены для конструкционных сталей с содержанием углерода 0,5 % (стали 45, 5ХГ), 0,75 % (стали 75, Р18), 1 % (стали У10, ШХ4). Компьютерная обработка экспериментальных результатов позволила предложить аппроксимацию полевой зависимости, табл. 1.

Таблица 1. Экспериментальные результаты аппроксимации полевой зависимости

На, А/м	$\mu(H_a)$
≤500	$\mu_{{}_{Hav}}(1+aH_a)\exp(-bH_a)$, a=0,152, b=0,004, $\mu_{{}_{Hav}}\approx$ 150
>500	$\alpha H_a^{-\beta}$, α =3,106976·10 ⁵ , β =0,851564

а, b, α, β – коэффициенты аппроксимации;

*µ*_{нач} – начальная магнитная проницаемость.

Такая аппроксимация в диапазоне изменения действующего значения магнитного поля $H_a=300...640\cdot10^3$ А/м обеспечивает погрешность, не превышающую 5 % (а, в основном, значительно меньшую) для относительной магнитной проницаемости μ , что может считаться вполне удовлетворительным для проведения инженерных расчетов. Эта аппроксимация применима к широкому спектру сталей, например: сталей 45, 50, 55X, 5ХГМ, 5ХНМ (содержание углерода 0,5 %); 110Г13Л, 80ГСЛ, 95Х18, Р9М4Л8, У10, ХВГ, ШХ15, ШХ4 (содержание углерода 1 %) и многим другим.

Для иллюстрации свойств предложенной аппроксимации на рис. 1 представлены два фрагмента полевой зависимости магнитной проницаемости от действующего значения намагничивающего поля.

Полученная зависимость справедлива при $0 \le H_a \le 3 \cdot 10^7$ А/м. При превышении верхнего предела аппроксимирующая функция становится меньше единицы, что лишено физического смысла, однако достигать напряженности поля большей, чем $3 \cdot 10^7$ А/м (375 кЭ!) не требуется при решении любых разумных задач промышленного индукционного нагрева ферромагнитных сред.

Рис. 1. Зависимость $\mu(H_a)$ в области: а) средних и сильных; б) слабых полей

2. О проблеме аппроксимации температурной зависимости

В отношении температурных зависимостей $\mu(\Theta)$ необходимо отметить следующее. В магнитоупорядоченных средах элементарные магнитные моменты оказываются сильно связанными, что обусловлено наличием обменного взаимодействия. Поэтому при построении теории разрушения этого взаимодействия весьма желательным является такой подход к описанию ферромагнитных свойств вещества, при котором оперируют понятием макроскопического намагничивания *M*:

$$M = \frac{\Delta m}{\Delta V}$$

где Δm — магнитный момент достаточно малого, но все же макроскопического объема ΔV .

Такого рода континуальный подход был развит в теории Вейсса, из которой следует искомая температурная зависимость $\mu(\Theta)$ [9]:

$$\mu(\Theta) = 1 + \frac{4\pi}{H} M_0 A \sqrt{1 - \frac{\Theta}{\Theta_K}},$$

где M_0 – намагниченность насыщения; A – близкая к единице постоянная; Θ_k – температура Кюри.

К сожалению, теория Вейсса плохо согласуется с результатами экспериментальных исследований, что неоднократно отмечалось в литературных источниках. Таким образом, теория Вейсса лишь качественно объясняет поведение ферромагнетиков выше и ниже точки Кюри и не дает удовлетворительного количественного описания явления.

Более совершенной моделью разрушения обменного взаимодействия в теории магнитоупорядоченных сред является модель Гейзенберга—Дирака—Ван—Флека, основанная на квантовомеханическом описании ансамбля атомов, составляющих основу поглощающей среды. Однако, в силу неизбежных упрощений, и эта теория весьма приближенно описывает фазовый переход от ферромагнетизма к беспорядку в точке Θ_{κ} .

Таким образом, следует констатировать, что к настоящему времени не существуют феноменологические или физические модели, на основе которых с удовлетворительной точностью могла бы быть построена нелинейная модель температурнополевой зависимости $\mu(\Theta, H)$. Последнее обстоятельство препятствует построению удовлетворительных моделей взаимодействия электромагнитного поля с поглощающей средой, основанных на формулировании и исследовании нелинейной системы уравнений Максвелла.

3. Построение математической модели температурно-полевой зависимости

Авторам предлагаемой работы представляется, что наиболее приемлемым способом разрешения сложившейся ситуации является следующий. Необходимо аппроксимировать искомую зависимость $\mu(\Theta, H)$ аналитической функцией, коэффициенты которой могут быть определены в результате компьютерной обработки результатов экспериментально измеренных полевых и температурных зависимостей относительной магнитных проницаемостей ряда основных конструкционных материалов (чугун, стали с различным содержанием углерода и т. п.). В качестве одного из вариантов аппроксимирующей функции может быть предложен следующий:

$$\mu(\Theta, H) = \begin{cases} 1 + \frac{\mu(H_a) - 1}{\left[1 + \left(\frac{\Theta}{\Theta_K - \Theta}\right)^{\chi}\right]^{\delta}}, & \text{при } \Theta < \Theta_K, \\ 1, & \text{при } \Theta \ge \Theta_K. \end{cases}$$
(1)

В последних соотношениях $\chi > 1$, $\delta < 1$ – подлежащие определению коэффициенты. Эти коэффициенты могут быть получены путем обработки экспериментальных зависимостей относительной магнитной проницаемости от температуры. Использовавшиеся в нашей работе зависимости представлены на рис. 4.

Из графиков экспериментальных зависимостей магнитной проницаемости от температуры путем оцифровки получим таблицы Θ_i , μ_i , где i – индекс строки таблицы, изменяющий свое значение от 0 до *n*. Обозначим аппроксимирующую эти данные функцию через $\varphi(\Theta, \chi, \delta)$, где χ и δ – параметры аппроксимации, которые найдем по алгоритмам метода наименыших квадратов. Отклонение аппроксимирующей функции от данных таблицы в каждом ее узле запишется в виде:

$$\Delta_i(\Theta_i, \chi, \delta) = \varphi(\Theta_i, \chi, \delta) - \mu_i,$$

тогда сумма квадратов отклонений по всем узлам будет

$$E = \sum_{i=0}^{n} \Delta_i^2 = \sum_{i=0}^{n} [\varphi(\Theta_i, \chi, \delta) - \mu_i]^2$$

Рис. 2. Зависимость относительной магнитной проницаемости от температуры при различных действующих значениях напряженности магнитного поля

Параметры аппроксимации χ и δ найдем из условия минимума величины функционала *E*:

$$\frac{\partial E}{\partial \chi} = 0 = \sum_{i=0}^{n} 2[\varphi(\Theta_i, \chi, \delta) - \mu_i] \varphi'_{\chi}(\Theta_i, \chi, \delta)$$
$$\frac{\partial E}{\partial \delta} = 0 = \sum_{i=0}^{n} 2[\varphi(\Theta_i, \chi, \delta) - \mu_i] \varphi'_{\delta}(\Theta_i, \chi, \delta)$$

В результате получим систему двух уравнений для нахождения параметров аппроксимации χ и δ :

$$\sum_{i=0}^{n} \Delta(\Theta_{i}, \chi, \delta) \varphi_{\chi}^{'}(\Theta_{i}, \chi, \delta) = 0$$

$$\sum_{i=0}^{n} \Delta(\Theta_{i}, \chi, \delta) \varphi_{\delta}^{'}(\Theta_{i}, \chi, \delta) = 0$$
(2)

В качестве функции, аппроксимирующей температурные зависимости магнитной проницаемости, выберем (1):

$$\varphi(\Theta, \chi, \delta) \equiv \mu(\Theta, \chi, \delta) = 1 + \frac{\mu(H_a) - 1}{\left[1 + \left(\frac{\Theta}{\Theta_K - \Theta}\right)^{\chi}\right]^{\delta}}.$$
 (3)

Вычислим частные производные от аппроксимирующей функции (3) по параметрам χ и δ :

$$\mu'_{\chi}(\theta,\chi,\delta) = -\delta \frac{\mu_{S}-1}{\left[1+V^{\chi}\right]^{-\delta+1}} V^{\chi} \ln V,$$

$$\mu'_{\delta}(\theta,\chi,\delta) = -\delta \frac{\mu_{S}-1}{\left[1+V^{\chi}\right]^{-\delta+1}},$$
(4)

где $V = \theta / \theta_{K} - \theta$.

После подстановки производных (4) в систему уравнений (2) и сокращения постоянных множителей получим систему уравнений

$$G_{1}(\boldsymbol{\chi},\boldsymbol{\delta}) = \sum_{i=0}^{n} \Delta_{i}(\theta_{i},\boldsymbol{\chi},\boldsymbol{\delta}) \psi_{1}(\theta_{i},\boldsymbol{\chi},\boldsymbol{\delta}),$$

$$G_{2}(\boldsymbol{\chi},\boldsymbol{\delta}) = \sum_{i=0}^{n} \Delta_{i}(\theta_{i},\boldsymbol{\chi},\boldsymbol{\delta}) \psi_{2}(\theta_{i},\boldsymbol{\chi},\boldsymbol{\delta}), \qquad (5)$$

в которой:

$$\Delta_{i}(\theta_{i},\chi,\delta) = \mu(\theta_{i},\chi,\delta) - \mu_{i},\psi_{1}(\theta_{i},\chi,\delta) =$$

= $\psi_{2}(\theta_{i},\chi,\delta)V_{i}^{\chi} \ln V_{i},\psi_{2}(\theta_{i},\chi,\delta) = (1+V_{i}^{\chi})^{-\delta-1}$

Для решения системы уравнений (5) относительно неизвестных χ и δ применим метод Ньютона. Зададим начальные приближения к решению $\chi^{(0)}$ и $\delta^{(0)}$. Разложим функции $G_1(\chi, \delta)$ и $G_1(\chi, \delta)$ в ряд Тейлора по степеням $\Delta \chi = \chi - \chi^{(0)}$ и $\Delta \delta = \delta - \delta^{(0)}$, пренебрегая членами разложения, имеющими степени выше первой, получим систему линейных алгебраических уравнений для приближенного определения «поправок» $\Delta \chi$ и $\Delta \delta$:

$$\frac{\partial G_1}{\partial \chi} \Delta \chi + \frac{\partial G_1}{\partial \delta} \Delta \delta + G_1 = 0, \\ \frac{\partial G_2}{\partial \chi} \Delta \chi + \frac{\partial G_2}{\partial \delta} \Delta \delta + G_2 = 0, \end{cases}$$
(6)

значения функций G_1, G_2 и частных производных от них вычисляются в точках $\chi^{(0)}$ и $\delta^{(0)}$.

Система уравнений (6) имеет решение, если матрица Якоби не является вырожденной, т. е.

$$\det \begin{pmatrix} \frac{\partial G_1}{\partial \chi} & \frac{\partial G_1}{\partial \delta} \\ \frac{\partial G_2}{\partial \chi} & \frac{\partial G_2}{\partial \delta} \end{pmatrix} \neq 0.$$

Решив систему (6), вычислим новое приближенное решение:

$$\chi^{(1)} = \chi^{(0)} + \Delta \chi, \delta^{(1)} = \delta^{(0)} + \Delta \delta.$$
(7)

При невыполнении условий $\Delta \chi \leq \varepsilon_{\chi}$ и $\Delta \delta \leq \varepsilon_{\delta}$ (ε_{χ} , ε_{δ} – задаваемые точности решений по параметрам χ и δ) все стадии итерационного процесса необходимо повторить с начальными приближениями $\chi^{(1)}$ и $\delta^{(1)}$. Таким образом, соотношения (7) обобщаются

$$\chi^{(k+1)} = \chi^{(k)} + \Delta \chi,$$

$$\delta^{(k+1)} = \delta^{(k)} + \Delta \delta,$$

и для любой *k*-й итерации.

Использование температурных зависимостей, рис. 2, и рассмотренного выше алгоритма позволило построить табл. 2, в которую сведены расчетные значения χ и δ .

Таблица 2. Расчетные значения χ и δ

Н _а , Э	μ	χ	δ
25	496	1,87	0,123
50	274	1,88	0,137
125	127	1,91	0,156
300	60	1,92	0,174
1000	20,5	1,95	0,200

Из представленной таблицы выясняется, что параметры аппроксимации нелинейным образом зависят от напряженности магнитного поля. Однако, будучи построены в логарифмическом масштабе, обе зависимости с высокой точностью представляются прямыми линиями. Это позволило с ничтожно малой погрешностью аппроксимировать обнаруженную зависимость аналитическими выражениями следующего вида:

$$\chi(H_a) = 1,70271 + 0,02187 \ln(H_a),$$

$$\delta(H_a) = -0,03586 + 0,02085 \ln(H_a).$$
(8)

Если допустить 5 %-ую погрешность аппроксимации, то при $H_a \ge 2000$ А/м последние соотношения могут быть упрощены:

$$\chi(H_a) = -1,7+0,02\ln(H_a),$$

$$\delta(H_a) = -0,03+0,02\ln(H_a).$$
(9)

Таким образом, полученные в настоящей работе соотношения (1), (8), (9) и табл. 1, 2 полностью решают задачу построения двухмерной функции, аппроксимирующей усредненные полевую и температурную зависимости относительной магнитной проницаемости для наиболее распространенных марок конструкционных сталей.

Окончательное выражение для промышленно значимых значений $H_a > 500$ А/м будет выглядеть следующим образом:

$$\mu(\Theta, H_a) =$$

$$= \begin{cases} 1 + \frac{\alpha H_a^{\beta} - 1}{\left[1 + \left(\frac{\Theta}{\Theta_K - \Theta}\right)^{1.7+0.02\ln(H_a)}\right]^{-0.03+0.02\ln(H_a)}}, \text{ при } \Theta < \Theta_K, \\ 1, \text{ при } \Theta \ge \Theta_K. \end{cases}$$
(10)

На рис. 3 представлен фрагмент температурнополевой зависимости магнитной проницаемости, построенный по соотношению (10).

Предложенная в настоящей работе функция температурно-полевой аппроксимации конструкционных сталей активно используется авторами для расчета зависимостей активной и реактивной составляющей входного импеданса электромагнитной системы индуктор-нагреваемая среда. Пример подобных расчетов приведен в нашей работе [10]. Первоначальный вариант, менее точной функции аппроксимации использовался ранее в [11].

Выводы

 Предложена аппроксимирующая функция для температурно-полевой зависимости относительной магнитной проницаемости конструкционных сталей.

СПИСОК ЛИТЕРАТУРЫ

- Нейман Л.Р. Поверхностный эффект в ферромагнитных телах. – М.: Гостехиздат, 1948. – 266 с.
- 2. Вонсовский С.В. Магнетизм. М. Наука, 1971. 805 с.
- Кринчик Г.С. Физика магнитных явлений. М.: Изд-во МГУ, 1976. – 367 с.
- Владимиров С.Н., Земан С.К., Шестаков А.Н. Базовая математическая модель поглощения электромагнитной энергии в нелинейной ферромагнитной среде // Аппаратно-программные средства автоматизации технологических процессов. – Томск: Изд-во Том. ун-та, 2002. – С. 23–33.
- Слухоцкий А.Е. Установки индукционного нагрева. Л.: Энергоиздат, 1981. – 325 с.
- Немков В.С., Демидович Б.В. Теория и расчет устройств индукционного нагрева. – Л.: Энергоатомиздат, 1988. – 286 с.
- Rudnev V.I., Loveless D.L. Longitudinal flux induction heating of slabs, bars and strips is no longer «Black Magic». P. 1, 2 // Industrial Heating. – 1995. – № 1–2. – P. 5–15.

Рис. 3. Фрагмент двухмерной функции, аппроксимирующей температурно-полевую зависимость относительной магнитной проницаемости конструкционных сталей

- Аппроксимация использована для расчета зависимостей активной и реактивной составляющих входного импеданса электромагнитной системы индуктор-нагреваемая среда.
- Сравнение расчетных значений с данными натурных экспериментов показало высокую точность расчетных значений. Погрешность аппроксимации не превышала единиц процентов при содержании углерода в нагреваемых объектах 0,5...1,0 %.
- Zedler T., Nikanorov A., Nacke B. Investigation of relative magnetic permeability as input data for numerical simulation of induction surface hardening // International Scientific Colloquium «Modeling for Electromagnetic Processing (MEP2008)». – October 27–29, 2008. – Hannover, Germany, 2008. – V. 1. – P. 47–52.
- Гуревич А.Г. Магнитный резонанс в ферритах и антиферромагнетиках. – М.: Наука, 1973. – 592 с.
- Владимиров С.Н., Земан С.К., Рубан В.В. Алгоритм исследования импедансных характеристик системы индукционного нагрева конструкционных сталей при вариациях температуры и подводимой мощности // Известия Томского политехнического университета. 2009. Т. 315. № 4. С. 95–100.
- Владимиров С.Н., Земан С.К., Осипов А.В., Толстов В.П. Особенности индукционного нагрева ферромагнитных сталей при различных режимах работы преобразователя частоты // Известия вузов. Сер. Электромеханика. – 2004. – № 1. – С. 50–54.

Поступила 01.07.2009 г.