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Abstract

Hacrtosmass ~ maructepckass  paboTra  mocBslleHa  MpoOieMe  OIpeaeseHHs
MOBEPXHOCTHBIX CBOMCTB M YCJIOBHMH B KOHTaKTE MPH KAaYeHHH KoJieca MO PEeJIbCy.
HeonHopoaHocTs Tomorpaduu MOBEPXHOCTH JKEJIE3HOIOPOKHBIX KOJIEC U PENIbCOB
NPUBOAMT TPU KAUEHUH K BO30OYXKACHUIO KoleOaHUH B HOPMAJIbHOM K MOBEPXHOCTH
KOHTakTa HampaBieHUd. CHeKTp 3TuUX BO30YXKACHHBIX KOJIeOaHHI 3aBUCHUT OT
Tonorpaduu MOBEPXHOCTH M, TAKUM 00pa30M, B MPHUHIIUIIE COICPKUT MHPOPMAITHIO
00 OTHOCUTENBHO! IIEPOXOBATOCTH KOHTAKTHPYIONIIUX Tell. B eHTpe AaHHOM padoThI
CTOUT BOIIPOC O BO3MOXXHOCTH peIIeHUs] 00paTHOW 3a7a4u — ONpeETICHNUs CBOMCTB
IIEpOXOBAaTOCTH 10 HW3MEPEHHOW JWHAMUKE Kojieca (Hampumep, € TMOMOIIBIO
aKcemepoMeTpoB). OTta HWHGOpPMAIUS MOXKET OBITh HCIOJIb30BaHA JUIsI OILEHKH

TEKYIIETO COCTOAHUA KOHTAKTa KaQUCHU.

PaboTa HaunHaeTcs ¢ onucaHus peueHus "MpsMoi 3a1aun”, TO €CTh C OINpeesIeHUs
CHeKTpa KojeOaHWH MO CHEeKTPY LIepOXOBATOCTU. DTa CIOXKHAS 33jJaya TEOPHH
KOHTAKTHBIX B3aUMOJICCTBUI pelIaeTcs B JaHHOW paboTe C NMPUMEHEHHEM TakK
HA3bIBAEMOT'0 METOJIa PEAYKIIUU pa3MepHOCTU. B 3TOM MeToie KOHTAKT TPEXMEPHBIX
T€J 3aMEIIAeTCsl IKBUBAJIEHTHBIM KOHTAaKTOM C OAHOMEPHBIM YIPYTUM OCHOBaHUEM,
COXPAHSIIOIIMM  MAaKpOCKONMYECKHE KOHTAKTHbBIE CBOicTa. BprumcnurenbHas
CIIO)KHOCTh TIPU 3TOM HACTOJBKO COKpAIAeTCs, YTO OKAa3bIBAETCS BO3MOXKHBIM
YHUCJIEHHOE pEeIlEeHUE IMOJHOM JWHAMUYEeCKOW 3ajauM JJis KoJjieca, KaTsIIerocs Mo

IEPOXOBATOM IIOBEPXHOCTH.

BonpnmmHCcTBO PCATBHBIX HOBerHOCTeﬁ, BKJIKOYas MOBCPXHOCTH KCIC3HOAOPOIKHBIX
PEIbCOB, HMEIOT MIEPOXOBATOCTh, KOTOPAsi CTATHCTUYECKA MOXKET OBITh OMUCAaHa KaK
camonooOHbI ¢pakTan. Ee crekTpanbHas TIOTHOCTh MOXET OBITh B TPyOOM

HpI/IGHI/I)KeHI/H/I (,[[OCTaTOLIHOM JUTA Heﬂeﬁ HaHHOﬁ paGOTLI) 3alIiucCaHa B BU/IC
C(q) = A ’ q_Z(H+1)’ qmin < q < qmax o

TO €CTh MOXET OBITh MapaMeTPU3UpOBaHa 4eThipbMsi Benmuunamu A, H,q ., q
IZIe, ¢ €CTb BOJIHOBOM BEKTOp, a H Tak Ha3bIBaeMbIU IIOKa3aTesb Xepcera. B ciydae

(bpakTalbHBIX MOBEPXHOCTEH MOXHO OKUIaTh, YTO U CIEKTP yCKOpeHus Oyner



OIMMCHIBATHCS CTEIMICHHON (QyKIMel Buaa B-® “ NMpH HAJIMYUHA HEKOTOPBIX '"4acToT

n
obpezanusa" , ®  <O<O_ .

OOparHast 3amaya COCTOMT TIPM 3TOM B ONPEACIICHUH YEThIPEX BEIUYHH,
MapaMeTPU3YIOLIHUX IEPOXOBATOCTh 1o M3MEPEHHBIM BEJIMYMHAM,
XapakTEPU3YIOLIHUM CIEKTp yCKopeHus. [lapameTpuueckue ucciaeoBaHus MOKa3allH,
yTO OOpaTHas 3ajadya — MO KpalHEW Mepe IS ONUCAHHBIX (PpaKTaTBHBIX
MMOBEPXHOCTEH — MOKET OBITh OJHO3HAYHO pemieHa. Ha OCHOBE aHAIMTHYECKUX W
YUCIIEHHBIX HCCIENOBAHUN TMpsAMOM 3aaud  ObUIM  HAWJIEHBI JMIMPUICCKUE

ypaBHEHHSI, OTIPE/IEISIIONINE pereHrne o0paTHoOM 3a1aun.

OIHOBpEMEHHO HCCIIEIOBAaHUE TOKA3aj0, YTO JETaJbHBIA CHEKTP aKyCTHYEeCKOH
OMHUCCHUU COJIEPKUT HE TOIBKO HMHPOPMAIMIO O MIEPOXOBATOCTH, HO U O
MaKpOCKOIMYECKUX YCJIOBHUSIX B KOHTAKTE, B YAaCTHOCTH, paJlyce KOHTaKTa. JTa
HH(bOpMaL[I/IH TAKXEC MOXKET 6BITB HUCIIOJIB30BAaHA JIA TGKYH_IGFO MOHI/ITOpI/IHFa

COCTOSIHHA KOHTAaKTa.

B 3akmroueHun O6CY)K,I[3IOTC$I npeacibl MIPUMEHUMOCTH METOAA, UCITOJIb30BAHHOI'O B

paboTe, a TakKe IMyTH paciIupeHus 00JacTH ero IPUMEHUMOCTH.
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1 Introduction

The surface roughness of rails and wheels is recognized as the primary source of
noise from railway cars [1], where by roughness we mean both microscopic
components and the macroscopic “waviness” of the rail. This is a topic that has been
researched extensively, however most works in the field are forced to make
simplifying approximations [2] of one kind or another due to the computational
difficulty of the problem. For accurate modeling it would be necessary to use a finite
element model with fine discretization and to perform a dynamic simulation with high
temporal resolution. While work along these lines exists [2], it is necessarily limited
to long-wave components of roughness. In this work, an alternative, less rigorous,
approach is taken. This is based on the Method of Dimensionality Reduction (MDR)
in contact mechanics [3], in which a 3D contact problem is transformed into a 1D
substitute problem, which preserves force-displacement relationships and other
contact mechanical quantities. This method has been shown to be exact [4][3] for
certain classes of contact problems (in particular various kinds of rotationally
symmetric contacts). In the case of rolling noise it is not exact. However, the method
was previously found to be surprisingly useful, even outside of rigorously provable
applications, such as elastomer friction [4] and the normal contact of rough solids [5].
When applied to the dynamic contact of rough surfaces, the MDR cannot be expected
to be as accurate as simulations with the finite element method or similar, but it can
be expected to be considerably more insightful than rough analytical approximations
and physically implausible numerical approximations (such as a 2D “mattress” of
independent springs [2]). Moreover, the MDR, being one-dimensional, is
computationally efficient and allows us to study the phenomenon of rolling on rough

surfaces with previously unattainable spatial and temporal resolution.

In this work we not only consider the forward problem of determining the noise
spectrum from given surface roughness, but also ask the inverse question — whether
measured noise will allow us to deduce the state of the rough surface and the
parameters of the contact. If the answer to this question is positive, this could be
useful for diagnostic applications, such as estimating the current state of the rail

surface or (in the future) the maximum transmissible force in the contact.



2 Prior research

The problem of noise emission from the rail-wheel contact has been extensively
researched [1]. Due to the intractability of dealing with the contact of rough surfaces
directly, all research is based on simplifying assumptions of various kinds. One
approach that is very similar to ours was taken by Ford and Thompson [2] (their work
predates the full development of the MDR). They performed small-scale finite
element simulations of the rough contact and compared the results to simplified
models, in particular a one-dimensional model similar to the MDR and a two-
dimensional “mattress model” with independent springs. It was found that especially
the 1D model had good correspondence with 3D results, prompting the authors to note
that 1D models “might have an unexpectedly wide range of applicability”. Work done
by V.L. Popov and collaborators on the MDR in the following years provided some
understanding of why 1D models in particular can sometimes reproduce the behavior
of 3D contacts (as opposed to 2D models), but formal proof of the MDR for rough,

and especially dynamic contacts remains elusive.

Preliminary work on the application of the MDR to rolling on rough surfaces was
performed by the author of this thesis and coauthors. In [7] the MDR was used to
study fluctuations of contact force resulting from a sphere rolling on a rough surface
while being confined strictly to planar motion (no change of z-coordinate due to
changing contact force). It was found that, given a certain type of roughness
(isotropic, randomly self-affine roughness described by a power spectral density
following a power law) produces a very similar spectrum of force fluctuations
(power-law) that can be described analytically. The spectrum is further modulated by
a periodic function that is related to the contact geometry. In further works [8],[9] by
the same authors first steps were taken towards describing the dynamics of rolling on
rough surfaces using the MDR. Using a model containing only short-wave roughness
of small average height (much less than the indentation depth), it was found that the
modified spectrum of the roughness reappears in the high-frequency part of the
normal acceleration spectrum. In addition, the simulated system showed various non-

linear behaviors that were, however, not analyzed further.

The present thesis builds on these preliminary works and presents a systematic

study of the dependence between short-wave surface roughness and normal
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acceleration in a rolling contact, both in the low-frequency and high-frequency re-
regions. As a result, several semi-empirical dependencies between the spectra of

roughness and acceleration are presented.

3 Methods and models

3.1 Overview of the modeled system

The modeled system is a wheel (presumably made from steel) with a radius R

and mass m. The wheel is loaded with a constant normal force F, (which includes

the wheel’s own weight) and is rolling on a rail with a constant velocity V. It is

assumed that the wheel is not driven. Both the rail and the wheel have surface
roughness, which will be discussed in a later section. The detailed dynamics of the
wheel and axle system and deformation of the rail are not considered. For the purpose
of dynamics, the wheel is considered a rigid body and the rail is considered an
immovable substrate. Various possible interactions and effects (damping, among
other things) are neglected thereby, but a complete and realistic model of the entire

structure would exceed the scope of this proof-of-principle study.

In the contact, it is assumed that the transverse radius of curvature of the rail is
equal to the radius of the wheel, which is usually (approximately) the case in actual
rail-wheel systems. The practical import of this is that the contact can be viewed as a
contact between two crossed cylinders, which is reducible to the contact of a rigid
sphere with an elastic half-space (or equivalently a contact of a rigid plane with an

elastic sphere). This transformation requires assigning the sphere a reduced elastic

modulus E” that is defined as [9]:

; (1)

where £, and E, are the elastic moduli of the two bodies and v, and Vv, are their

Poisson numbers. When both contact partners have the same material properties (as is

the case in our model), the reduced elastic modulus is given by

‘ E



At this point we also note that the spherical indenter shape f(r)=R-+VR’>—r’is

replaced by its second-order Taylor expansion about the origin:

f(r)===, 3)

resulting in a rotational paraboloid. This is a very common simplification (Hertzian
contact) in contact mechanics and is very accurate for small indentation depths (much
more accurate than other assumptions made in this study). The contact-mechanical
side of the model will be developed in greater depth in the following sections. The
primary aim of the present work is to determine the time-dependent normal

acceleration of a rough elastic sphere rolling on a rough elastic plane.
3.2 Describing surface roughness

Surface roughness is probably the most important parameter in this study and,
unfortunately, one of the most uncertain. Although a truly accurate representation of a
rough surface would require the specification of a 2D field of elevations, the key
qualities of a rough surface may be captured in a more compact statistical model.
Since the work of Hurst [11] it was realized that many seemingly random natural
phenomena have certain regularities that manifest as long-term correlations and
hierarchical, self-similar structure. Such processes have been termed Fractional
Brownian motion [12] and randomly self-affine fractals. The self-similarity of these
objects can be captured in a single parameter H , the Hurst exponent, which is closely

related to the fractal dimension D.

Random fractals have been observed throughout nature, ranging from cloud
shapes to mountain topology and coastlines [13]. Surface roughness is also often
regarded as fractal. Certain types of roughness, e.g., are strikingly similar to mountain
landscapes, leading some researchers to point out the self-similarity of fractured
surfaces from the kilometer to the nanometer scales. Random fractals are also a very
convenient description of roughness in contact mechanics, since isotropic roughness

can be characterized by a power spectral density (PSD) with just two parameters: the
scaling parameter # (Hurst exponent) and /,, the root mean square value of the

roughness profile. Due to its simplicity, this description is used in nearly all analytical

studies of the contact mechanics of rough surfaces and also in most numerical studies.
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Nonetheless, there is disagreement among researchers [14],[15] whether the
fractal view of rough surfaces is accurate. Especially for technically produced
surfaces it is not self-evident why they should be self-similar across multiple scales.
Both wear and technical treatment of surfaces can also easily produce surfaces that
are anisotropic. A further problem is that, even if surfaces are indeed fractal, the
power spectral density may not capture all statistical properties correctly. Although
we acknowledge the controversy, in this thesis we are necessarily confined to the
standard PSD-based fractal model, as this is the only representation that has yet been

developed for the MDR.

In the following we will assume that the roughness is described by
Cp = Ag>" 4)

where ¢ is a wave vector and H the already mentioned Hurst exponent. C,, is

defined between two cutoff wave vectors, ¢,;, for long wavelengths and ¢ for
short waves. The constant factor 4 in equation (4) is chosen so that the root mean

square value of the roughness & = /(h(x)’) equals /%,. In this study the parameters are

chosen such that the longest wavelength of the roughness is equal to the contact

radius, so that ¢ =27/a, while the shortest wavelength is equal to the spatial

discretization step Ax, so that g, =27/Ax.

It should be noted that these assumptions are unrealistic in two ways: first, real
rail and wheel surfaces are known to have roughness components with wavelengths
much larger than the contact diameter. At longer wavelengths a “roll-off” is typically
observed, where the power-law scaling of the spectrum transitions into the constant
spectrum of white noise. The second issue, which follows from the first is that the
overall value of the roughness, /4, is significantly reduced by cutting off long-wave
roughness components. The exclusive focus on short-wave corrugations is motivated
by the desire to study the high-frequency components of the acceleration spectrum in
isolation, where a particularly clear dependence on the roughness spectrum can be
seen (this was found in the cited preliminary studies). Also this may make it possible

to study the production of low-frequency vibrations by short-wave roughness through
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nonlinear effects, a phenomenon that would be otherwise obscured by direct vibration

in this part of the spectrum.

How the roughness is handled within the MDR is described in detail in the next

section, where the MDR is formally introduced.
3.3 Method of Dimensionality Reduction

As mentioned previously, this work makes heavy use of the Method of
Dimensionality Reduction (MDR) in contact mechanics. The MDR (in a much
simplified form) was first proposed by V.L. Popov in 2005, based on the observation
that, despite the fact that contact problems are generally quite complex even for
simple geometry, and are usually described by integral equations, the resulting force-
displacement relationships are often quite simple. E.g. for a flat cylindrical punch, the
contact force is proportional to the contact diameter and to the indentation depth. This
behavior is trivially reproduced by an elastic (or Winkler) foundation, i.e. a linear
array of independent spring elements (Figure 1). While this particular case is not very
interesting, it was also noticed that elastic foundations can reproduce the force-
displacement relations for spherical and conical indenters if the indenter outline is

vertically scaled by a shape-dependent constant.

a)

Figure 1. (a) Contact between a rigid sphere and an elastic half-space. (b) One-dimensional
contact with an elastic foundation.

In the following years the MDR saw significant developments. Notably, Hel3 in

his doctoral thesis [4] showed that scaling rules can be found for any rotationally

symmetrical indenter shape f (). In its most general form, the transformation is:
I f' 7
2()=h{] 2L o, (5)
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where g(x) is the outline of the one-dimensional transformed indenter and
f"=df /dr. When this substitute outline is indented into an elastic foundation, in

which individual spring elements have a spacing Ax and spring constants k, = E"Ax,

the dependence of normal force and contact radius will be exactly as in the original

contact problem.
In our particular case, with the Hertzian indenter (3) described by f(r)=r?/2R and
f'(r)=r/R we have:

5

- ©

the solution of which is easily shown to be

g(x)==. (7)

Note that in our case the indenter has been “stretched” vertically by a factor of 2

(compared to (3)), which was the original rule of Popov for spherical indenters.

The MDR as presented above is a rigorous method (within the standard
approximations of contact mechanics), and Hel3 also showed that it can be applied not
only to the classical frictionless normal contact, but also to tangential contacts with
friction. Also, the material of the half-space can be linearly-elastic or an arbitrary
linearly-viscoelastic material. Finally, reverse transformations exist that allow
reconstructing the stress state of the 3D contact from the configuration of the 1D
elastic foundation, but none of these capabilities are used in the present work, and so

are not introduced further. The interested reader is referred to the MDR book [16].

Outside of the region of its exact applicability, the MDR has been applied in areas,
where its use cannot (yet) be justified formally, but has nonetheless been surprisingly
successful. The first of these applications was the normal contact stiffness of rough
surfaces, work on which was begun by Geike [17] and continued by R. Pohrt, V.L.
Popov and others [18],[5]. Given a randomly self-affine surface described by the
power spectral density (4), Geike formulated the following rule for the power spectral
density of an equivalent “rough line” in 1D, which should reproduce the contact

stiffness of a real rough contact when indented into an elastic foundation:
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Cip(q)=mqC,,(q)- (8)

Pohrt later (empirically) confirmed the general validity of this rule and the accuracy
of the MDR, by extensive comparisons between MDR models and large boundary-

element models of the rough contact [5]. It was found, however, that the factor 7 in

equation (8) is not generally correct; instead a constant A(/H ) that depends on the

Hurst exponent needs to be used. A rather complicated summation determining A
explicitly has been found [18], but in practice it is easier (and equivalent) to normalize

the rough outline, after it has been generated, to the given value of RMS-roughness

hy :,/(h(x)2> . The latter option is chosen for generating roughness in the present
study.

A second area where the MDR has been successfully employed without rigorous
proof is the frictional contact between rough surfaces and elastomers. Various facets
of this problem have been explored in a series of works by A. Dimaki, Q. Li, V.L.
Popov, M. Popov and others [5],[4],[20]. While Pohrt et al. considered the quasistatic
normal contact only, the frictional contact with elastomers is inherently dynamic (due
to the nontrivial interaction between asperities of the roughness and local relaxation
behavior of the elastomer), which makes this problem even further removed from the
rigorously proven core applications of the MDR. Nonetheless, the MDR has proven
effective in this application, and several empirical [21] and theoretical [22] arguments

supporting its applicability exist.

The problem considered in this thesis also lies outside the strict applicability of the
MDR. It is in some ways similar to the normal contact problem studied by Pohrt et al.,
but also introduces certain complications. One problem is related to changing contact

configuration and another to the lack of quasistaticity.

The ability of the MDR to accurately describe the normal contact stiffness of
randomly self-affine fractal surfaces is now considered beyond doubt and there are
theoretical considerations (in particular the recent interpretation of MDR profiles as
incremental normal stiffness functions) that suggest that a formal proof may be found
someday. However, the rolling motion continually brings new patches of the surface
into contact. It is not yet clear whether the statistics of normal force fluctuations due

to these incremental changes at the borders of the contact will be the same in the
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MDR and 3D models of rough surfaces. This question could be settled by performing
high-resolution rolling simulations with the boundary element or finite element
methods, but such verification would unfortunately greatly exceed the scope of the
current study. In [9] it has been argued that the contact configurations encountered in
rolling can be regarded as separate random realizations of the rough surface (in which
case there are solid indications that the contact force in the MDR and in 3D models
would have the same statistics, at least in terms of mean value and standard
deviation), but this is certainly not the case in a strict sense, and it is also unclear if

this is approximately the case in practice.

The second problem that was mentioned is that the MDR applies, strictly
speaking, only to quasistatic contacts. L.e. changes of the contact configuration must
happen much more slowly than the time it takes sound waves to traverse the system in
question. This constraint is violated in dynamic contacts with rough surfaces, because
changes in the contact configuration at the micro-level can happen very fast and it is
unclear how these changes propagate and affect the macro-level dynamics of the
system. This is a problem that is present in the case of friction with elastomers and
also in the current study, where roughness at the micrometer-level and rolling

velocities of tens of meters per second are considered.

Ford and Thompson [2], who unknowingly used a variant of the MDR,
suspected that it “might have an unexpectedly wide range of applicability” — a
sentiment that has been largely confirmed by subsequent works. However, it must still
be kept in mind that we are overstepping the bounds of the MDR in this study, and
that great care must be taken before transferring the obtained results into real-world

scenarios.
3.4 Dynamical model

Rolling of the smooth, non-driven wheel on the rough substrate is equivalent to
horizontal translation with a velocity v, within the half-space approximation (which

is a prerequisite of the MDR, and indeed most of classical contact mechanics). Using

(7) we can write the time-dependent profile of the indenter as:

g(x,t)=@—d(f), )
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where d is the current indentation of the wheel and v its translational velocity. In

points where there is contact between the wheel and the rough surface, there is a

spring displacement u :

u(x,t)=h(x)————>-+d (1), (10)

where we introduced x, =V f, which represents the coordinate of the wheel, and
h(x) is the roughness profile, which represents the total relative rougness of the
wheel and the rail together. When in contact (i.e. u(x,#)>0), the normal force in a
single spring element is given by

F(x,0)=ku(xt) (11)

and the macroscopic normal force is obtained by summing the individual normal

forces of all springs in contact:

F,.(t)=Y F.(x1). (12)

contact

Given the contact force we can write the equation of motion for the wheel:
md(t)=F,, —F,, (13)

where d is the second time derivative of the indentation depth, which is equivalent to
normal acceleration. Equation (13) is solved numerically using the Euler method.
Higher-order methods are unlikely to provide any benefit, since they depend on

smoothness assumptions that are not satisfied by fractal functions. The time step of
the simulation was chosen to be A7 =Ax/v, , which can be thought of as moving the

rough line relative to the indenter by one element per time step. The initial value of

the indentation was

3 Fn 2/3
i) (14
which is the indentation depth of the smooth Hertzian contact. The initial vertical

velocity was do =0. The initial horizontal position of the indenter was equal to one

Hertzian contact radius a:

x,=a=-JdR, (15)
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because the beginning of the rough outline was placed at the origin. The main
material and model parameters utilized in the simulations are given in Table 1 (unless

specified otherwise). A more complete list of parameters is given in the Appendix A.

Table 1. Principal model parameters

Parameter  Value Explanation

E 210 GPa Modulus of elasticity of steel
1% 1/3 Poisson number of steel

R 0.5m Wheel radius

m 500 kg Wheel mass

h, 0.5 um RMS-roughness

The primary result of the simulation is the time-dependence of the normal
acceleration, which is transformed into the frequency domain for analysis. For every
set of parameters, 300 simulations with different random realizations of the rough
surface were performed, and the resulting acceleration spectra averaged, in order to
reduce noise. The resulting data was not filtered in most cases since filtering tends to

corrupt resonance peaks.
3.5 Implementation

3.5.1 Generation of a rough outline

The computational generation of random fractals can be achieved in several
ways. One of the most popular approaches, which is also usually used to generate
colored noise, is to combine the specified power spectral density with random phases

and to perform the inverse discrete Fourier transform [19]:
h(x)= B(q)exp(i(ax+4(q))), (16)
q

where ¢(¢) is a random phase variable that is evenly distributed over [0,27) and

Bla)=\ - C(a) =B (). a7
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where L is the length of the generated data. This method is fast (due to availability of
the fast Fourier transform) and accurate, although it does have some drawbacks [23].
Other methods such as random midpoint displacement [23] exist, and have been used
in contact-mechanical settings, but the DFT-based method is the only one that has yet
been tested with the MDR, which is the primary reason why it has been chosen for the

present study.

3.5.2 Efficient calculation of contact force

The use of the MDR vastly reduces the computational difficulty of finding the
normal force in a rough contact: instead of solving a complex 3D boundary value
problem in continuum mechanics, we simply traverse a 1D array of independent
springs and calculate the sum of the forces (12) of the springs that happen to be in

contact with the sphere.

The most straightforward implementation would involve traversing a segment
of the rough line within one Hertzian radius of the current position of the sphere (plus
some additional margin at the edge of the contact to account for deviations due to
roughness). However, this approach is relatively inefficient because the contact
configuration is mostly identical to a smooth Hertzian contact given the high loading
and moderate roughness of rail-wheel contacts. Also, the contact configuration does
not change much from one instant to the next. Rapidly changing and nontrivial

contact configurations only occur in a narrow region at the edge of the contact.

For this reason a more efficient algorithm based on spatial subdivision was
developed and implemented for this thesis. Spatial subdivision is a common technique
used in particle-based physics simulations [24], image rendering [25], clustering [26],
etc. The general idea is to wrap the system into a hierarchy of bounding boxes. This is
advantageous if it is possible to discard large parts of the system based on the
bounding box alone during computation. This is the case in our model, where most of
the rough line is either not in contact or in a simply connected contact region. Our

algorithm requires pre-computing two quantities. First is the “cumulative roughness”

h:

h=>h, (18)
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which allows directly calculating the contact force of a region that is fully in contact:

F =kz(}7/—hi)—E*j.Txg(x)dx. (19)

When g(x)=(x-x, )2 / R —d , the force in a full-contact region expands to:

(ij—xw )3 _(iAx_xw )3
3RAx

F,=k|h~h~ +d-(j-i)|- (20)

The second pre-computed data structure is the recursive bounding boxes that
encode the minimal and maximal value of 4 on a given interval. The data structure
consists of a global box that bounds the entire rough outline, then two boxes that
bound the left and right halves of the outline, then four boxes for each of the four
quarters, etc. For reasons of efficiency this data structure is implemented as an

implicit binary tree and the recursion is cut off when the interval falls below a certain

size 1, . Both pre-computed data structures can be constructed in O(n) time, and

are only constructed once for the entire dynamic simulation. The additional storage
required is approximately 1.5 times the size of /4 itself. Since both the generation of

the rough outline and the spectral analysis of the result via FFT have a time

complexity of O(nlogn), and the calculation of contact force can be expected
(although not guaranteed) to take O(logn) time, a complete dynamical simulation
will take roughly O(nlogn) time and O(n) space, making it cheap to experiment
with large rolling distances and short-wave roughness.

When computing the normal force, we proceed recursively. For simplicity, the

implemented routine is specialized to the parabolic indenter, although it could be

generalized to any convex indenter shape. Given an interval [x,,x,], it is first

checked whether the interval is smaller than the minimum size, in which case the

normal force is computed by direct summation (for increased efficiency). Otherwise

the height of the indenter outline at the edges of the interval g, = g(x,—x,) and

max

g, =g(x,—x,) is computed. The upper and lower limits /4 , %, of the rough

outline for the given segment are retrieved from the pre-computed structure. Then

follows a simple case analysis:
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Full contact case: if both g, <A . and g, <h_. , then the indenter is below

min »
the lower bound of the roughness profile in the entire interval (since it is
convex and monotonously increasing from a single minimum). In this case the

normal force is determined directly using formula (20).

No contact case: If both g, >4 and g, >h_ and the lowest point of the

max
indenter lies outside the interval, i.e. X, <X, or X, >X,, then no point of the

indenter can be in contact with the rough surface inside the interval. Thus, the
normal force is zero.

Ambiguous case: In all other cases the indenter may or may not be in contact
with the rough surface. This case is handled by subdividing the interval into
two halves and recursively computing the normal force in these intervals. In

this case the normal force is F, i T F”.gh,.

4 Simulation results

4.1 General characteristics of the acceleration spectrum

The normal acceleration resulting from rolling of the wheel on the rough rail has a

distinctive spectrum, which contains components at high frequency that correspond to

wavelengths present in the surface roughness spectrum, as well as low-frequency

components. An example spectrum is shown in Figure 2. The spectrum has 4 identifi-

able regions:

1.
2.

At low frequencies there is a plateau and a resonance peak.
An intermediate low plateau with a hint of periodic modulation.
A sharp rise in intensity (corresponding the long-wave cutoff of the

roughness) followed by a power-law decline (red line in Figure 2). This region
has clearly visible periodic modulation with a constant period A®),, .
At a certain point the power-law decline of the third region tapers off to form a

fourth region that extends to the maximum frequency ®,,, =¢,..V,-

To ascertain the origin and behavior of these features, a parameter variation study was

performed, the results of which are described next.
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Figure 2. Typical structure of the acceleration spectrum (averaged) resulting from the
simulations. 1: Resonance at the natural frequency of the wheel. 2: Intermediate region. 3:
High-frequency part corresponding directly to surface roughness, with power-law scaling

and periodic modulation. 4: Taper-off at the highest frequencies (artifact of the simulation).

4.2 Low-frequency resonance peak and surrounding plateaus

The resonance peak 1 is centered at w,,,, =V2aE "/m , leading to the obvious

physical interpretation as the Eigen frequency of the wheel. In the parameter study
this frequency was found, as expected, not to depend on any of q,.., 4,.., V, and H .
This resonance peak is of some interest for this study, in that it results from non-linear

excitation by higher frequencies, and this effect may be quantified. This is described

in a later section.

To the left of the peak is a low and flat (white noise) plateau, at frequencies that
do not correspond to anything in the roughness spectrum. These vibrations are due to
the nonlinear properties of the system and are analyzed in detail in section 6. A
similar plateau exist to the right of the resonance peak (at higher frequencies), with
the difference that it is periodically modulated as in region 3. This central plateau is

not considered further in this thesis.

4.3 Power law region

4.3.1 Transition frequency
After a steep rise begins the region that is of most interest to this study. An

obvious hypothesis is that the cutoff in the acceleration spectrum is related to the
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long-wave cutoff ¢, in the spectrum of the surface roughness. Indeed, the transition

frequency was found to be
a)tram = qminvo . (2 1)

This was verified at multiple velocities, and for multiple cut-offs ¢ . , the latter of

which is demonstrated in Figure 3.

— q0 = 7/0.25mm
— q0 = /0.5mm
107 - —q0 =n/1mm

AP/ [a.ul]

L Lol L Lo L L
? 10° 10° 10
o [1/s]

Figure 3. Normal acceleration spectrum for 3 different cut-off wave vectors q;, . The height
of the plateau and resonance peak are different due to the fact that a part of the roughness
spectrum was cut off without renormalization, which results in different values of h,.

4.3.2 Power law scaling

The second distinctive feature of this region is the linear decline (red line in
Figure 2) of intensity in the double-logarithmic plot, which corresponds to a power
law in normal coordinates (we are ignoring the periodic modulation for the moment
and consider the height of the peaks). This similarity with the spectrum of the
roughness suggests that 1) the two are directly related and 2) that the normal
acceleration of the wheel has randomly fractal character. Let & be the slope of the
linear approximation (in the log-log plot). Then the intensity of the peaks in region 3

can be written as:

IC,|cw. (22)
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It seems reasonable to suppose that « is a function of the Hurst exponent H of the
roughness. This is confirmed by Figure 4, where the regions 3 and 4 of the spectrum
are plotted for 3 different Hurst Exponents. It can be seen that a assumes larger

values with increasing H .

JART [a.u]

o1/

Figure 4. Regions 3 and 4 of the normal acceleration spectrum for 3 different Hurst
exponents H of the roughness. The straight black lines indicate different power laws
approximating the peaks.

A more detailed study of the parameter « has shown that it can be closely

approximated by the following simple relationship:
a=2H+3. (23)

Notice that this scaling behavior is similar to the power spectral density of the original
rough surface (equation (4)):

C,p x q72H72 . (24)

Since @ =qv,, it can be supposed that

C, () S\ 2%) (a”)"/ W) (25)

The dependence on other parameters will be presented after other factors (e.g. the

influence of /%, have been introduced.

4.3.3 Periodic modulation
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As can be seen in Figure 2, the power law region, as well as the plateau before
it, is modulated with a periodic function. The modulating function appears to be
increasing in frequency, but this is only an effect of the double logarithmic plot. The
maxima (and minima) are separated by a constant distance A that is proportional to

the velocity and inversely proportional to the contact radius:

Aw, =z, (26)
a

Part of this dependence is demonstrated in Figure 5, where the modulated

power law region is shown for two rolling velocities.

AT [a.u]
=) =
A ® ®
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Figure 5. Normal acceleration spectrum (power law region only) for two rolling velocities
(green: V,, blue: 2v,).

It seems that this modulation is not related to any parameter of the rough
surface and arises due to the geometry of the contact. A similar modulation was
observed in a simulation with a smooth contact after an initial excitation. One guess
as to the physical nature of this modulation is that it is simply the Fourier
decomposition of the “contact geometry”. Consider the following function, which

resembles the displacement of elements in the contact region in the MDR model:

g(x):{az—xz, |x|<a . 27

0, |x| >a
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The discrete Fourier transform of this function is shown in Figure 6. Similarly
to the acceleration spectrum, the spectrum of the window function (27) is modulated
with a constant period Ag=7/a. This can be seen particularly well in the right
subplot, where a part of the spectrum is plotted as a function of ¢/Ag . This seems to
confirm that the modulation seen in the power law region of the normal acceleration
spectrum is a geometric artifact and thus of no further interest in this study. It may be
noted, that the contact radius (with known velocity) or the velocity (with known

contact radius) can be determined from the spectrum, which answers one of the initial

questions of this thesis in the positive.

X2048 [y
Y3720 317 ono

107 £ m !
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Figure 6. Fourier decomposition of the function (27). Double-logarithmic plot (left). Semi-
logarithmic plot with wave numbers normalized to Aq = 7[/ a (right).

4.3.4 Dependence on RMS-roughness
Variation of the RMS-roughness /4, indicates that the intensity of the

acceleration is proportional to its square:
C,xh. (28)

This is demonstrated in Figure 7 for three different values of RMS-roughness. Note

that the power spectral density of the roughness is also proportional to the square of
h,. This leads us to the hypothesis that the spectral densities of the roughness and the

resulting normal acceleration are proportional to each other:

C,xCp(q)=C,(0/v,). (29)
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Figure 7. Normal acceleration spectrum (log-log) for one maximum of the power law region,
with three different values of hy (0.25um, 0.5um, 1um). In each case the intensity is 4 times

larger for 2 times larger roughness.

4.3.5 Taper-off region

The power law region does not extend all the way to the highest frequencies,
but tapers off (continues to decline, but less steeply). It was found that the transition
point is pushed towards higher frequencies with increasing rolling distances. As the
distance tends to infinity, this fourth region will, presumably disappear entirely. This
effect can be seen in Figure 8, where acceleration spectra from simulations with in-
creasing distance are shown (blue: shortest, red: longest distance). Although this ef-
fect is left without an explanation, it is of no particular interest to this study and there-

fore is not considered further.
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Figure 8. Normal acceleration spectrum obtained from simulations with different rolling
distance (red: longest, green: intermediate, blue: shortest).

4.4 Proposed dependence for the power-law region

The proportionalities (25) and (28) as well as the well defined cut-off (21)
suggest a close relationship between the spectra of the roughness and the normal
acceleration. Taking this into account we can propose the following relations that tie

the normal acceleration spectrum to the spectrum of surface roughness:
CoocCp(o/vy)- 0 oc(0/v,) " o2 o, (30)

Replacing @ with qv,, the first of these can be written as:

Cip(q)oc Cu(qvy)-(qv,)’ (31)

Note once more that this relation only applies to the high-frequency power-law region
of the normal acceleration spectrum. The low-frequency parts will be discussed in
depth in the next chapter. In Figure 9, a result of dynamical is shown together with the
predicted dependence according to (31), where the proportionality constant has been
fitted to the data. It seems that the power-law region is described accurately, which
also means that the primary question of the present paper is answered in the positive:
There is a direct correspondence between the spectra of the acceleration and the
roughness, and either can be used to diagnose the other. (With the important caveat

that the mapping is not necessarily reversible: if in fact any roughness spectrum
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would produce the same power-law acceleration, then equation (31) could not be used

in reverse, but this possibility is neglected here.)

A2
— C1D*2.3610

100
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Figure 9. Comparison of normal acceleration spectrum (double logarithmic) resulting from
dynamical simulation (blue) and the spectrum described by equation (31) (black).

5 Analytical approximations

We now attempt to interpret and approximate at least some of the observed
phenomena with analytical models. Remember that we consider only short-wave

surface roughness with a very small (compared to the size of the system) RMS value

hy. One of the consequences of this is that acceleration frequencies below the cutoff
q...V, are most likely a result of nonlinearity of the system. A second consequence is
that the indentation of the wheel d (t) is very nearly constant, and that high-frequency

fluctuations of normal force will be mostly due to changing contact configuration
resulting from horizontal motion, and not from vertical oscillations of the wheel. Both
things should be kept in mind in the following analysis. It is also useful to repeat here

that the spectrum of the (isotropic) random roughness is given by:

0’ q < qmin

) 32
Aq72H72’ q > qmin ( )

C,p(q) :{

where H is the Hurst exponent and ¢, =27/a (the upper cutoff g, is of no

relevance to the following discussion), while the MDR-transformed roughness

spectrum is given by:
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C 0’ q < qmin (33)
(@)= ﬂ,(H)Aq_ZH_l, q>q.. :

Let us now consider the rolling contact in detail. The MDR-transformed
system is shown in Figure 10. The indenter is centered at X and its profile is Z,

(which includes both the parabolic shape and the vertical indentation). As before,

h(x) is the roughness profile. The distances from the center to the left and right

edges of the contact are @, and a,, respectively. As mentioned previously, these are

functions of both the horizontal and vertical position of the indenter, but in practice

are very close to the Hertzian contact radius a.

hi Zy (xX)

o
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Figure 10. Schematic representation of the MDR contact geometry.

5.1 Consecutive calculation of contact force and normal acceleration

In the previous dynamical simulations, the contact force (12) and the equations

of motion (13) are inseparably tied together through the indentation depth d(t),

forcing both to be recalculated at each time step. In practice, however, the
dependence should be fairly weak, so that the two may be decoupled. In this section
we make the assumption that the motion of the wheel is mostly planar for the
purposes of calculating the contact force, and that the acceleration can be calculated

afterwards as the dynamic response to this force. In other words, the difference to

previous simulations is that we set d(t):do for the purposes of calculating the

normal force only. In Figure 11 the result of this approach (black line) is compared
with a complete dynamical simulation (green line). Except for the lowest frequencies

(left of the resonance peak) the spectra are very similar.
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Figure 11. Normal acceleration spectrum resulting from full dynamical simulation (green)
and dynamical response to pre-calculated normal force fluctuations (black).

That the obtained spectrum can be interpreted as the dynamic response of the
wheel, decoupled from the computation of the normal force, is significant in that it
ties this study to previous work [7], where the normal force fluctuations for a rolling
object that is confined to the plane was calculated. Further, this approximation allows
further accelerating the calculations in some cases (when combined with additional

approximations that will be introduced next).
5.2 Approximate contact force spectrum at high frequencies

Here we will attempt to directly calculate the high-frequency part of the
normal force spectrum by neglecting the fluctuations of the contact length due to

roughness and instead using the contact radius of the smooth Hertzian contact:
a=a,~a. (34)

We also assume that the contact forms one continuous region, i.e. that there
are no gaps at the border, where the rough profile would otherwise intersect the
indenter in nontrivial ways. With these assumptions, the contact force can be

calculated as:

v0t+a

Fa )= ] [0 -U0 g b, (33)

Vot—a
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which is effectively the same as (19), except that we do not first make sure that we
have a connetcted contact region by analyzing bounding box hierarchies. Note that the
right part of the integrand is constant (due to the integration bounds). Thus the
fluctuations of the normal force are described by:

dF,(x)

F =E'[h(Z+a)-h(%-a)], (36)

where we have reintroduced X =v,f for convenience. This makes explicit the notion

that the force fluctuations are due to changing contact configuration, in particular the
“element” at the leading edge that comes newly into contact and the one at the trailing
edge, which leaves the contact zone. Given a discretized rough outline specified

through its PSD, it so happens that these fluctuations can be calculated directly:

h(k+a)—-h(X-a)= ngBID (q)exp(z'(qfc+¢(q)))[exp(iqa)—exp(—iqa)]
/A

= > 2iB, (q)exp(i(qi+¢(q)))sin(qa)

q=—n/Ax

(37)

Using this, and integrating (36) over X, we find the contact force (or rather the

variable part of it, excluding the Hertzian contact force, which is equal to the loading

k)

7/ Ax
Fru ()E) =E _Z; 5310 (q)sin(qa)exp(i(qi+¢(q))) . (38)

Comparing this result with (16), we can see the following relationship between
the power spectral density of normal force fluctuations C,(g) and the MDR-

transformed spectrum of the roughness C,, (¢):

)
2E :
o (q):[Tj C,p(g)sin®(qa). (39)
Using the randomly fractal model of roughness (33), we finally obtain:
2"
C, (q):Axl(H)(Tj g " "'sin’(qa). (40)
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5.3 Approximate contact force spectrum at low frequencies

In this section we remove some of the previously made simplifying
assumptions in order to calculate the low-frequency components of the normal force.

With this, we obtain the following for the contact force fluctuations:

dr,

e =F [ h(%+a,(%))-Z,(a, (’E))}(”%@j

—E"| h(i-a,(%))-Z, (o, (x))](u%@j : (41)
f+ay (%) —%

+E }_J:(}) _dZOij )

or, after rearranging some factors:

Lo 5 [ sas (N [ (2) 7 ()] 2!

da, (%

~E[h(3-a, (1) ]+ B [1(3-a ()~ 2 (-0, (%) | =5

(42)

N—

Note the introduced derivatives of the contact bounds with respect to X . To calculate
these, it is useful to consult Figure 12. In the figure the right border of the contact is
shown at the wheel coordinate X and shortly thereafter when the wheel is at X +dx.
In this linearized sketch, the outline of the indenter is represented by a straight line
with a slope ¢ . The rough line is also linearized and shown in the figure as 4'x . It is
easily seen that /'da = ¢(da —dx). Thus, the right contact radius changes by:

W

da=da-dx=
c—h

ds . (43)

Assuming that the slope ¢ of the wheel at the edge of the contact is much larger than

the characteristic gradient of the roughness, we find that

da, _ W(%+a) (44)
dx c

and analogously, for the left edge of the contact:
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L I S (45)

dx da

Figure 12. Approximate linearized geometry of the contact edge. The edge of the wheel is
shown at wheel positions X and X+ dX as a straight line with slope c . The local gradient of
the roughness is represented by a straight line with slope h'. To find is the resulting
increment of the contact radius da .

Inserting the derivatives of the left and right contact bounds into (42) we obtain:
dr . . . . h'(fc+a) . . _
a4z E [h(x+a2 (x))]f+E [h(x—a1 (x))]—

+E [ h(%+a,(%))|-E" | h(¥-a,(%))] . (40

h'(fc+a) EZ (_al (()Z))) h’(fc—a)

_E*ZO(az(’z)) -

The first line has terms of the form %-4', which are second-order terms in /4. In the
second line terms of the first order 4 have been grouped together and the third line
contains terms of the form /'. In this section we are interested only in the second-
order terms of the first line, since these are likely to be responsible for the low-
frequency parts of the contact force spectrum (through combination frequencies). The
linear terms of the second line can only contribute to the already analyzed high-
frequency part of the spectrum. After reintroducing the assumption of a roughly

contstant contact radius a, we arrive at the following description of the low-

frequency force fluctuations F,.:

o p a9 g [ —a) P EZ9),

dx c 47
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Integration and substitution of ¢ =2a/ R (the slope of the MDR transformed indenter

at the contact edge, g'(a)) gives the following result:

F,, zE*%([h(ﬂa)]z +[h(E-a)])- (48)

To test the quality of this approximation, the contact force was determined by direct
summation and according to the above equation. In Figure 13, where the resulting
spectra from both approaches are compared, it can be seen that the fit is reasonably
good at low frequencies (see especially the bottom plot). There is no correspondence

at high frequencies, but this is expected.

100,/B()]

log, ;B ()

I I I I I I I I I I
0.8 1 1.2 1.4 1.6 1.8 2 22 24 26

log, lal

Figure 13. Comparison between the normal force spectra (double logarithmic) obtained
through direct summation (solid lines) and with equation (48) (dots). The entire spectrum
shown in the top plot (discrepancy at high frequencies is expected), low-frequency part of the
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spectrum at the bottom shows very good correspondence. The different colors correspond to
different long-wave cutoff’ q,;, (and correspondingly different h,).

Now that we have gained some confidence in the approximation of low-frequency
components of the normal force fluctuations with equation (48), we can combine it

with the linear approximation (36) describing the force at high frequencies to obtain:
Fou(¥)=E° U(h()?vta)—h()?—a))di+a((h(i+a))z +(h()?—a))2)j. (49)

The integral of 4 (X+a) and #(X—a) is the same as the “cumulative roughness” (18)

that is used for the exact calculation of the contact force in the recursive procedure

specified in section 3.5.2.
5.4 Summary (analytical approximations)

To summarize this chapter, we note that an approximate formula was found for
the contact force (49), which describes both high-frequency fluctuations and low-

frequency components with reasonable accuracy. On one hand, this allows for very

efficient calculation, since it replaces direct summation (O(nz) computational

complexity) or our more efficient hierarchical method (O (nlogn)), with incremental

updates using only two elements of the rough outline at the current edges of the

contact, which leads to O(n) complexity. Together with the finding of section 5.1,

that the calculation of normal acceleration can be decoupled from the calculation of
normal force, this results in a simpler and more efficient procedure to estimate
acceleration spectra. In the following part of this thesis, we make use of this to

accelerate the parameter studies that are performed there.

Apart from efficiency, the above analysis provides interpretation for various
features of the acceleration spectrum, such as the linear dependence of the power-law
region and the roughness spectrum, as well as the observed modulation, and further
the interpretation of the lower-frequency components as nonlinear excitation. The
result (40) provides a full quantitative dependence of the force spectrum on the

roughness spectrum, where previous work only established the proportionality [7].
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On the other hand, the analysis of this chapter depends on a number of
assumptions, chief among them that the roughness only has short-wave components
(less than the contact radius) and a modest RMS-value. Due to this, we were able to
assume that the vertical motion of the wheel can be neglected for most of the analysis.
Unfortunately, these assumptions would seem rather unlikely in real-world rail-wheel

contacts, so that the practical applicability of our analysis is limited.

6 Quantitative study of low-frequency force oscillations

The previous chapter concluded with an analysis of the origin of the low-
frequency components of the normal force, which also resulted in simplified
computational procedures. However, the quantitative relationships between the
roughness spectrum and the resulting force fluctuations are not obvious from the
resulting equations (e.g. (49)). In this chapter we attempt to find these relationships

through parameter variation using the procedures established in the previous chapter.

From Figure 13 it can be seen that the spectrum of contact force forms a plateau
at low frequencies. In the present section we will try to establish how the height of

this plateau depends on the parameters of the roughness spectrum. In particular, we

are interested in the Fourier component B, (¢) for ¢ —0, which we denote B, ,. To

attain sufficient precision, we average 100 random realizations of the rough surface

for each parameter combination.

6.1 Influence of 7,

Since we normalize the RMS-roughness of the 1D rough outline to #,, the

constant A4 in equation (33) can be shown to have the value:

A=t g (50)

M(H)

The dependence on 4 is already obvious from (49) and (50), but was also confirmed

numerically (Figure 14).

36



+  datal
09r quadratic

08t / .

07 //*

L 4 4
06 #
Cost / .
#
041 Y / .
#
03f S i
-
02+ ///* 1
w"'*’

01F e 4

e ) ] ! 1 ! L L 1 1
0 0.1 02 03 04 05 06 07 08 08 1
ho 6

Figure 14. Dependence of B o on the roughness parameter ho Green line: quadratic

approximation. Blue crosses: numerical results.

6.2 Influence of ¢ and system length

When considering the influence of the long-wave roughness cutoff ¢ . and the

rolling distance L, it was found that B, , depends only on their product. This is
demonstrated in Figure 15, where B, is plotted against the product ¢, L . Note that

both ¢ and L were varied independently, but form a single curve in Figure 15, thus

confirming that only the product is a controlling parameter.
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Figure 15. Dependence of By, , on the product q.i. L . Multiple values of q... and of L were

used. All of the combinations form a single curve.

A dependence on the discretization step Ax was not found (as expected). At this point
we can guess that the intensity of the plateau is determined by an equation of the

following form:

* 72
BF,OZERhO lP(q LH): (51)

min "
a

where W (g,,,L,H) is a yet unknown function of the Hurst exponent of roughness

and the product of the lower cutoff and rolling distance.
6.3 Empirical approximation for ¥

It does not appear that the functional dependence ‘P(qminL,H ) has any really
simple representation. In this section we therefore attempt to at least find a numerical
approximation based on simulation data. In Figure 16, B, is plotted against ¢,; L

for a range of Hurst exponents. The data seem to indicate (visually) that the

dependence on H is multiplicative, though not necessarily a direct proportionality.
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Figure 16. Dependence of By, , on the product q.i, L for multiple Hurst exponents H of the
roughness (from 0.3 to 0.8).

This intuition is confirmed when the data are plotted differently (against H ), which is
shown in Figure 17. The approximately linear curves confirm that the dependence on
H is multiplicative, and also the lack of direct proportionality. From Figure 17 it

seems plausible to choose an approximation of the form:

Y(H)=B+yH . (52)

0.14

012t
increasing Apnin

BF (plateau)

Figure 17. Dependence of B ro on H for multiple values of q;, .
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Fitting (52) to the individual lines in Figure 17, this hypothesis could be roughly con-

firmed. In Figure 18 the parameters « and [ are plotted against each other, and seem

to be vaguely proportional (the noise is too high to be really sure), as would be ex-
pected if the lines in Figure 17 have a common origin. A line fit in Figure 18 suggests

that

B~0277a, (53)

which, together with previous considerations, leads us to formulate the following em-

pirical approximation for ¥ :
Y (gl H)=v(4mnL)-(0.277+H), (54)

where the dependence y is still to be determined. Also, using equation (51), we have:

R * 2
Bro=—E hey(qunL)-(0.277+ H). (55)

0.04

0.035- Steigung = 0.277

0.031
§ 0.025-
c
“g L
g 0.02
X
=~ 0015
o

0.01

0.005 -

c'l?l 0.62 0.64 0.66 0.68 011 D.‘12 0.14
a (Steigung)

Figure 18. Parameters [} and y resulting from linear fitting of the curves in Figure 17 plot-

ted against each other (blue). An approximate proportionality is discernible. A linear fit
(green) is also provided.

With one final parameter variation we determine y(q,,,L). Plotting this dependence

in double-logarithmic coordinates (Figure 19) clearly reveals a power law with a fitted
slope of —0.485. This is close enough to —0.5 that we can postulate an inverse-

square-root dependence. The fit also gives a multiplicative constant of 2.863.
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Figure 19. Double-logarithmic plot of the dependence vy (qminL) . Blue crosses represent

numerical data and the red line is a linear fit with a resulting slope of -0.485.

y 1s the final piece that we need to formulate an empirical approximation for the in-

tensity of the low-frequency contact force oscillations:

E'hR

a \Y} qminL .

B, ,~2.863-(0277+H)

(56)

A comparison of (56) with the data originally presented in Figure 16 is shown in Fig-

ure 20, which attests a reasonable accuracy to the proposed approximation.

012
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0.08 -

0.06 -
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0.04 -

0.02-

Figure 20. Comparison of By, (crosses, same data as in Figure 16) with the proposed ap-

proximation (56) (solid lines).
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6.4 Power spectral density of low-frequency force fluctuations

Now that we have found an approximation for B, ,, we can also consider the

power spectral density of the contact force fluctuations:

Cro(4)=5|Bra(a)] - (57)

Using (56), we obtain

_13E”Rh;(0.277+H)

2
2 .
a qmin

(58)

F,0

Note that this value does not depend on L, the rolling distance, and only contains

parameters related to roughness, contact geometry and material properties. From C;

we can find the RMS-value of the force fluctuations by integrating over some fre-

quency region of interest Ag =g, —¢,:

AF (Aq) = [TCF,O (q)dqu. (59)

90

Using (58) this evaluates to:

AF(Aq) =1.14E" R 2 (0.277+H) Ag (60)
a

Qmin
For a particular numerical example, let us assume that the low-frequeny plateau (be-
fore the resonance of the wheel) has a width of Ag =2 kHz and that the low-wave
cutoff of the roughness spectrum is situated at g, =30 kHz. In this case we have:

AF E'Rh; (0.277+H)
- 4a '

(61)

Using our typical parameters (see Table 1) this results in an RMS-force of 1N
in the plateau region. The fact that this value is so small highlights a significant limi-

tation of the present study: In real-world roughness (at least for rail surfaces) a purely

self-affine roughness spectrum with a well-defined cutoff ¢ ; is not usually ob-
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served. Instead, there is usually a “roll-off” ¢, below which the spectral density is

constant (white noise spectrum). The omission of this part of the spectrum has already
been mentioned earlier, but has particular significance for this part of the study, since
the relatively weak non-linear excitations that produce the low-frequency components
of the force from the high-frequency part of the roughness spectrum would be com-
pletely drowned out by the linear excitation from the low-frequency roughness spec-
trum, if it were included. To be more specific, let us assume that the direct contribu-
tion of the low-frequency roughness to low-frequency force fluctuations can be de-

scribed by the same equation (50) that we found for the high-frequency interactions:

ona _ AHEha’

Crly ~4mAE"d’q,;] (62)
qmin
The ratio between (58) and this direct contribution is:
Cry 1.3(0277+H) RR ?
ko 13( ) Rl o.s(ﬂj . (63)
Cro 4H a d

With the roughness value /4, =0.5wn used in our simulations, and an indentation

depth d =1mm , we find a ratio of the order of 10”". Despite the approximate charac-
ter of this calculation it is fairly obvious, in retrospect, that the nonlinear contribution
to low-frequency oscillations should be negligible in practice, and that the quantifica-
tions of this chapter are therefore of limited practical relevance (except as plausibility-

checks and physical interpretation for the numerical results).

7 Discussion

The aim of this study was to explore the use of the Method of Dimensionality
Reduction in contact mechanics for modeling of roughness-induced vibration in a rail-
wheel contact. To this end, a simple dynamical model of un-driven rolling (pure nor-
mal contact) with roughness described by a one-dimensional MDR profile was im-
plemented. A parameter-variation study was conducted to identify the overall shape of
the normal acceleration spectrum and its dependence on different roughness and sys-
tem parameters. For some parts of the spectrum semi-empirical approximations were
suggested. In the high-frequency part of the spectrum, it was found that a power-law

region (effectively a random fractal) directly corresponding to the roughness spectrum
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exists. This makes it possible, within the model assumptions, to predict normal accel-
eration given the properties of the rough surface, or to derive properties of the rough

surface by measuring normal acceleration.

However, in the estimation of the author, the results cannot be considered reliable
and applicable in practice. This is due to multiple problems with the chosen approach,
some of which were suspected from the beginning of the study, and some of which
were identified in its course. Of the assumptions and simplifications made in this
study, some are less contentious and are routinely used in other works as well, while
others represent points of significant uncertainty. In the view of the author the most

important problems are:

1. Applicability of the MDR in dynamic rough contacts
2. Omission of low-frequency components of the roughness

3. Quasistaticity and system dynamics

Each of these points also represents a possible direction of future work, and is dis-

cussed in some detail in the following sections.
7.1 Applicability of the MDR in dynamic rough contacts

As already mentioned in the section introducing the MDR, the method has been
applied to the rough normal contact of elastic bodies with great success. Although no
rigorous proof exists, extensive comparisons of the MDR with high-resolution
Boundary Element simulations have shown that the normal contact stiffness is de-
scribed nearly identically by both models. While this permits a certain amount of op-
timism for further applications of the MDR, the rolling contact is sufficiently different
from the normal contact to require separate verification. To gain confidence in rolling
simulations with the MDR, it would be necessary once more to compare them to
equivalent simulations using the Finite Element or Boundary Element methods. Un-
fortunately this would be a very computationally intensive undertaking (much more
so than in the normal contact case), because a single rolling simulation translates to
thousands of independent normal contact problems. Nonetheless, in the absence of a
breakthrough in the understanding of the MDR for rough contacts, this verification

procedure would be necessary before applying MDR rolling simulations in practice.

7.2 Omission of low-frequency components of the roughness
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In this study we used a purely fractal roughness model with a long-wave cut-off

q...» which was chosen so that the longest wavelength of the roughness equals the

contact radius: ¢_. =27/a. One of the reasons for this was that this is the only

roughness model that was verified for use in the MDR through comparison with 3D
BEM simulations [5]. A second reason was our (mostly arbitrary) focus on high-

frequency vibrations.

As already mentioned above, real rough surfaces are not necessarily accurately
described by the power spectral density, and even if they are, the spectrum is not nec-
essarily described by a simple power law. When we consider large system sizes, it is
often found that the roughness is not cut off abruptly at a characteristic wavelength,
but instead “rolls off” into a constant (white noise) spectrum. One consequence of this
is that in large systems (such as the one considered in this study), the roughness no
longer fully satisfies the criteria of self-similarity at all scales, which may be signifi-
cant. This is another question that is difficult to answer definitively without large-

scale 3D simulations.

The other consequence is that the roughness components in the roll-off region
contribute considerably to the RMS value of roughness, and are in fact mostly respon-
sible for the audible vibration in rail-wheel contacts [1] (unfortunately, this fact only
came to the attention of the author at a late point in the study). For this thesis in par-
ticular, this means that a large portion of the roughness spectrum was not modeled
and that the wheel may experience significant dynamics in the normal direction,
which would probably invalidate large parts of the analytical calculations in chapter 5.
However, there is no particular obstacle to repeating the present study with a differ-

ently-shaped roughness spectrum, if this direction of research is pursued further.
7.3 Quasistaticity and system dynamics

The third major problem, which (with hindsight) could have been identified
through simple plausibility checks before beginning with the main study, is that the
small scales of the roughness act on the wheel at frequencies (with realistic rolling
velocities) that are too high for the wheel to respond to as a single body. To legiti-
mately use rigid-body dynamics (as we do in this study), it is necessary that the short-

est relevant time scale is much larger than the time that sound waves take to traverse
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the body. If we assume, for example, that the size of the wheel is 1m, the rolling ve-

locity is 20m/s and the speed of sound in steel is 6km/s, we find that 7, >>0.166ms

and the corresponding minimal length scale is [ >>3.33mm . Unfortunately, this is

quite close to the actual contact radius in rail-wheel contacts. Therefore, the wave-
length that was chosen as the longest scale in the roughness model is also the shortest

allowable wavelength for rigid body dynamics at high rolling velocities.

The only argument why this may not entirely invalidate the present study is that,
as was pointed out previously, the wheel happens to be mostly confined to the plane
given the chosen roughness parameters, so that the calculation of contact force may be
decoupled from the dynamical simulation. For this reason, it may not be necessary to
satisfy the above conditions, but it still leaves open the question how the short-wave
force fluctuations propagate through the wheel, and whether the vibration spectrum

that they produce is similar to the one obtained in our simulations.

One possibility for mitigating the low-frequency limitation is to consider the
wheel not as a rigid body, but as an elastic system that is acted upon by a fluctuating
contact force. In such a case the relevant length scale would drop to the size of the
contact, which is about 1cm, and the minimal scale of the roughness would have the
order of 30pm. On the other hand, this would require representing the wheel itself
with finite elements or otherwise a suitable analytical model that accurately describes

vibrations.

If even smaller scales of the roughness are to be studied (e.g. at the sub-
micrometer scale) the above model will not suffice either, and we would be forced to
run FEM simulations at high temporal resolution, which is probably not feasible with
current computational capacities. Lacking that, it would also be possible to measure

acceleration spectra in actual rail wheels and compare them to MDR based models.

This concludes the analysis.
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Appendix A: Simulation parameters

Parameter Description Typical value
H Hurst Exponent 0.7
Qmin Long-wave roughness cut-off 2m/5mm
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Vo

Ax

RMS roughness +/(h?)

Axle load
Wheel mass
Wheel radius
Rolling velocity
Rolling distance
Spatial discretization step
Young’s modulus

Poisson’s ratio

0.5um

40kN

500kg

0.5m

10m/s

5m

S5um

210GPa

0.3
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_ 3AAHME JJISl PA3JIEJIA
«®UHAHCOBBIf MEHEJJKMEHT, PECYPCOD®®EKTUBHOCTD U

PECYPCOCBEPEXEHHE»
Crygnenry:
'pynna DPHuo
4AM41 Muxann ITonos
HucTuryT NdBT Kadenpa OBTM
YPOBeHb oﬁpasonaﬂnﬂ MarI/ICTpaTypa HanpaBﬂeHne MaHII/IHOCTpoeHI/Ie

Hcxoanblie 1aHHbIe K pa3aeny «PUHAHCOBBII MeHEI:KMEHT, pecypco3(p(peKTUBHOCTH U
pecypcocOepexeHne»:

1. Cmoumocmbv pecypcog Hayunozo uccaedoganus (HH): 185825,55 pyé.
MaAMepuUanbHO-MexXHUYECKUX, IHePeMUYEeCKUX,
DUHANHCOBLIX, UHPOPMAYUOHHBIX U YETIOBEUECKUX

2. Hopmbl u HOpmamuesl pacxo008anus pecypcos Hem

3. HC?leij’yEMa}Z cucmema Haﬂ02005]l09fC€Huﬂ, cmaeku
HAJl020e, omqumeHud, OMCKOHWZMPOGCIHM}Z u erdumoeanuﬂ

Hcnonvzyemess nanoe 006a804HOU  CMOUMOCHU
(HAC) co cmaskou 18%

IlepeyeHb BONPOCOB, MO/JIEKANIMX HCCIET0BAHNI0, TPOEKTHPOBAHUIO U Pa3padoTKe:

HTH

1 OlleHKa KOMMeEpUeCKoco U UHHO8AYUOHHO2O0 nOmMeryuala

8 (svicokuil ypogers)

2. Paspabomka ycmasa Hay4HO-MexXHU4ecKo20 npoeKxma

ILlenv  npoexma: paspabomka memooa O
PEKOHCMPYKYUU NOBEPXHOCHHBIX XAPAKMEPUCTIUK
U KOHMAKMHBIX CE0UCME HA OCHO8E OAHHbIX
AKYCIMUYECKOU IMUCCUU HA KILACCUYECKOM npumepe
Kowmakma Koneco-penvc. Oxcuddaemcs, u4mo no
DPE3VILIMAMAM PACUETNO8 MONCHO OYOem NOLyHUmb
mpubomexnuueckue Xapakmepucmuxu u
onpedenums  CE0UCMEA  WEPOXO8AMOCmU  HO
UBMEPEHHOU OUHAMUKe Kolecd

3AKYNnoK

3. Ilnanupoeanue npoyecca ynpasnenus HTU: cmpykmypa u
epagux nposederust, 0100Hcem, PUCKU U OP2AHUZAYUS

Cocmaenena uepapxuyecKast cmpykmypa
npogederus pabom no paspabomxe memooda

a¢hghexmusrocmu

4. Onpeoenenue pecypcHoi, pUHAHCOBOLL, IKOHOMUYECKOU

HepequL rpa(l)n'leCRoro MATEPHUAJIA (c mounvim ykazanuem 06a3amenbHbIX yepmedicell):
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8.1 IlpeanpoeKTHBIN aHAIN3

8.1.1 lloTeHuMaNbHBIE OTPEOUTENH Pe3yIbTATOB UCCICAOBAHUS
JIUTIIOMHBIN TPOEKT TMOCBSAIIECH CIEeNHAIBbHOW MpoOJieMe aKyCTUYECKOM

SMHUCCHM TIPU KAu€HUH, Pa3BUTbIE B HEW METOJbl MOTYT HalTH HaAaMHOro Oosee
HIMpOKOE INpuMeHeHue. PaboTra OCHOBaHa Ha NPUMEHEHUM METOAAa pEeAyKLHH
Pa3MepHOCTH AJI1 MOJICIMPOBAHUS TPEHUS M KOHTAKTHBIX CBOMCTB.

MexaHrKa KOHTaKTHBIX B3aUMOJICUCTBUHN U (DU3HKa TPEHUS UTPAIOT POJIb B
OECUUCIIEHHBIX TEXHOJIOTUYeCKUX mpoueccax. C OAHONM CTOPOHBI, HUMEKTCS
OPOAYKTHI, B KOTOPHIX TPHOOJIOTHS HIPaeT LIEHTPAIbHYIO POJb, KaK HalpuMeEp,
mHUHBI uiau TopMo3a. C Jpyroil CTOPOHBI, MPAaKTHUYECKH Be3le, TIe HUMEITCS
NOJIBUKHBIE YaCTU WM KOHTAaKThl MOTYT BO3HUKATh MPOOJEMBI C TPEHHUEM,
U3HOCOM, BO30yxaeHHeM KojeOanuil u T.1. C 3TON TOUYKHM 3peHHs], IPH Pa3BUTUU
WIM TPOU3BOACTBE IIOYTH JHOOOr0 KOMMEpPYECKOTO TPOAYKTa HMEETCA
NOTEHLMAIbHAsE MHOTPEOHOCTh IPHUMEHEHUS Pa3BUTBIX B  MarucTepCKou
U CCEPTALIMN METOJIOB.

Pa3paboTaHHbIi METOI MOKET ObITh 0€3 U3MEHEHH ITEPEHECEH TAKKE U HA
MOJICTIUPOBAHUE PEOJIOTUYECKUX CpeMd, Ui KOTOPbIX B HACTOSAIIEE BpEMsl HE
UMEETCS] HUKAKUX KOHKYPUPYIOIIUX TeXHOJoruil pacyeta. C MOMOIIBIO HETro
MOJKHO TaK)K€ MOJEJIMPOBATh (PEHOMEHbI CUCTEMHON IMHAMUKH TaKue KaK CKpPHIL,
nemidupoBaHue U T.1I.

[ToTenunanbHbIE oTpedUTEIN JAHHOTO MeToJa — 3TO,
BBICOKOTEXHOJIOTHYHBIE MTPOU3BOJICTBA HOBBIX YHHKAIbHBIX W3JIEIHH, TpeOyromue
peBapUTEIHLHOTO pacuera TEXHOJIOTHYECKUX yCIIOBUH; HAY4YHO-
UCCIIEIOBATEIbCKUE  KOJUIEKTUBBI, H3y4YalrollMe 3aJaud TpPEHHs, H3HOCa,

BO30YX/I€HHsI KOJIEOAHUH U T.1I.

8.1.2. AHaIM3 PHIHOYHOI'O MOTEHI[HAJIA
B mpouecce ananuza cieayeT ydecTb, YTO MNOTPEOHOCTh Pa3IUYHBIX

oTpaciei B TpHOOJOTMYECKHUX yCIIyrax CylleCTBEHHO oTiauyaeTcs. Tak, Hanmpumep,



MO>XHO OKHJIaTh, YTO TIPOWU3BOJUTEIb IIMH CYIICCTBEHHO OOJIBIIIEC 3aMHTEPECOBAH
B TUOOJIOTMYECKNX BOMPOCAaX, YeM OOJIBINION MPOU3BOAUTENH aBTOMOOMIEH. Kpome
TOTO, UMEIOTCSl OTPACIIM, B KOTOPBIX MHHOBALIMS UTPAET OMPEACISAIONIYI0 POJb U
Takue, B KOTOPBIX THIOJOTUYECKHE TMPOOJIEMbl BO3HHUKAIOT peako. YToOw
OTpa3uTh ATU Pa3IUYus, Mbl BBeNU , THOONOrmdeckuii Qakrop®. Tabmuma 8.1
COJIEPUT OLIEHEHHBI HAMHU TPUOOJOTUYECKHUI (PaKTOp AJIs pa3IudHbIX OTpaciien

BMCCTC C KPATKHUM 00O0CHOBaHHEM.

Ta6muma 8.1 — MynbTUIITUKATUBHBIN “‘Tpubosiorudeckuii hakTop”

0Tpaciib »TpHuOoJOornYeckuii | 000cHOBaHUe
¢akrop“
relativ normiert

IIUHBI 3 1.67 OY€eHb OOJIBIIION MOTEHIUAI OIITUMHU3AIIN B
00J1aCTH TTOJIMMEPOB

VH)KCHEPHBIE 1.5 0.83 KOHTAKT LIEPOXOBATHIX MIOBEPXHOCTEN HE

MJIACTMACCHI OIMCHIBACTCS] KOHKYPUPYIOIIUMU METOJAMH

MOKPBITHS 2 1.1 Kax noBepxHOCTHBIE CBOICTBA, TaK U
CXBaTbIBaHUE C CYOCTPaTOM SIBIISIIOTCA
TUTTUYHBIMU O00JIACTSMHU TPHIIOKEHUS METOIa
pPEeAYKIHU Pa3MEPHOCTH

KOMIIO3UTHI 0.5 0.28 MIPOLECCHI TPEHUS UTPAIOT NOAYHMHEHHYIO POJIb

00paboTKa MOJIMMEPOB 1.5 0.83 AQHAJIOTUYHO pa3/ieNly MHKCHEPHbIE
MJ1aCTMACChI

00paboTKa JaBICHUE 2 1.1 [[ITamMmoBKa CyIIECTBEHHO OMPEACIISIETCS
MpolieccaMy KOHTAaKTHOT'O B3aUMOJCHCTBUS U
TPEeHHUsI

nemMndepsb 2.5 1.39 B TON 00JaCTH KOHTAKTHI IEPOXOBATHIX
MOBEPXHOCTEN UTPAIOT ONPEAETSIONIYIO POJIb

ABTOMOOMJIECTPOCHHE 1 0.56 BO3MOKHOCTH BEJIMKH, HO OY€Hb PACCESIHHBI

CHUCTEMBI epeay 1.5 0.83 OUY€Hb MHOTO TPUOOIOTHUYECKUX TPOOIIEM, HO B
OCHOBHOM CO CMa3KO#

JKEJIE3HOAOPOKHBIN 1.5 0.83 XOpOLIME BO3MOXKHOCTH JUIsl IIPUIIOKEHUH B

TPAHCTIOPT 00JacTl ONTUMH3AIMN U MOHUTOPHHTA

JIBUTATEJIN 1.5 0.83 AQHAJIOTMYHO PA3JENy CUCTEMBI Iepeaady

TOPMO3a U CUEIJICHHE 3 1.67 OYEHb XOPOIINE BO3MOXKHOCTHU JJIsI
NPUJIOKEHUH (ONTUMU3ALIUIO, ITYM)

MOIIIUITHUKA 2.5 1.39 TUTIMYHAS 00JIACTH MPUIIOKEHUS JIJIsT KOHTAKTa
KaueHUsI

yCpeaHEeHHOE 3HaueHue | 1.8 1

8.1.3 AHAJIN3 KOHKYPEHTHBIX TEXHUYECKHUX PellleHU ¢ MO3UINHU
pecypco3pGeKTUBHOCTH U pecypcocOepe:keHust
AHanu3  KOHKYPEHTHBIX  TEXHMYECKMX  pEIIeHUH ¢  MO3UIHH

pecypcoddHEeKTUBHOCTH M PECYpPCOCOSpPEKEHHUST TO3BOJSET MPOBECTH OICHKY




CPaBHUTENBHOW  3(PPEKTUBHOCTH HAyYHOH  pa3pabOTKWM U ONPEIEIHUTH
HaIpaBIICHUS IS ¢ OyayIIero MOBbIIMICHUS.

Jlns TmpoBeneHWs JAHHOTO aHanmu3a ObUTM OTOOpaHBl KOHKYpPEHTHBIC
paszpabotku. Ilycts mom wmamekcom K1 Oymer cmocob, kak mpoBeneHUE psua
HATYpPHBIX OKCIIEPHUMEHTOB BKJIIOYAIOIINX TMOATOTOBKY W TPOBEACHHE BCEX
JIMArHOCTUK U U3MEpeHuit; ¢ uHaekcom K2 — monens criekanus Mukaena Oxmana,
YYUTHIBAIONIAS. ~ paclpelelieHue IIEepOXOBATOCTH, KOJIMYECTBA MW COCTaBa

CBA3YIOLICTO

Tabmuua 8.2 OneHovHas KapTa Jjis CpaBHEHUSI KOHKYPEHTHBIX TEXHUUYECKHX PELIeHUH

Bec BaLint Konkypenro-
Kputepuu onenku KpuTe- CIOCOOHOCTD
pust b b K K
1 2 4 5 7 8
TexHuuyeckue KpUTEPUN OLEHKHU pecypcodPPeKTUBHOCTH
1. IToBbIIEHNE TPOU3BOAUTEILHOCTH 0,2 4 3 0,8 0,6
TpyJa MOJIb30BaTEIL
2. IlpocTora metona 0,15 4 3 0.4 0,3
3. DOHEpPro’KOHOMUYHOCTb 0,05 3 2 0,15 0,1
4. Hage:XHOCTB 0,05 4 4 0,2 0,15
5. OKONOTHYHOCTh TEXHOJIOTHH B 0,1 3 3 0,3 0,3
Marepuaia
6. lllupora obmacTu mpuUMEHEHUS 0,15 4 3 0,4 0,3
MeToJ1a
JKOHOMHUYECKHE KPUTEPHH OlleHKH 3(PPeKTUBHOCTH
9. CTouMoCTh 0,15 3 3 0,45 0,45
10. ®uHaHcUpOBaHKE HAYYHOU 0,05 4 4 0,2 0,2
pa3paboTKu
Hroro 1 37 33 3,65 3,25

Hcnonb3oBaHWEe  MAaTEMAaTHYECKOTNO  MOJEJIUMPOBAHMS  IO3BOJSET  CBECTH
TEXHOT€HHYIO0 ONAaCHOCTh K MUHUMYMY. ODKCHEPUMEHT MPOBOAUTCS YUCIEHHO H
BCJIEICTBUE JTOrO, HE TPeOYyeT HUKAKOIO ChIPbs, TOJBKO SJIEKTPOIHEPTHUIO
makcuMyM B 450 Bt/gac. OpmnHako, MareMaTW4ecKUE MOJEIW TMOJBEPraroTcs
COMHEHHIO B JJOCTOBEPHOCTH IOJYyYEHHBIX pe3yapTaToB. M1 HEe Ha/0 3a0bIBaTh, YTO
UCIIOJIb3YEMbIE MATEMAaTUYECKUE 3aBUCHUMOCTH OBLIM BBIBEAECHBI 33J0JII0 HE

OJITHUM YUCHBIM — S3KCIICPUMCHTATOPOM.



[IpenmyiecTBo pa3pabOTKM JAHHOTO JUIUIOMHOIO IPOEKTAa COCTOMT Iiepen
OCTaJbHBIMA METOAMKAMHU B TOM, YTO MPEAJIOKEHHAs METOAMKA BBHIBOAUTCS Ha
OCHOBE ypaBHEHHMI MEXaHUKHU CIUIOUIHBIX Cpel U HE TpeOyeT «IIOATOHOYHBIX)
napameTpoB. B paboTe npoBoIMIIOCH TIIATEIBHOE TECTUPOBAHUE PEATU30BAHHOTO
METOAa, a TaKkKe IMPOBEICHO KAYeCTBEHHOE CpaBHEHHE pe3yJIbTaTOB C

9KCIICPUMCHTAJIbHBIMH JaHHBIMU.

8.1.4 FAST-ananu3

O6bektom FAST-ananuza sBisieTcsi pa3paboTaHHAsh METOJMKA, TJIaBHOU
(GyHKIMEN KOTOPOU SIBIAETCS ONMpPEEICHNUs MTOBEPXHOCTHBIX CBOMCTB M YCJIOBHM B
KOHTaKkTe MpU KayeHUM Kojeca Mo peinbcy. HeomHoponHocTs Tomorpadun
MOBEPXHOCTH KEJIE3HOAOPOKHBIX KOJEC U PENbCOB MPHUBOIUT NPU KAuE€HUU K
BO30YKIEHHIO KOJIeOaHUI B HOPMAJILHOM K ITOBEPXHOCTH KOHTAKTa HAIPABJICHUU.
CriekTp 3THX BO30YKJIEHHBIX KOJeOaHUI 3aBUCUT OT TONOTpaduu NOBEPXHOCTH U,
TakuM 00pa3oM, B TMPHUHIMIIE COAEPXKUT HUHPOPMALUMI0O OO0 OTHOCHUTEIbHOM
IIEpPOXOBATOCTU KOHTAKTUPYIOLIUX Tesl. MeToIuKa BKIIIOYAe PELIEHUE MPSIMOU U
oOpaTtHO#l 3amad. Pemenue oOpaTHOW 3amauv TO3BOJISIET OMPENEIUTH CBOWMCTBA
IIEPOXOBAaTOCTU 10 H3MEPEHHOW JAMHAMUKE KoJsieca (HampuMep, € IOMOIIbIO
aKceJepoMeTpoB). OTa HHPOpMALMs MOXKET ObITh HCIOJIb30BaHa ISl OLEHKU
TEKYIIEr0 COCTOSIHUS KOHTakTa KadeHus. PemeHue mpsiMoil 3agadum COCTOHUT B
OIpE/ICNICHUH CIIEKTpa KoJeOaHuil 10 CIEKTPY ILIEPOXOBATOCTH.

Knaccudukanus  QyHkIuii,  KOTOphIE  BBIMOJHSIOTCS ~ OOBEKTOM

WCCJIEIOBAHMUSI, IPUBEJICHA B Ta0nuIe 8.3.

Tabnuna 8.3 — Knaccudukarus GyHKIUHN, BBIMTOTHAEMBIX TPOrpaMMOi

Panr ¢pyaknmnm
HanmenoBanue Bremonasemas GyHkius
I'maBuast | OcHoBHas | BcmomorarensHast

[Iporpamma OnuceIBaeT Mpoece ¢ y4eTom X

OCHOBHEBIX 0COOEHHOCTEH
PacuerHas BrimosiaseT Bce HEOOXOAMMBIE X
JacThb pacyeTsl. 3aUChIBaeT

pEe3yJbTaThl B BUJIC YUCETL.




['padpuaeckas [TocTpoenue rpadgukoB 1Mo X
4acTh pe3ysibTaTaM pacyeToB

JIiss OlleHKHM 3HAYMMOCTH BBINIOJHAEMBIX OOBEKTOM (QYyHKIMA Oymem
WCIIOJIb30BAaTh METOJ PACCTAaHOBKH TPHUOPUTETOB. B OCHOBY maHHOTO MeTOna
MOJIO’KEHO PACYETHO-IKCIIEPTHOE OTPEIeIICHNE 3HAYMMOCTH KaXI0H (QyHKITUH.

CtpouM MaTpuIly CMEKHOCTH (Tabsuia 8.4)

Tabnuna 8.4 — Martpuia cMeXHOCTH

Oyukuus 1 | Oynkuus 2 | OyHkiua 3
OyHkug 1 | = < <
OyHkuus 2 | > = >
Oynkiud 3 | < < =

Ilpumeuanue: «<» — MeHee 3HAUUMAS; «=» — OJUHAKOBbIE (DYHKIHMH TIO

3HAYUMOCTH; ) — OoJiee 3HaUMMas.

[IpeoOpazyeM MaTpuily CMEXKHOCTH B MATPHUIly KOJIHMYECTBECHHBIX

COOTHOIICHUH QyHKIUH (Tabm. 8.5).

Tabnuna 8.5 — Marpuiia KOITU4EeCTBEHHBIX COOTHOLICHUH (PyHKIINM

Oyukuus | Pynkuus | Dynkuus | UTOI'O
1 2 3
Oyuknus 1 1 0,5 0,5 2
OyHKIMS 2 1,5 1 1,5 4
OyHKIUA 3 0,5 0,5 1 2

Ipumeuanue: 0,5 npu «<»; 1,5 npu «>»; 1 npu «=» | =8

OmnpeneneHre OTHOCUTENBHON 3HAYUMOCTH (PYHKIIMH MPOUCXOIUT MyTEM
JiesieHrs 6aia MoJyuYeHHOTO MO KaX10M (yHKIWHU, Ha OOIIyI0 CyMMYy 0ajioB 1O
BceM ¢GyHkumsaMm. Tak, anga ¢yHkuuu | OTHOCHTENbHAs 3HAYMMOCThH paBHaA 2/8 =

0,25; nna dyukmuun 2 — 4/8 = 0,5; nna ¢ynakuum 3 — 0,25. OOs3aTenbHbIM




YCIOBUEM SBIIACTCS TO, YTO cyMMa KO3(h(UIMEHTOB 3HAYUMOCTU BCEX (PYHKIIHIA

JIOJIKHA PaBHATHCA 1.

AHanu3 CTOMMOCTHU (I)YHKHI/Iﬁ, BBINOJIHAEMBIX OOBEKTOM HCCIICA0BaHUA,

Nponu3BOAUTCA C IIOMOIIBIO IMPUMCHCHHA HOPMATHBHOI'O MCTO/A.

CTOMMOCTH (PYHKIMI puBeieH B Tabaue 8.6.

Pacuer

Tabnuna 8.6 — OmnpeneneHne CTOUMOCTU (YHKIMH, BBIIOJHSIEMBIX OOBEKTOM

HUCCIJICA0OBAHUA
g . < -
o = - A O = )
= o 8| 3 S = a > S 5
amy m > S = = Q . = (o8 = )
2 = 5 wm| & E ) g = S o =
& E 8 E| & § 5 S S B S S| £
9 5 £ = 2 ) S = 3 g S| 8 =
5 8 I = & S o
= 7 E 2 S > o S o 5 = 5 a5 &
S s I B = S SO 5 |8 5
= ¢ &=| = = Iy U & S O
T = ] = 5] Q
) o
[Iporpamma OnuceIBaer - 10 — 60 60
MIPOIIECC PE3KH C
y4eToM
0COOEHHOCTEN
TEXHOJIOTHH
PacueTHas Brmonnser Bce - 0,5 100 1200
JacThb HEOOXOIMMEIE
pacyeTsl.
[Tonyuaer
pe3yNbTaT B BUC
MAacCHBa YHCEIl.
I'padpuaecka Crpout rpaduxu - 1 100 2000
s 9aCTh 10 YHCJIEHHBIM
pacueram
>=3260

B nanpHelimeM mnyTeM CYMMHpPOBAHHS 3aTpaT MO KaXI0H (QyHKIHUH

OIIpCACIIACTCA 061ua;1 CTOHMMOCTD K&)I(I[Oﬁ N3 HHX.

Hannas uHdopmanus

UCIIOJIB3YETCSl ISl  TOCTPOCHUS  (DYHKIIMOHATBLHO-CTOMMOCTHOW — JUarpaMMbl

(puc.8.1) u ee ananm3za.
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Pucynox 8.1 — @yHKIIMOHATBEHO-CTOMMOCTHAS AUarpaMmma

8.1.5 Imarpamma Ucukasa

Ha pucynke 8.2 npencrapieHa guarpaMMa Mpu4IuHbI-ClIeACcTBUS VIcuKaBbl.

nepconen 0000y GoaaHue nepcoHanLHL il KoMALIomep
Hedocmamok npozpaMMHoe0
elel-IHpl- BT
UCNofHMeN b
Pykogodumens
Hedacmamak HU3kas npouseodumensHocme NTK
KBanu UK ayuIY
BLICOKEA 3820y XEHHO2CM b buray
- HeﬂoppeﬂmHocmb

mecmupoeahue

npozpamMmb

\ HokOnReHye olLGaE Memaoda

Mamemamuqeckan NOGM aHoa kS

M ayde AU DU epam Yok

YIROLWEHUE HERQM QDRI
AsReRul v ahghekmos Hedoc & oX BRHO0M UL

Menmodsl

Pucynok 8.2 — [IpuunHHO-cnecTBEHHAs 1uarpamMma VcrukaBbl

8.1.6 SWOT-ananu3

XoTs pa3paboTaHHBINA TOAXO K OMPEIEICHUIO TTOBEPXHOCTHBIX CBOMCTB U
YCIOBUH Ha KOHTaKT€ B Marucrepckas paboTe TOCBAIICH Y3KOH Ipobiieme
aKyCTUYECKON AMHUCCHM TPH KAuCHUH, Pa3BUThIE B HEM METOJbl MOTYT HaWTH

HaMHOTo Oo0Jjiee MHUpoKoe nmpuMeHeHue. Pabora ocHOBaHa Ha MPUMEHEHUU METO/a



PEAYKLMH PAa3MEPHOCTH JUIsI MOJAEIUPOBAHUS TPEHUS M KOHTAKTHBIX CBOWCTB.
Oco00 OTMETHM, YTO METOJl MOKET OBITh 0€3 U3MEHEHUI MEepEeHEeCceH TaKKe U Ha
MOJEIUPOBAHUE PEOJIOTUYECKUX CpEN, Il KOTOPHIX B HACTOSIIEE BpPEMS HE
UMEETCs] HHMKAaKWX KOHKYPUPYIOLIMX TEXHOJOTHM pacuera. Pa3zpaboTaHHBIM

MCTOJAOM MOXXHO TaKXXC MOJICIMPOBATH (I)CHOMCHBI CHUCTEMHOM JAVMHAMHUKHU TaKHC

KaK CKpHII, IeMII(PUPOBAHKE U T..

Ho, HEe cMOTpst Ha Bce MpeUMyIecTBa MPOCKTA, €CTh U CJIa0ble CTOPOHBHI.

Ha panHOM »sTame He 40 KOHIA p3.3pa60TaHLI OIITUMAJIBHBIC PCIKHUMBI OLCHKH,

HCCJICJOBAHbI HC BCC TCXHOJOTHYCCKHUC IMTapaMCTPBhI.

Tabmuua 8.7 — Matpuria SWOT

CWwibHbIEe CTOPOHBI HAYYHO-
HCCJIe0BATEIHLCKOI0
NMpoeKTa:

C1. Bo3sMOXHOCTB
BapbUPOBATH
TEXHOJIOTHYECKHE (aKTOPbI
C2. Bricokas
MIPOU3BOIUTEILHOCTD

C3. CHmxeHme
ce0eCTOMMOCTH

Cia0ble CTOPOHBI HAY4YHO-
HCCJIeJ0BATEIHCKOT0
NMpPoOEeKTAa:

Cnl. OrcyrcTBHE Y
MOTEHIIUAJIbHBIX
notpeduTenei
KBaJM(PHUIIUPOBAHHBIX KaJIPOB
1o pabore ¢ HayYHOI
pazpaboTkoit
Cn2.BeposiTHOCTD MOTy4eHUS
HE BEPHBIX OIICHOK

Bo3moxHocTH:

B1. Ucnonw3oBanue
WHHOBAIMOHHOMN
uHdpactpykrypsl TITY u TYD
(T.€. UICTIOJIB30BAHUE
HOBEWILIETO HAYYHOT O
000pyT0BaHMs )

B2. Pabora BrInioTHEHA B
Poccun u I'epmanun

B3. Bo3MoXHOCTb BHEIpEHUS
TEXHOJIOTHH B IPOU3BOJICTBO
B4. Yuactue B rpanrax (kak
Poccuiickux, Tak u
3apyOeKHBIX )

B5. Tak kak rpymnmna umeer
3HAHMS ¥ OTBIT B JAHHOM
HaIlpaBJICHUH, TO €CITU
BO3MOKHOCTh PAaCIIUPUTH

CI1BI - ynydmienue
TEXHOJIOTUH B IIPOU3BOJICTBE
C2B2 — no3BoJIAIOT NIpU
HAJIMYUU CIpoca OBICTPO
HapacTUTb 00BEMBI

B1Cn4 —noBeiiee
o0opyioBaHuE, MTO3BOJIUT HA
PaHHHX CTAIMIX
UCCJICIOBAaHKE, BBISIBUTH U
NPEJIOTBPATUTH MOSBICHUEC
OIMO0K




00J1acTh MMPUMCHCHUA MCTOAa

Yrpossi: C1Y1-B03MOXKHOCTD -
V1. BeposITHOCTB MOSIBIICHUST | paciupeHus: 00JacTu
0oJiee BHITOJHBIX MPUMEHEHHS] METOIUKH
MpeJIOKEHU I Ha PhIHKE, TAK | OLIEHOK.

KaK B JIaHHOM HaIlpaBJIeHHE
BeJICTCSI OOJIBIIIOE KOJTHYECTBO
HCCIICIOBAHU .

8.1.7 OHEHKA 'OTOBHOCTHU ITPOEKTA K KOMMEPIHHUAJIN3AIIUN

CornacHo Tabnune 8.8 BBIABWIOCH, YTO OLEHOYHBbIE OaJIbl TOTOBHOCTU
HAay4YHOTO MpPOEKTA K KOMMEpPLUHAIN3ALWA W YPOBEHb HMEIOLIUXCSA 3HAHUU Y
pa3paboTurKa JOCTATOYHO BBICOKH. I[lepCreKTHMBHOCTH MaHHOTO TMPOEKTa, K

COXKAJICHUIO, ABJIACTCA cpe;:[Heﬁ.

Ta6nnua 8.8 bnankx OYEHKU cmenenu conoeHoCmu Hay1yHo2co npoekma K Kommepuyuaiuzayuu

No Crenenb YpoBeHb
n/n HaumenoBanue pOpabOTaHHOCTH |MMEIOIIUXCS 3HAHUH
HAyYHOTO MPOEKTa y pazpaboTunka

1. |OnpeneneH uMeOIIMICS HAYYHO- 4 4
TEXHUYECKUH 3a1€ell

2. |OmnpeneneHsl NEpCIEKTUBHBIE HAIIPABIICHUS 3 3
KOMMEpILHATU3alUuU HayYHO-TEXHUYECKOTO
3azena

3. |OnpeneneHsl OTpaciav U TEXHOJIOTHUU 3 3
(TOBapbl, YCIYTrH) Ul IPEATIOKEHUS Ha
pBIHKE

4. |Onpenenena ToBapHas ¢popmMa HAyqHO- 2 2
TEXHUYECKOTO 3a/1eJ1a /Ui NPEeCTaBICHUs Ha
PBIHOK

5. |OnpeneneHsl aBTOPBI U OCYILIECTBIIEHA OXpa- 2 2
Ha UX IPaB

6. |IIpoBeneHa olleHKA CTOMMOCTH 1 1
MHTEJJICKTYaJIbHOM COOCTBEHHOCTH

7. | IIpoBeneHbl MapKETUHIOBBIE UCCIEA0BAHUSA 1 2
PBIHKOB COBITA

8. | Pa3zpaboran OusHec-1iaH 1 1
KOMMEPIHATN3aIH HAayYHOH pa3paboTKu

9. | Onpenenensl MyTH NPOABUKEHUS HAYYHOU 2 2
pa3paboOTKH Ha PHIHOK

10. | PaspaboTtana crparerus (dpopma) 2 1
peanu3anii Hay4yHoH pa3paboTKH

11. | ITpopaboTaHbl BOMPOCH MEXTYHAPOIHOTO 3 3




COTPYJIHUYECTBA U BHIXO/1a HA 3apyOEKHBII
PBIHOK

12. | ITpopaboTaHbl BOMPOCHI HCTIOIB30BaHUS

ycayr MHQPaCTPYKTYPHI MOIICPIKKH,
IIOJIYYEHUS JIBTOT

13.| IIpopaboTanbl BOPOCH (PMHAHCUPOBAHHS
KOMMEpIHAIN3aliy HAyqYHOH pa3paboTku

14.| Umeercs komaHaa sl KOMMEpIHaIU3aluu
Hay4YHOH pa3pabOTKH

15. | IIpopaboTan MexaHU3M peaTu3auu
HAy4YHOI'0 MPOEKTA

NTOI'O BAJJIOB

33

32

8.1.8 MeToapl KOMMEPHHAJU3ANMUN Pe3YyJbTATOB HAYYHO-TEXHHYECKOI0

HCCJIeaJ0BaHUA

Beigenstor  cienyromme  METOJbI

pazpaboToK:

1. TOpFOBJI?I MNaTCHTHBIMU JIMIICH3UAMMU.

2. Ilepenaua Hoy-Xxay.
3. UHXUHUPUHT.

4. ®paHyaii3uHT.

KOMMCEpHIain3alun

5. Opranuzanusi COOCTBEHHOTO MPEITPUSITHSI.

Hay4HbIX

6. llepemaua WHTEIUIEKTyaJIbHOH COOCTBEHHOCTH B YCTABHOW KaIldTaj

NPEANPUATHSA.

7. Opranu3zanys COBMECTHOTO MPEANPUSITHS.

8. Opranu3aiusi COBMECTHBIX TPEANPUATHIN.

HpO&HaJ'II/ISI/IPOBaB NEPCUNCIICHHBIC KOMMCpHOHUAIW3alliy, IIPUXOAUM K

BBIBOJY, YTO HWHXUHUPHUHI IIOMOKCT HauoOoee YCIICIIHOMY IIPOABHIKCHUIO

pa3pabaTbIBaeMOro MPOEKTA.

Pa3pa60TaHHa${ MCTOAUKA ABJIACTCA AOCTATOYHO CJIOKHBIM IIPOAYKTOM H

TpeOyeT KBaJU(pUIMPOBAHHOTO TNepcoHana st pabotel ¢ Heill. Kpome Toro,

HEOOXOMMBI HABBIKK OOpAOOTKM JAHHBIX W 3HAHUE CAMOTO TEXHOJOTUYECKOTO

Imponecca.




[ToTeHnuanbHOMY TMOKYIIATETI0 HE BBITOJHO TOKYMaTh MAaTEHT HAa 3TOT
MPOIYKT ¥ 00y4aTh CBOMX PaOOTHUKOB, MOITOMY OYyJIE€T JOCTATOYHO 3aKIIFOUYUTH

AOT'OBOP MHXXMHUPHUHI'A.

8.2. Unuumanusa npoexkra
8.2.1 Iesiu u pe3yJIbTaThI IPOEKTA

CTOpOoHBI, 3aMHTEPECOBAHHBIE B MOJYUYCHUH PE3ysibTaTa, MPEACTABICHHbIC
B Ta0uIe 8.9.

Tabnuua 8.9 — 3anHTEepecoBaHHbBIE CTOPOHBI TPOEKTA

3anHTEepecOBaHHbIE CTOPOHBI MPoeKkTa | OQKUIaHNS 3aHHTEPECOBAHHBIX CTOPOH
YHUBEpCcUTET Hannune HUOKP
CryneHt 3anmTa MarucTepcKoil JuccepTalum.
[Tonmy4yenue BeicIero o0pa3oBaHUs
[IpeanpusiTus, 3aHUMarOIINECs CokpallleHre BpeMEeHH Ha MPOU3BOJICTBO.
HM3rOTOBJIEHUEM JeTalIe 1 MEXaHU3MOB Bonbmas mpon3BOAUTENEHOCTS.
CHmKeHHne ce0eCTOMMOCTHU
[ToTpeburtenu Huzkast cTOUMOCTE U3AEINH 110
CpPaBHEHUIO, C U3ACIIUSIMH MOTy4YEHHBIMU
CTaHJAPTHBIMUA METOJAMHU.
TI'ocynapctBo B03MOKHOCTH UMITIOPTO3aMELLICHUE

B Ta6mune 8.10 npencrabiiena nHGoOpMaIys 0 UEPAPXUU TICJICH POEKTa 1
KPUTEPUSIX TOCTHXKEHHUS 1ICJICH.

Ta6mumna 8.10 - Llenu u pe3ynprat npoekra

esn nmpoexra: Pa3paboTka MeTonuku

Osxuaembie pe3yiabTaThl
HccnenoBanue 3aBUCUMOCTH pe3yiIbTaTa OT MapaMeTPOB MOJEIH
NPOEKTA:

Kpurepun NPUEMKH
AZIEKBaTHOCTb MOJTy4aeMbIX JaHHBIX
pe3y/bTaTa NpoeKTa:

TpebdoBanmue:

TecTtupoBaHue HE TOHKHO JaBaTh COOCB

TpeGoBanus K
IIpaBmiibHas MaTeMaTHUECKas TIOCTaHOBKA

pe3yJabTaTy npoeKTa:

Harnsgasie rpaduku u quarpaMmmsl

Bo3M0XHOCTh U3MEHEHUS HauaIbHBIX JaHHBIX




8.2.2 Opranu3anuoHHasi CTPYKTypPa NPOeKTa

Ha pgannoMm sTame pabGoThl MPUHATO PEIIEHHE O COCTaBe pabodYeil rpyIIbl

JAaHHOI'O IPOCKTA, ONPCACICHLI POJIM KaXXAO0I'o y4aCTHHKA B JAaHHOM IIPOCKTEC, a

TAKIKC IIPOITMCAHBI (I)YHKI_[I/II/I, BBIIIOJIHACMBIC KaKJbIM M3 YYACTHHUKOB W HX

TpyJ03aTpaThl B MpoeKkTe. ITa nHdopmalus npeacraBieHa B Tadnuie 5.7.

Tabnuua 8.11. - PaGouas rpynmna npoekra

Ne D®UO, Poanb B npoexTe DOyHKIUHA Tpyno3arparsl,
1/ | OCHOBHOE MeCTO yac.
padoThl,
M0JZKHOCTh
1 Ilcaxbe Cepreit 3axazuux npoexma YKpyNHEHHBIN aHaIu3 450
I'puropreBuy MPOEKTOB 1O
TITY (Poccus) MOKa3aTeJsIM CPOKOB,
OCBOEHHUIO 3aTpaT U
(hMHAHCUPOBAHUIO
2 M. Zehn Pyxosooumens OtBeyaer 3a 1024
TYb (I'epmanus) NpPOEKTa peanu3anuio IpoeKTa,
KOOpIUHUPYET
JESITeNIbHOCTD
Y4aCTHUKOB ITPOEKTa
3 [TonoB Muxaun Hcnonnumens no OTtBeuaer 3a paboTty 1624
npoexkmy o0opynoBaHus,
BBITIOJIHACT
TEXHOJIOTUYECCKUEC
paboThI

OFpaHI/I‘IGHI/Iﬂ N JOIIYIONCHUA ITPOCKTA

Ta6muma 8.12 OrpaHudeHus IpoeKTa

dakrop

OrpanuveHust/ 1onymeHust

3.1. BromxeT npoekTa

3.1.1. Ucrounnk puHAHCHMpPOBAHMS

TYB, U®IIM CO PAH

3.2. Cpoku npoekra:

3.2.1. Jlata yTBep>K1€HUs IJIaHA YIIPABICHUS 25.10.2015
MIPOCKTOM
3.2.2. Jlata 3aBepiiieHus MPOEKTa 02.06.2016




8.3 IlnanupoBaHue ynpasJjeHUs1 HAYYHO-TEXHUYECKHUM MPOEKTOM

8.3.1. Uepapxuueckasi CTpyKTypa padoT npoexkra

— MpoeKTOM

— [natmposaHus

MporpaMMHLIA NPpo OYKT]|

TpeG HAR K
npoaykTy

¥Ynpasnewme

Moapobros
NpOEKTHPORAHHE

WHTErpamnn W
TeECTHpOBAHWE

Paspabotka

Ppozpammyoe
ofbecnevernue

MpozpammHoe
obecneverue

ApozparmHos
obecnevenue

Mpozpanmroe
obecnesenue

Mone3oBarte NbG an
ACKYMEHTELNA

CopewaHma

MNonbaoBarentcran
ACKY MEHTAUKA

Mone30BaTENLC Kan
Ay MEHTaUnA

ManeaoeaTentcHian
AGKYMEHT AR

Mate prnanel AnA
obwen
MPOrpaMME

AnmMrHncTpUpoRa-
HIE

MaTtepwanm ana
abluen nporpamMmMs!

Marepuanbl gns
— obywarwen
MpOTpARME!

MWarepwans onA
o0yyawen
Nporpakiss!

Pucynox 8.3 - Mepapxuueckas CTpyKTypa MpoBeJeHUs padOT MPOEKTa

8.3.2 KoHTpoJibHBIE COOBITHS MPOEKTA

KmroueBbie cOOBITHS ITPOCKTA, UX AAaThl U PE3YyJIbTATbl, KOTOPLIC ObLTIH IMOJIYYCHBI

110 COCTOSTHUIO Ha T JaThl 0OTOOpakeHbI B Tadymiie §.13.

Ta6nuna 8.13 — KoHTpoJibHBIE COOBITHS MTPOCKTA

Ne
n/n

KonTtpoabsHoe
co0bITHE

Jlara

Pe3syabrar
(moaTBepPKIAOIIMI JOKYMEHT)

Jloknax Ha MEKIyHapOIHOMU
KOH(epeHIun
«Hepapxuuecku
OpPraHU30BaHHbBIE CUCTEMBbI
YKUBOUM M HEKUBOU MPUPOIIBI»

10.09.2015

JIMIIJIOM TpeThel CTeTeHH, MyOoIuKanus B
MaTepHuanax KoHpepeHIIMH U COOpHUKE
TE3UCOB

Jloknan Ha nepBou
Bcepoccuiickoil HayuHOM
KOH(EPEHIIMH MOJIOABIX
YUEHBIX C MEXTYHAPOIHBIM
ydacTtuem, 21-25 okTsaops
2015 r., Tomck

21.10.2015

[TyGnukanus B Matepuaiax KoH(pepeHInu

[T MexayHapoiHasi HAy4HO-

27.03.2016

Ceprudukar yuacTHUKa, TyOJIUKAIUS B




TeXHUYecKast KoH(epeHIus KypHaie
MOJIOABIX YUEHBIX,

aCIIUPAHTOB U CTYJICHTOB
«BBICOKHE TEXHOIOTUH B

COBPEMEHHOI HayKe U

TEXHHUKE»
4 3anuTa JUImIOMHOM 17.06.2016 | IuruioM o IpUCYKIACHUN MAaruCTEPCKON
JUccepTaluu CTETIeHU

8.3.3. ILi1an nmpoekTa

JluneinbIit rpaduK npeacTaBiseTcss B Buae Ta0auibl (Tadm. 8.14).

Ta6nuna 8.14 - KanennapHslil 11aH IPOeKTa

Cocras
JUIHTENbHOCTS Jara ara YYaCTHHUKOB
HasBanue - > | Hagasa okoH4anwus | (PO
g pabor pabort OTBETCTBEHHBIX

WCTIOTHUTEIEH )
ITocTanoBka nenei u 3aaad4, 1 5.09.2015 | 5.09.2015 | HP
MOJTy4YE€HUE UCXOJHBIX JaHHBIX
CocraBnenue u yrBepxkaenue T3 | 3 6.09.2015 | 10.09.2015 | HP, M
[Touck u u3yuenue uuopmanuu | 30 16.09.2015 | 15.10.2015 | HP, M
1o TeMe
Pa3zpabotka kaneHgapHoro miaHa | 3 16.10.2015 | 18.10.2015 | HP, M
OO0cyxeHue TuTepaTypsl 3 22.10.2015 | 25.10.2015 | HP, M
ITocTpoeHne MareMaTU4ECKOU 15 20.09.2015 | 5.10.2015 | HP, M
MOJIEITH
N3y4yenne MeTo10B pereHus 30 6.10.2015 | 06.11.2015 | M
Pemenue npsimoii 3agauu 13 07.11.2015 | 20.11.2015 | M
Pemenue obpatHoit 3amaun 21 21.11.2015 | 11.12.2015 | M
AHanu3 pe3yabTaToB 32 12.12.2015 | 13.01.2016 | M
WCCJICIOBAHHUS
Hanucanue crareii u yyactue B 61 2.12.2015 | 1.02.2016 | M, HP
KOH(epeHIHUAX
Odopminenue pacueTHo- 90 2.02.216 2.05.2016 | M
MOSICHUTEIBbHOM 3aITUCKU




Odopmrnenue rpaduueckoro 10 12.05.2016 | 30.05.2016 | M
marepuaia

ITonsenenne NTOron 4 2.06.2016 | 5.06.2016 | M, HP

NToro: 312

8.3.4 BroxxeT HAYYHOT 0 MCCJIEIOBAHUSA

[Ipu muranwpoBaHMM OOJKETA HAYYHOTO HWCCIACAOBAHUS JODKHO OBITH
00ecCrevYeHo TIOJHOE W JIOCTOBEPHOE OTPAKEHHE BCEX BHOB IUIAHUPYEMBIX
pPacxoJ0B, HEOOXOIUMBIX JUIsI €T0 BBIMOJHEHUS. PacyeT CMETHOW CTOMMOCTH Ha
BBITIOJTHEHHUE JTAaHHOW Pa3paOOTKH MPOU3BOAUTCS IO CICAYIOIINM CTAaThsIM 3aTpar:
— MaTepHuabl ¥ MOKYITHBIC U3/IEIHS,
— OCHOBHas 3apa0oTHasl 1J1aTa;
— pacxoJbl Ha DIIEKTPOIHEPTHIO;
— aMOPTHU3AITMOHHBIC OTUYUCIICHUS;

— IIpOYHrC pacxoabl.

Pacuyer 3aTpaT Ha MaTepHabl

K naHHO# cTaThe pacxoA0B OTHOCUTCS CTOMMOCTh MAaTEPUAJIOB, NOKYITHBIX
u3Jenuid, nonypabpuKaToB U JPYTrUX MaT€pPHAIbHBIX LIEHHOCTEH, pacxomayeMbIX
HEMOCPEJICTBEHHO B Mpollecce BIMOIHEHUs padoT. [leHa MaTepuanbHbIX pecypcoB

ONpEeIEsAeTCs IO COOTBETCTBYIOLIMM LIEHHUKAaM U MpUBeieHa B Tadnuie 8.15.

Tabnuna 8.15 — 3arpaTsl Ha MOJEIUPOBAHKE MTPOIIECCa KUCIOPOIHON PE3KU

HaumeHnoBanue KoumnuectBo | Ilena 3a wr., pyd. | Cymma, pyo.
Terpaap obmast, 69 1 . 70 70

JIMCTOB

Pyuka mapukoBas S . 50 250
Kapanpaiu 2 IIT. 40 80
aBTOMATUYECKUI

CrepHu 1151 KapaHjama | 3 yIn. 25 75




bymara jist npunTepa 2 ym. 250 500
dbopmara A4

3arnpaBka KapTpuKa 2 pa3a 300 600

HToro: 1575

B o0meMm, pacxoasl Ha BcriomMoraTelbHbIE MaTepHalibl cocTaBuiu 1575
pyOeii.

Pacuyer 0oCHOBHOI 3apad0THOI MJIATHI

JlanHast cTaThsl pPACXOJOB BKJIIOYACT 3apabOTHYIO IUIaTy HAay4HOTO
PYKOBOJAMTEINS U MarucTpaHTa, a TakKe IMpeMHuH, Bxonsiue B QoHI 3apaboTHOM
wiatel. Pacdyer OCHOBHOM 3apabOTHON TIJIaThl  BBIMIOJIHSAETCS HA OCHOBE
TPYJOEMKOCTH BBIIIOJIHEHHSI Ka)KJOr0 3Tala W BEJIMYUMHBI MECSYHOIO OKJIaza
VICTIOJTHUTETIS.
CpennenHeBHas 3apadOTHAs IJIaTa PACCUUTHIBACTCA 1O hOpMyJIe:

Mecaunvii  oxnao
25,17 Owneu

Jlnesnas 3/ niama =

Pacuersl 3aTpaT Ha OCHOBHYIO 3apabOTHYIO IUIaTy NMpHUBEAEHHI B Tabmuie 8.16.
[Ipu pacyere yuuThIBasioch, 4To B romy 302 pabGouux AHS M, CIE€IOBATENbHO, B
mecsiie 25,17 pabGouux aHs. 3aTpaThl BPEMEHHU Ha BBINOJHEHUE PalbOTHI IO
KaXJI0OMy HCHOJHUTEN0 Opanuch u3 Tabmunbl 8.11. Takke Obul HpUHAT BO
BHUMaHue Ko3(puuneHT, yauteiBaroumii koagduiueHT mno npemusim Kyp = 0,1 u

paiionnbiii koapbunmenT Kpx = 0,3 (K=1+K;;p+Kpx=1,4).

Tabnuua 8.16 — 3aTpaThl Ha OCHOBHYIO 3apabOTHYIO IJIATY

CpennenHeBHa | 3aTparbl DoHj
Oxuaan,
HUcnonnurenan sl CTABKa, BpeMeHH, Ko puumnent 3/maThl,
pyo./mec.
pyo./neHb JAHU pYyo.
HP 10000 397,3 115 1,4 63965,3
M 2250 89,39 385 1.4 48181,2
Hroro: 112146,5




Takum oOpa3om, 3aTpaTbl Ha OCHOBHYIO 3apaOOTHYIO IUIaTy COCTaBWIIU
Cocr=112146,5 py0.
Pacuer oTunc/IeHHi OT 3apadOTHOM MJIATHI

3aTpaThl MO O3TOW CTaTh€ COCTABISIOT OTYHUCJIEHUS 1O E€IUHOMY
cormansHoMy Hasory (ECH).
OTuuciienus 1o 3apab0THOM TIaTe ONPEAeIsaIOTCs Mo ciaeayrolei Gpopmyie:

Ccou =K coy Cocn

rne Kcon — KOAQQUIMEHT, YUUTHIBAIOIIMN pa3Mep OTYUCIEHUH U3 3apabOTHOM
wiatel. JlanHbii koaddunuent cocraiser 13% oT 3arpar Ha 3apabOTHYIO IUIATY
Y BKJIIOYAET B ceOsL:

— OTYHCIIEHUS! B ICHCHOHHBIN (DOHT;

— Ha COLIMAIbHOE CTPAaXxOBaHUE;

— Ha METUIIMHCKOE CTPaxOBaHHE.

WTtak, oTuncienus u3 3apabOTHOH ATl COCTABHIIU:

Cepy =0,13-112146,5=14579 pyo.

Pacuer 3aTpaT Ha 3J1€KTPOIHEPTUIO

JIaHHBIN BUJ PacXoJIOB BKIIIOYACT B CeOs 3aTpaThl Ha JICKTPOIHEPTHUIO TIPU
paboTe 0o0OpymOBaHUS a TaKXkKe 3aTpaThl HA AJICKTPOIHEPTHIO, MOTPAUYCHHYIO Ha
OCBEIIlCHWE. 3aTpaThl Ha 3JICKTPOIHEPTHI0 TpH pabore 000pyHAOBaHUS IS
TEXHOJIOTHUCCKHX IIeJIeH PacCUYMTHIBAIOTCS 110 PopMyJIe:

Oos = Pog L5 tog

re Do — 3aTPaThl HAa DJIEKTPOIHEPTHUIO, TOTPEOIsIEMyI0 000py1I0BaHNEM, PYO.;
Pos — MonIHOCTB, TOTpedIsieMast 00opyaoBaHueM, KBT;
1[5 — Tapudnas nena 3a 1 kBr-uac, Il = 1,8 py6/kBt-uac;
fos — BpeMsi pabOThI 000PYT0BaHMUSI, Yac.

Bpemsi paGoTel 060pyn0BaHUS BBIYHMCISIETCS HA OCHOBE JAHHBIX AN Tpy
tabymiel 8.11 s MarucTpa U3 pacdera, u4To MPOJIOJDKUTEIIBHOCTh pabodero JTHS
paBHa 6 4acoB.

MomHocTs, noTpedisiemast 000py0BaHUEM, ONIpEAesieTcs o Gopmyie:



Pos = Pycros - Kc
rie Pycros — YCTaHOBIEHHAS MOIITHOCTh 000py10BaHus, KBT;
K¢ — xoadduimeHT cnpoca, 3aBUCAIIUN OT KOJUYECTBA, 3arpy3Kd TPy
AIEKTPONPUEMHHUKOB.
JJ1s TeXHOJIOTHYecKoro o00pyAoBaHus Mainoi MomHocTd Kc = 1.
3aTpaThl Ha JIEKTPOIHEPTHUIO IS TEXHOJIOTUUECKUX 1eJiel IPUBEICHBI B TaOIHUIIE
8.17.

Tabnuna 8.17 — 3atpatrhl Ha AIEKTPOIHEPTUIO SIS TEXHOJOTMYECKUX TeTen

Bpems padoThI
HaunmenoBaHue 0GODVIOBANMS 1 IHoTpebasemas 3aTpaTe D .
oGopynoBanusi qacp}’ll %% | mommocth Pop, KBT P 05> PYO-
[IepconanbHBIM 1524 03 4572
KOMIIBIOTEP
Hroro: 4572

[Ipumep pacueta 3aTpar Ha BJIEKTPOIHEPTUIO JJIsi OCBEIICHUS MOMEUIEHUS, TJIe
OCYIIECTBIISIIIOCH BBITTOTHEHHUE MPOEKTA, PACCUUTHIBACTCS 110 (hopMyIIe:
Soc = Poc L5 toc

rie Doc — 3aTpaThl HAa DJIEKTPOIHEPTHUIO TSI OCBEIIECHUS, PYO.;

toc — BpeMsi pabOThl OCBETUTEIBHBIX MPUOOPOB, Yac;

Poc — MolHOCTE, oTpebdiisiemMasi OCBETUTENIbHBIMU MTpubopamu, KBT.
B pasnene «ConuanbHasi OTBETCTBEHHOCTB) pPAacCUMTaHA MOIIHOCTh YCTaHOBKH.
Ona paBHa Py=0,96 xBT.
Bpewmst pabothl ocBenieHus onpeaensercs no Gopmyre:

ZLcym = ZLOC T
r€ foc — BpeMs pabOThl OCBEIICHUS, Yac;
tcyr — JUTMTEIIHOCTH paOOThl OCBELIEHUS 32 CMEHY, 4ac;

T — Bpewms1, 3aTpayeHHOE Ha MpoBeAeHUE padoT, 7 = 385 nHel.

toc =6-385=2310uac.
pc =0,96-1,8-2310=3991,68 py6.

OO0mmume 3aTpaThl Ha IEKTPOIHEPTHUIO ONPENCIISIOTCS 1O hopmyre:

D=0y + Dpe =457,2 +3991,68 = 444888 py6.




Pacuer AMOPTU3ANHOHHBIX PAacxoaoB

B crartbe «AMOpTI/I?)aHI/IOHHI)Ie OTYHCJICHUS» OT HCIIOJB3YyEMOI'O O60py,Z[OBaHI/I§I
pacCUUTBIBACTCA aMOpTHU3alus 3a BPEMA BBITIOJTHCHUA pa6OTbI JJI 060py,Z[OBaHI/I$I,
KOTOPOC UMCCTCA B HAJIMYUU.

AMOpTI/I?)aHI/IOHHBIe OTYHCJICHUA pAaCCUNTBIBAIOTCS HAa BPCMA UCII0JIb30BaHHA OBM

o popMmyiie:

rae H,— ronosast Hopma amoptuszanuu, Hy = 25%;
L]o5 — niena oo6opynosanus, Los = 30000 pyo.;
Fj — nelicTBUTENBHBIN ro10BOM (OHJ pabodero BpeMeHu, [y = 2416 4acos;
tpr — BpeMs pabOThl BBIYUCIUTEIBHOW TEXHUKH TPU  CO3JTAHHUH
MPOrPaMMHOTO MPOAYKTA, tpr = 967 4aca;
n — 9uciio 3aaerctBoBaHHbIX [IDBM, n=1.
Wrak, 3aTpaThl HA aMOPTU3ALIMOHHBIE OTYUCIICHUS COCTABUIIM:

0.25 - 30000
c. =922 00000 s 13001 pv6
AM 2416 4

Pacyer nmpouux pacxoaos

B crathe «lIpoune pacxoasy OTpakeHbI pacxo/bl Ha pa3pabOTKy MPOEKTa,
KOTOPBIE HE YYTEHBI B IPEJABIAYIINX CTATHSIX.
[Ipoune pacxoasl cOCTaBIAOT 16 % OT eAMHOBPEMEHHBIX 3aTPAT HA BBIIOJIHEHUE
TEXHUYECKOTO MPOIYKTa U MPOBOAATCS 0 hopmyre:

Crpoy = (CMAT +Cocy + Coog +I+Cyy ) 0,16

Crpoy =(1575+112146,5 + 14579 + 4448,88 +3001)- 0,16 = 21729,9 py6.

Pac4yer o0mieit cebecronmocTu pa3padoTku



[IpoBenst pacdyeT cMeTHI 3aTpaT Ha Pa3pabOTKy, MOXKHO OMPEACIUTH OOIIYIO

CTOMMOCTB pa3paboTKu MpoekTa «MoenupoBaHue MpoIecca KUCIOPOTHONW PE3KH

MCTAJITIOB».

Tabmuna 8.18 — CmeTa 3aTpar Ha pa3pabOTKy MpOeKTa

Crartbs 3aTpar Ycia0BHOE 0003HAYEHHE Cymma, pyo0.
1 Marepuaiibl u MOKYITHBIE Criat 1575

15631 (170

2 OcHoBHas 3apaboTHAas TUIaTa Coch 112146,5

3 OTyuCcIIeHUsI B  COIIMAJbHEBIE

(boHbi Ccorn 14579

4 Pacxoibl Ha AJIEKTPOIHEPTUIO C) 444888

5 AwmopTruzanonsbsie oTuuciaeHuss | Cam 3301

6 [Ipoune pacxobl Criroy 21729,9
HUroro: 157479,28

Taxum 06pazom, pacxo/isl Ha pa3padboTky coctaBunu C = 157479,28 py0.

HJIC

HJC cocraBnsier 18% ot cymmsl 3aTtpat Ha pa3zpaboTtky. Cymma HJIC coctaBuna

28346,3 pyb.

IMosnas cmera 3aTpar Ha BbinoiHeHue HUP

[TonHast cmeTa 3aTpar npuBeeHa B Tadmuue 8.19

Ta6muma 8.19 — Ilonmnas cmera 3arpar

HaumenoBanue craTbu

3aTparsl, pyo.

1 Marepuaibl ¥ MOKYIHbIE U3ETHS

1575

2 OcHoBHas 3apabOTHasl miaTa 112146,5
3 OrtuucieHus B coruaabHbie (POHIBI 14579

4 Pacxonbl Ha AIEKTPOIHEPTHIO 4448,88

5 AMOpPTH3aIMOHHBIE OTYUCIICHUS 3301

6 IIpouune pacxonasl 21729,9

7 HAC 28346,3

8 Ilena pa3paboTku 185825,55




8.4 Ouenka Hay4yHO-TexHMYecKoro yposuss HUP

Hay4yHo-TeXHMYECKHI YyPOBEHb XapAaKTEPU3YET, B KAKOM MEPE BBHINOJHEHBI
paboTel U OOecrneunBaeTcs HaAyYHO-TEXHUYECKUI Iporpecc B JAaHHOM 00JsacTu.
Jlis OLleHKM HAy4YHOW LIEHHOCTH, TEXHHYECKOW 3HAUYMMOCTH M 3(P(EKTUBHOCTH,
IUIAaHUPpYEeMbIX M BblonHAeMbIXx HUP, ucnosns3yercs meton OanbHBIX OLICHOK.
banpHas oljeHKa 3aK/I04aeTcs B TOM, YTO KOKIOMY (PaKTOpy MO MPUHATOM IIKaie
IPUCBAMBACTCS OIpeAeeHHOe KoaudecTBO OammoB. OOOOLIEHHYIO OILICHKY
OPOBOAAT MO CyMMe OalJIoB IO BCEM II0Ka3aTelsiM WM PACCUMTHIBAIOT IIO
dbopmyse. Ha aToit ocHOBe nemaeTcst BhIBO O mesiecoodpaznoctu HUP.

CymHoCcTh METOJIa 3aKJII0YaeTCs B TOM, YTO HA OCHOBE OLICHOK IPH3HAKOB

paboTbl ompenensercs KOIPGUIMEHT €€ Hay4YHO-TEXHHUYECKOTO YpPOBHA TIO

dbopmye:
3
Kyry = Z R, -n
i=1

rae Kyry — K03QpGUUIHUEHT HAyYHO-TEXHUUECKOT0 YPOBHS;

R; — BecoBoil KO3PPUIMEHT 1-r0 TNpU3HAKA HAYYHO-TEXHHUECKOTO
ahdexkra;
n; — KOJMYECTBEHHAs OIICHKAa 1-r0 MpH3HaKa HayYHO-TEXHHYECKOTO

s dexrta, B Oamiax.

Ta6mumma 8.20 — bamtbe A1 O1eHKH YPOBHST HOBU3HBI

YpoBeHnb
XapaKTepucTHKA YPOBHS HOBU3HBI banabl
HOBM3HbI

[IpuHIMNIMAIBEHO HoBoe HampaBneHne B Hayke M TEXHUKE, HOBBbIE (aKThl H
8- 10
HOBast 3aKOHOMEPHOCTH, HOBasi TEOPUs, BELIECTBO, CIIOCOO

[To-HOBOMY OOBSICHAIOTCS T€ K€ (haKThl, 3aKOHOMEpPHOCTH,
Hogas 5-7
HOBBIE MMOHSTHUS JOTOJIHSIOT PaHee MOJyYeHHBIE pe3yIbTaThl

OTHOCHUTENBHO CucrematusupyroTcsi, 0000LIAIOTCS HMMEIOLUECS CBEICHHUS,

2-4
HOBast HOBBIE CBA3HM MEX]ly U3BECTHBIMU (paKTOpPaMHU
He obnanaer | Pe3ynpTart, KOTOpBIA paHee ObLUT U3BECTEH

0

HOBU3HOH




Ta6mmma 8.21 — bamibl 3HaYNMOCTH TEOPETUUYECKUX YPOBHEH

TeopeTnyeckuii ypoBeHb MOJIy4YeHHBIX Pe3y/IbTATOB Banusl
1 VYcranoBka 3akoHa, pa3paboTKa HOBOW T€OpUU 10
2 I'mybokas  pa3paboTka  mpoOJeMbl,  MHOIOCIEKTpaJbHBIM  aHaIU3, | 8
B3aMMOJICHCTBUS MKy (DaKTOpaMu C HaJTMIHuEeM O0bSICHEHUI

8

3 Pazpaborka meToaa (anroputM, porpaMma u T. 1.)

4 DnemeHTapHBI aHanM3 CBs3ed Mexay (akramu (HaIUMYWE THUNOTE3B, | 4

00BSICHEHUSI BEPCUU, MPAKTUUECKUX PEKOMEHIallni)

5 Omnmcanue OTAENBHBIX AJIEMEHTApHBIX (PAKTOPOB, M3I0KEHNE HAOIIOACHUH, | 4
OIBITA, PE3YJIBTATOB U3MEPEHUMN

Tabnuua 8.22 — Bo3aMOXXHOCTh peanu3alii Hay4HbIX, TEOPETUUECKUX PE3YJIbTATOB 110 BPEMEHU

u Macmrradbam

Bpems peanusanuun Bbaaasl
B teueHune nepBbIX JeT 10

Ot 5 1o 10 net 4
Cspiie 10 ner 2

P C3yJIbTaThl OLCHOK IIPU3HAKOB HAYYHO-TCXHHUYCCKOI'O YPOBHA IIPUBCACHBI B

tabnurte 8.23.

Ta6muia 5.19 - CBogHas TabyinIa OIEHKH HayYHO-TeXHU4YecKoro ypoBHs HUP

YpoBeHn Briopannbiii | O0ocHOBaHHEe
®axkrTop HTY 3HauuMoOCTh P P
(paxTopa 0asL BbIOpPAHHOIO 0aJ1J1a
ITo3Bonut OILICHUTDH
YpoBeHb MIOBEPXHOCTHEIE CBOMCTBA U
p 0,3 Hosas 6 p
HOBH3HBI YCJIIOBHSI B KOHTAaKTe IMpH
KaueHUH KOJIECa 1O PEIbCy
['myGokas
pa3paboTka
poOJIeMBI,
.« . Pa3zpaboTka METOo/a,
Teopernueckuit B3aHUMOIEHCTBHUA
0,4 8 U3Yy4EHUE BIIUSIHUS
YPOBEHb MEXIY
napamMeTpoB Ha pe3yJIbTaT
¢dakTopamu ¢
HaTUYUEM
00BsICHEHNIT
PesynpraTtel  MOT OBITH
Bo3MmoskHOCTE B TEeUeHHEe Y T
0,3 10 IOJIyueHbl B KOPOTKHE
peanuzanuu MEPBBIX JIET

CPOKH




Ucxona wu3 onenku npuzHakoB HUMOKP, nokazarens Hay4yHO-TEXHHYECKOIO
YPOBHS JUIs1 AAHHOTO ITPOEKTA COCTABUIL:

Ky =03-6+0,4-8+03-10=8
Takum o0Opa3zoM, NMpoeKT «PEeKOHCTPYKUMS MNOBEPXHOCTHBIX XapaKTEPUCTHK W
KOHTAKTHBIX CBOWCTB Ha OCHOBE JAaHHBIX aKyCTHYECKOM 5OMHUCCHHM Ha
KJIACCHYECKOM IIPUMEpPE KOHTAKTa KOJIECO-PEJIbC» HMEET BBICOKHMN YpPOBEHb

HAyYHO-TEXHUUECKOT0 d(Pdekra.



