Реферат

Выпускная квалификационная работа страницы 82, рис. 7, табл. 15, 23 источников, 7 приложений.

Ключевые слова: подстанция, воздушная линия электропередачи, установившийся режим, ремонтный режим, батарея статических конденсаторов.

Ключевые слова на английском языке: substation, power line, steadystate regime, repairing process, battery of static capacitors.

Объектом исследования является энергорайона Кузбасской энергосистемы, запитанный от ПС 500 кВ Новокузнецкая.

Цель работы: выбор мероприятия по регулированию напряжения в энергорайоне, запитанном от ПС 500 кВ Новокузнецкая.

В ходе работы были проведены расчеты установившегося и ремонтного режимов в исследуемом энергорайоне. Рассмотрены компенсирующие устройства и произведен выбор батареи статических конденсаторов для регулирования напряжения.

					ФЮРА.13.03.02.004 ПЗ						
Изи	Лист	№ докум.	Подп.	Дата							
Pas	враб.	Гашков А.Г				Лит.	Лист	Листов			
Py	ков.	Бацева Н.Л					11	8 2			
					РЕФЕРАТ	ТПУ ИнЭО					
Н. к	онтр.	Бацева Н.Л				Гр. 3-5A1					
						1 p. 3-3A12					

Содержание

В	едение		7							
1	1 Раздел 1 Описание исследуемого энергорайона. Сбор исходных									
	данных									
2	2 Раздел 2 Расчет и анализ установившегося и ремонтных режимов 23									
	2.1 Описание программного комплекса по расчету и анализу									
	режимов									
		2.1.1 Ввод исходных данных по схеме 24	4							
		сети								
		2.1.2 Контроль исходной информации	7							
		2.2 Расчет и анализ установившегося режима								
		2.2.1 Расчет и анализ установившегося режима исследуемого								
		энергорайона28	8							
		2.2.2 Расчет и анализ ремонтного режима	9							
	2.3	Сведения о компенсирующих устройствах, используемых для								
		повышения напряжения в электрических сетях 110 кВ 29	9							
		2.3.1 Синхронные компенсаторы в режиме перевозбуждения. 30	0							
		2.3.2 Батареи статических конденсаторов	2							
		2.3.3 Статический тиристорный компенсатор	3							
	2.4	Расчет и анализ ремонтного режима после установки								
		компенсирующих устройств	4							
3	Разде	з Финансовый менеджмент, ресурсоэффективность и								
	pecyp	сосбережение	7							
	3.1	Планирование научно-исследовательских работ	7							

					ФЮРА.13.03.02.004 ПЗ							
Изи	Лист	№ докум.	Подп.	Дата								
Разр	аб.	Гашков А.Г				Лит.		Лист	Листов			
Рукс)В.	Бацева Н.Л						14	2 2			
Н. к	онтр.	Бацева Н.Л			СОДЕРЖАНИЕ	ТПУ ИнЭО Гр. 3-5A12						
		'					1 p. 3-3A12					

	3.2	Структура работ в рамках научного исследования								
	3.3	Разработка графика проведения проектирования	40							
	3.4	Материальные затраты	43							
	3.5	Затраты на оплату труда	43							
	3.6	Отчисление в социальные фонды	45							
	3.7	Смета затрат на оборудование	47							
4	Соц	альная ответственность	49							
	4.1	Производственная и экологическая безопасность	49							
		4.1.1 Анализ опасных и вредных производственных факторов.	50							
	4.2	Гехника безопасности	50							
	4.3	Производственная санитария	52							
		4.3.1 Микроклимат	53							
		4.3.2 Шумы и мероприятия по их снижению и его								
		нормирование	53							
		4.3.3 Освещение на рабочем месте	54							
		4.3.4 Требования к клавиатуре	54							
		4.3.5 Требования к монитору	55							
	4.4	Электромагнитное излучение	56							
	4.5	Пожарная безопасность	57							
	4.6	Охрана окружающей среды	58							
	4.7	Чрезвычайные ситуации	59							
	4.8	Расчет уровня шума	61							
3a	ключ	ение	64							
Cı	писон	литературы	66							
Приложение 1 - Принципиальная схема Кузбасской ЭС										
Приложение 2 - Схема замещения Кузбасской ЭС										
Пј	рило	ение 3 - Расчетные данные установившегося режима	70							
П	рило	ение 4 - Графика нормального установившегося	73							

режима								
Приложение 5 - Расчетные данные ремонтного режима при								
отключении ВЛ 220 кВ-Новокузнецкая- Опорная9	74							
Приложение 6 - Графика ремонтного режима при отключении ВЛ 220								
кВ Новокузнецкая – Опорная-9								
Приложение 7 - Расчетные данные по узлам ремонтного режима при								
отключении ВЛ 220 кВ Новокузнецкая – Опорная-9 и установки								
БСК	78							
Приложение 8 - Графика ремонтного режима при отключении ВЛ 220								
кВ Новокузнецкая – Опорная-9 и установки								
БСК	02							

Введение

Существует три основных критерия функционирования электроэнергетических систем: надежность электроснабжения; качество электрической энергии; экономическая эффективность [23, с. 256].

Данные критерии должны соблюдаться не только в нормальных установившихся режимах, но и в режимах, когда электроустановка, например, линия или трансформатор выводится в плановый ремонт.

Показатели качества электрической энергии нормируются в [6, с. 25], где внимание уделяется и показателям качества по напряжению. Ввод напряжений в узлах электрической сети в диапазон нормируемых значений (процесс регулирования напряжения) может быть достигнут различными способами: изменением располагаемого диапазона регулирования реактивной мощности источников, например, генераторов электростанций; трансформаторами с регулированием напряжения под нагрузкой и с переключением без возбуждения; компенсирующими устройствами.

Для того чтобы выбрать наиболее подходящий способ регулирования напряжения необходимо моделирование и анализ режимов электрических сетей энергосистем в современных программных комплексах по расчету режимов энергосистем, которые позволяют выявить узлы электрической сети с напряжениями, выходящими за область допустимых значений, оценить изменение значения напряжения в узлах после проведения мероприятий по регулированию напряжения, выбрать мероприятие, наиболее подходящее с точки зрения технической и экономической эффективности.

Цель настоящей выпускной квалификационной работы заключается в выборе мероприятия по регулированию напряжения в энергорайоне, запитанном от ПС 500 кВ Новокузнецкая.

					ФЮРА.13.03.02.004 ПЗ						
Изи	Лист	№ докум.	Подп.	Дата							
Разр	раб.	Гашков А.Г				Лит.	Лист	Листов			
Рукс)B.	Бацева Н.Л					17	5 2			
					ВВЕДЕНИЕ ТПУ Г			<i>Tu 30</i>			
Н. контр.		Бацева Н.Л				Гр. 3-5A12					
						1 p. 3 31112					

РАЗДЕЛ 1 ОПИСАНИЕ ИССЛЕДУЕМОГО ЭНЕРГОРАЙОНА. СБОР ИСХОДНЫХ ДАННЫХ

Рассматриваемый в выпускной квалификационной работе энергорайон является частью Кузбасской энергосистемы, находится в ведении Кузбасского районного диспетчерского управления (Кузбасское РДУ).

Принципиальная схема и схема замещения энергорайона приведены в Приложениях 1 и 2 соответственно.

При расчете электрических режимов за базисный узел была принята подстанция (ПС) 500 кВ Новокузнецкая.

В табл. 1.1 – 1.6 приведены исходные данные по трансформаторам и автотрансформаторам (AT), воздушным линиям электропередачи (ВЛ), электрическим нагрузкам и перетокам мощностей, количеству трансформаторов, реакторам на ПС 500 кВ Новокузнецкая.

					ФЮРА.13.03.02.004 ПЗ						
					ΨΙΟΓΑ. 13.03.02.004 113						
Изи	Лист	№ докум.	Подп.	Дата							
Разр	раб.	Гашков А.Г			ОПИСАНИЕ ИССЛЕДУЕМОГО	Лит.	Лист	Листов			
		Бацева Н.Л			ЭНЕРГОРАЙОНА. СБОР	Ш	18	6 2			
					ИСХОДНЫХ ДАННЫХ	ТПУ Ил	Ин'ЭО				
Н. контр.		Бацева Н.Л			, , , , , , , , , , , , , , , , , , , ,	Гр. 3-5А12					
							1 p. 3 31112				

Таблица 1.1 - Каталожные данные трансформаторов и автотрансформаторов

Тип	S_{hom} ,	Пределы регулирования	$U_{ m hoбm}$, к ${ m B}$			R_{T} , Ом			<i>X</i> _T , Ом		
	MBA		ВН	СН	НН	ВН	СН	НН	BH	СН	НН
АТДЦТН-200000/220/110	200	± 6x12 %	230	121	_	0,3	0,3	0,6	30,4	0	54,2
АТДЦТН-125000/220/110	125	± 6x12 %	230	121	11	0,52	0,52	3,2	49	0	131
ТДТНЖ-40000/115/6,3	40	± 8x12%	115	35,5	6,6	0,9	0,9	0,9	35,5	0	20,7
ТРДЦН-160000/230/11	160	± 8x12%	20		35	1,08			44,9		
АОДЦТН-267000/500/230	267	± 8x12%	500/√3	230/√3	38,5/√3	0,28	0,28	0,9	39,8	0	75,6

Таблица 1.2. - Параметры ВЛ

И	Марка	Длина L ,	D. O.	V O	<i>В</i> , мкСм	r_0 ,OM/K	x_0 ,	b_0 ,
Наименование ВЛ	провода	КМ	<i>R</i> , Ом	<i>X</i> , Ом	B, MKCM	M	Ом/км	мкСм/км
Новокузнецкая-СШГЭС	ACO-300*3	447,5	12,9775	137,83	1612,79	0,029	0,308	3,604
повокузнецкая спп эс	ACO-300*3	447,2	12,9688	137,738	1611,709	0,029	0,308	3,604
Новокузнецкая-Кузбасская	ACO-400*3	88,6	2,15298	27,1116	320,9978	0,024	0,306	3,623

Наименование ВЛ	Марка	Длина L ,	<i>R</i> , Ом	<i>X</i> , Ом	В, мкСм	r_0 ,Ом/к	x_0 ,	b_0 ,
таименование взт	провода	КМ	n, ow	71, OW	D, MKCM	М	Ом/км	мкСм/км
Новокузнецкая-	ACO-300*3	256,7	7,4443	79,0636	925,1468	0,029	0,308	3,604
Барнаульская	1100 300 3	230,7	7,1113	77,0030	723,1100	0,023	0,500	3,001
Новокузнецкая-КМК -1	ACO-500	27,7	1,6343	11,4401	75,898	0,059	0,413	2,74
Trobokysnegkasi reivire 1	ACO-500	29,6	1,7464	12,2248	81,104	0,059	0,413	2,74
КМК-1-Опорная 9	ACO-500	0,9	0,0531	0,3717	2,466	0,059	0,413	2,74
КМК-1-Северный Маганак	AC-240	22	2,596	8,91	61,776	0,118	0,405	2,808
КМК-1-Ширпотреб	AC-300	4,5	0,432	1,9305	11,9025	0,096	0,429	2,645
Ширпотреб-ТЭЦ КМК	AC-300	4,2	0,4032	1,8018	11,109	0,096	0,429	2,645
КМК-1-Опорная 3	AC-240	2,7	0,3186	1,0935	7,5816	0,118	0,405	2,808
КМК-1-Опорная 6	AC-240	3,7	0,4366	1,4985	10,3896	0,118	0,405	2,808

Таблица 1.3. - Электрические нагрузки и примыкающие перетоки

Наименование ПС	$P_{\scriptscriptstyle \mathrm{H}}$, MBT	$Q_{\scriptscriptstyle \mathrm{H}}$, MBA
ПС Новокузнецкая -500	0,8	0,4
ПС Кузбасская- 500	147	240
Новокузенцкая 220 кВ	387,2	102,5
Новокузенцкая 220 кВ	94,3	40,8
КМК-1-220 кВ	80,1	43,7
Опорная -3 6 кВ-2	34,9	17
Опорная -3 6 кВ-1	34,9	17
Опорная -6 6 кВ-2	34,9	17
Опорная -6 6 кВ-1	34,9	17
Опорная -6 110кВ-1	42,8	25,2
Ширпотреб-10кВ-2	34,8	18,4
Ширпотреб-10кВ-1	34,8	18,4
ТЭЦ КМК	36,4	16,6

Таблица 1.4. - Количество трансформаторов и автотрансформаторов на ПС

Тип трансформатора	Количество	Подстанция
АТДЦТН-200000/220/110	3	Северный Маганак
АТДЦТН-125000/220/110	2	КМК-1
	2	Опорная-3
ТДТНЖ-40000/115/6,3	2	Опорная-6
	2	Ширпотреб
ТРДЦН-160000/230/11	2	Опорная-9
АОДЦТН-267000/500/230	6	Новокузнецкая

Таблица 1.5 – Параметры реакторов на ПС 500 кВ Новокузнецкая

Наименование параметра РТУ- 180000/500	Данные параметра
номинальная мощность	180000 кВА

Продолжение таблицы 1.5

Наименование параметра РТУ- 180000/500	Данные параметра
количество фаз	3
частота	50 Гц
номинальное напряжение сетевой обмотки	525 кВ
номинальное напряжение обмотки управления	35 кВ
напряжение питания преобразователя	0,4 кВ
напряжение питания системы управления	220 B
диапазон изменения мощности	1800180000 кВА
потребляемая мощность в форсированном режиме	240360 MBA
диапазон уставки по напряжению	500525 кВ
диапазон уставки по току	2198 A
потери холостого хода	150 кВт
потери короткого замыкания	750 кВт
средние потери при коэффициенте графика	450 кВт
заполнения нагрузки 0.7	
ток искажения фазы высшими гармониками не	4 A
более	

РАЗДЕЛ 2 РАСЧЕТ И АНАЛИЗ УСТАНОВИВШЕГОСЯ И РЕМОНТНЫХ РЕЖИМОВ

Режимом электроэнергетической системы (ЭЭС) называется некоторое состояние, определяемое значениями параметров режима — мощностей, напряжений, токов, частоты, характеризующих процесс преобразования, передачи и распределения мощности и энергии.

Режимы энергетической системы должны удовлетворять ряду требований: надежность режима работы; бесперебойность энергоснабжения потребителей; качество электроэнергии; экономичность.

Параметры режима работы могут быть разделены на параметры режима узловых точек (напряжение, частота, давление и температура пара, скорость вращения) и параметры режима ветвей (ток, активная и реактивная мощности).

Расчеты установившихся режимов (УР) электрических сетей осуществляются для определения напряжений в узлах электрической сети, а также для оценки распределения перетоков активной, реактивной мощностей и токов по элементам электрической сети. Определение этих параметров осуществляется для нормальной схемы электрической сети при различных уровнях электрических нагрузок, зависящих от времени года (зима/лето), дня (рабочий/выходной), времени суток (день/ночь). Такие режимы называются нормальными установившимися режимами.

Помимо анализа установившихся режимов часто требуется проанализировать и ремонтные режимы работы.

Ремонтный режим – рабочее состояние объекта, при котором часть его элементов находится в состоянии предупредительного или аварийного ремонта [6, c.5].

					ФЮРА.13.03.02	2.004	П3	
Изи	Лист	№ докум.	Подп.	Дата				
Разр	раб.	Гашков А.Г				Лит.	Лист	Листов
Рукс	OB.	Бацева Н.Л					23	1 8 2
					РАСЧЕТ И АНАЛИЗ		ТПУ Ин	i30
Н. контр.		Бацева Н.Л			УСТАНОВИВШЕГОСЯ И	Гр. 3-5A12		
					РЕМОНТНЫХ РЕЖИМОВ		1 p. 3 01	112

2.1 Описание программного комплекса по расчету и анализу режимов

Программный комплекс (ПК) RastrWin3 предназначен для решения задач по расчету и оптимизации режимов электрических сетей энергосистем. В Российской Федерации основными пользователями ПК являются

Системный оператор Единой Энергетической Системы (СО ЕЭС) и его филиалы, Федеральная Сетевая Компания (ФСК), МРСК, проектные и научно-исследовательские институты [2].

2.1.1 Ввод исходных данных по схеме сети

Перед проведением расчетов в ПК необходимо подготовить исходные данные, а именно:

- Начертить принципиальную схему и схему замещения исследуемого района с указанием номеров узлов;
 - Для каждого узла установить напряжение и нанести на схему;
- Для каждого узла нагрузки определить активную и реактивную мощность нагрузки;
- Для узлов с генераторами и компенсаторами определить активную мощность генерации, пределы регулирования реактивной мощности (Q_{\min} Q_{\max}) и модуль напряжения $V_{3д}$;
- При наличии компенсирующих устройств определить их проводимость (в микросименсах) и нанести на схему;
- Для линий электропередачи (ЛЭП) рассчитать активное и реактивное сопротивления и проводимости. Если имеются несколько параллельных линий, то необходимо каждому из них присвоить номер параллельности.
- Для трансформаторов и автотрансформаторов определить активное и реактивное сопротивления, приведенные к стороне высокого напряжения, коэффициент трансформации;
 - Выбрать балансирующий узел.

Вводимые 2.1. ПО узлам параметры показаны на рис. **∰** Узлы **х** Ветви **х** Графика **х** 9 4 8 8 8 B A O S Tun Название U_ном N... Район Р_н Р_г Ог ۷зд O min O max Вш База ПС Новокузнецкая-500 500 872.7 500.0 507.0 -1.000.0 1.000.0 1 440.0 507.00 Нагр ПС Кузбасская-500 500 507,11 0.00 Нагр ПС Барнаульская-500 500 526,37 -0,21 🗌 💥 Нагр ГЭС Саяна-Шушенская 500 Нагр ПС Новокзнецкая-220 220 223,61 -5,89 Нагр ГРЭС Беловская-220 220 223,66 -5.90 ПС Соколовская-220 224,04 -5,91 Нагр 220 ПС Кузбасская-220 223,75 Нагр 220 -5,90 HKA3-220 220 387,2 102,5 219,98 Нагр -8,10 220 11 KMK-1-220 21,8 218,69 10 Нагр 40,0 -8,09 Нагр 12 KMK-1-220 220 40,0 21,8 218,22 Нагр 13 KMK-1-110 110 25.2 109.53 -20.53 12 42,8 ПС Северный Маган... 110 Нагр 109,56 -20,54 110,5 14 Нагр 15 ПС Опорная-3-110 110 32,8 109,10 -20,79 139,6 15 Нагр ПС Опорная-6-110 110 68,0 108,57 -20,96 ПС Северный Маган... 16 Нагр 110 50.5 23.3 103,78 -24,35 ПС Ширпотреб-110 69,7 26,7 109,43 18 Нагр 19 Центральная ТЭЦ 1... 110 109.96 -20.68 19 Нагр Центральная ТЭЦ 1... 10,28 -19,73

Рисунок 2.1. – Фрагмент ввода исходных данных по узлам

20

ТЭЦ ЦКК Генератор ...

29.0

-19.0

10,29

-19,72

19.0

напряжение; V, Delta- расчетный модуль и угол напряжения. $G_{\underline{m}}$, $B_{\underline{m}}$ - проводимость шунта на землю (ШР или БСК), мкСм. [2]

При вводе данных по ветвям задаются номера узлов, из которых состоит ветвь.

Разделение ветвей на ЛЭП и трансформаторы осуществляется ПК автоматически по значению, проставленному в поле $K_{_\text{т/r}}$ (коэффициент трансформации): для ЛЭП это поле остается пустым, для трансформаторов обязательно к заполнению.

Вводимые по ветвям параметры показаны на рис. 2.2.

333 y	злы з	K	🚦 Ветви	х Графи	ка 🗶									
8	•	*	F	y 🗈	A									
	0	S	Тип	N_нач	N_кон	N_n	Название	R	X	В	Кт/г	Р_нач	Q_нач	dF
1			лэп	1	2		ПС Новокузнецкая-500	0,47	5,92	-70,1		0	18	0,00
2			лэп	1	3		ПС Новокузнецкая-500	7,47	79,31	-928,0		0	243	0,45
3		×	Выкл	1	4		ПС Новокузнецкая-500							
4			Тр-р	1	100		ПС Новокузнецкая-500	1,05	57,50		1,000	-436	-196	0,93
5			лэп	5	6		ПС Новокзнецкая-220 - Г	4,58	35,05	-12,6		0	1	0,00
6			лэп	5	7		ПС Новокзнецкая-220	3,43	24,04	-159,5		0	8	0,00
7			лэп	5	8	1	ПС Новокзнецкая-220	0,80	10,13	-119,9		0	6	0,00
8			Тр-р	1	101		ПС Новокузнецкая-500	1,05	57,50		1,000	-436	-196	0,93
9			Тр-р	100	5		АТДЦТН-500000/500/220				0,460	-435	-144	
10			Тр-р	101	5		АТДЦТН-500000/500/220				0,460	-435	-144	
11			лэп	5	8	2	ПС Новокзнецкая-220	0,80	10,13	-119,9		0	6	0,00
12			лэп	5	10	1	ПС Новокзнецкая-220	2,17	15,20	-100,8		-130	-35	0,79
13			лэп	5	10	2	ПС Новокзнецкая-220	2,17	15,20	-100,8		-130	-35	0,79
14			лэп	5	10	3	ПС Новокзнецкая-220	2,16	15,16	-100,6		-130	-35	0,79
15			лэп	5	11		ПС Новокзнецкая-220	1,18	8,26	-54,8		-242	-102	1,63
16			лэп	5	12		ПС Новокзнецкая-220	1,30	9,09	-60,3		-239	-102	1,76
17			Тр-р	11	102		КМК-1-220 - АТДЦТН-12	0,52	48,60		1,000	-200	-73	0,49
18			Тр-р	12	103		КМК-1-220 - АТДЦТН-12	0,52	48,60		1,000	-197	-70	0,48
19			Тр-р	102	13		АТДЦТН-125000/220/110				0,530	-200	-77	
20			Тр-р	103	13		АТДЦТН-125000/220/110				0,530	-196	-76	

Рисунок 2.2 – Фрагмент ввода исходных данных по ветвям

 мнимая составляющие коэффициента трансформации для большинства трансформаторов коэффициент трансформации совпадает с его вещественной частью (при отсутствии поперечного регулирования); I_{max} —максимальный ток по элементу. [3, с. 15]

2.1.2 Контроль исходной информации

Контроль исходной информации необходим для проверки введенных данных. Его необходимо выполнять перед расчетом режима, а после прохождения контроля можно производить сам расчет.

Контролю исходных данных выявляет: изолированные узлы; наличие фрагментов сети, несвязанных с балансирующим узлом; наличие ветвей, у которых отсутствует информация об узлах (или хотя бы об одном узле), ограничивающих эти ветви; соответствие коэффициента трансформации номинальным напряжениям узлов, ограничивающих трансформаторную ветвь.

Следует обращать внимание на выдаваемый ПК протокол и при наличии ошибок, устранять их.

2.2 Расчет и анализ установившегося режима

Для выполнения расчета УР необходимо перейти в меню «Расчет» и выбрать команду «Режим». В процессе расчета в протоколе выдается таблица сходимости, в которой отображаются величины, характеризующие итерационный процесс метода Ньютона (рис. 2.3).

Протокол															
Конт															
→ 🦁 Pacч	нет уст	ановившег	ося режима.	. Сообщ	ений -	- 6									
(1)	Ит	Max.	неб.	Узл	пы	>V	Узел	<v< th=""><th>Узел</th><th>Угол</th><th>Линия</th><th>Rk</th><th>Шаг</th></v<>	Узел	Угол	Линия	Rk	Шаг		
@	0	0.0	50.4	41	21	1.14	15	1.00	5	8.3	36-39	0.00	1.000		
~	1	5.3	75.4	20	20	1.14	15	1.00	5	8.3	22-24	0.86	1.000		
~	2	1.6	4.9	20	20	1.11	15	0.97	39	9.6	36-39	14.07	1.000		
~	3	1.0	0.0	42	20	1.11	15	0.96	39	10.0	36-39	62.12	1.000		
~	4	2.5	513.2	41	41	1.12	15	1.00	5	9.1	22-24	0.00	1.000		
~	5	0.0	0.9	41	41	1.12	15	1.00	5	9.2	22-24	549.14	1.000		

Рисунок 2.3 — Вывод результатов расчета установившегося режима в протоколе

По рис. 2.3 слева направо: Ит - номер итерации; Мах.неб. - значение и номер узла для максимального небаланса мощности;> V -

максимальная величина и номер узла для превышения напряжения по отношению к номинальному - $(V/V_{\text{ном}})_{\text{max}}$; <V- то же самое для снижения напряжения по отношению к номинальному; Угол - значение и номер линии для максимального разворота угла (в градусах). Для анализа режима в ПК существуют различные формы представления результатов. Все они сосредоточены в меню «Открыть». Основная форма «Узлы + Ветви», имеющая вид, показанный на рис. 2.4.

Вет	ви 3	x	Графика	ж Ж Узлы ж Ж Узлын	Ветви ж									
9	A													
	0	S	Номер	Название	V	Delta	Р_н	Q_H	Р_г	Q_r	V_3д	Q_min	Q_max	Q_ш
	0	S	Ny	Название	V_2	dDelta	Р_л	Q_л	dP	dQ	I_л	Р_ш	Q_ш	
			1	ПС Новокузнецкая-500	507,00				875,0	410,4	507,0	-1 000,0	1 000,0	370
2			2	ПС Кузбасская-500	507,1	0,0	0	18	0,00	0,00	21		-18,02	
3			3	ПС Барнаульская-500	526,4	-0,2	0	243	0,45	4,73	277		-247,84	
1		×	4	ГЭС Саяна-Шушенская										
5			100	АТДЦТН-500000/500/220	491,5	-5,8	-437	-151	0,87	47,86	527			
5			101	АТДЦТН-500000/500/220	491,5	-5,8	-437	-151	0,87	47,86	527			
. =			2	ПС Кузбасская-500	507,11	0,00								
3			1	ПС Новокузнецкая-500	507,0	0,0	0	0	0,00	0,00	0		-18,02	
9 🗏			3	ПС Барнаульская-500	526,37	-0,21								
10			1	ПС Новокузнецкая-500	507,0	0,2	0	0	0,45	4,73	0		-247,84	
11 🗏		×	4	ГЭС Саяна-Шушенская										
12		×	1	ПС Новокузнецкая-500										
.3 ⊟			5	ПС Новокзнецкая-220	225,99	-5,86								

Рисунок 2.4 – Таблица «Узлы + Ветви»

При расчете режима возможна ситуация, когда режим не балансируется (аварийное окончание расчета). Это может возникнуть в двух случаях: либо установившийся режим не существует, либо режим существует, но итерационный процесс расчета расходится.

В последнем случае расхождение итерационного процесса обычно связано с неточным начальным приближением модулей и углов напряжений. Такое начальное приближение может возникнуть, если расчет режима завершился аварийно, но после коррекции исходных данных он повторяется, тогда программа предлагает восстановить номинальные напряжения. Для улучшения начального приближение в ПК используется специальный стартовый алгоритм, основанный на методе Зейделя.

В ситуации, когда режим не существует, предварительно следует проанализировать причину аварийного окончания. Недопустимое снижение

напряжения обычно свидетельствует о дефиците реактивной мощности в узле с наибольшим снижением напряжения. Недопустимое увеличение напряжения, наоборот, свидетельствует об избытке реактивной мощности, и, наконец, недопустимый угол по линии связан с недостаточной пропускной способностью линии по активной мощности.

Для устранения первых двух причин обычно фиксируют модуль напряжения в узлах с наибольшим отклонением напряжения от номинального. После выполнения расчета генерация реактивной мощности в этих узлах показывает необходимую мощность компенсирующего устройства.

Для устранения последней из причин необходимо либо разгрузить линию, либо ее усилить.

2.2.1 Расчет и анализ установившегося режима исследуемого энергорайона

Для расчета УР была составлена расчетная модель энергорайона.

В соответствии с ГОСТ 32144- 2013 [6, с.6] допустимые отклонения напряжения на шинах, не должны превышать \pm 10 %. Наибольшие расчётные напряжения в питающих пунктах электрической сети не должны быть выше максимальных рабочих напряжений по ГОСТ 721-77 [4, с. 8].

Токовая загрузка автотрансформаторов и трансформаторов должна соответствовать ГОСТ 14209-97 [5, с. 5], а токовая загрузка ВЛ не должна превышать длительно допустимый ток согласно [9, с. 94].

По результатам можно сделать вывод о том, что уровни напряжения во всех узлах, загрузка трансформаторов и автотрансформаторов входят в область допустимых значений, токи ВЛ не превышают длительно допустимые значения. (табл. 2.1).

Таблица 2.1– Токи ВЛ 110-220 кВ в УР

Название	Марка провода	$I_{\text{доп}}$, A	I_{max} , A	1
----------	---------------	----------------------	----------------------	---

Название	Марка провода	$I_{\text{доп}}$, A	I_{\max} , A
Новокузнецкая - Кузбасская	3*ACO-400	860	332
Новокузенцкая 220 кВ КМК-1	ACO-500	945	326
Новокузенцкая 220 - КМК-1	ACO-500	945	300
КМК-1-110 кВ - Опорная-6 110	AC-240	610	463
КМК-1-110кВ Опорная-6 110кВ-	AC-240	610	214
КМК-1-110 кВ - Опорная110 кВ	AC-240	610	214
КМК-1-110 кВ- Опорная-3 110 кВ	AC-240	610	214
Сев Маганак 110 кВ- КМК-1-110 кВ	AC-240	610	473
КМК-1-110 кВ- Ширпотреб-110 кВ	АСУ-300	690	141
КМК-1-110 кВ- Ширпотреб-110 кВ	АСУ-300	690	143
Ширпотреб-110 кВ- ТЭЦ КМК	ACO-300	690	156
КМК-1 отп-2 - Опорная-9 220 кВ- 2	ACO-500	945	0
КМК-1 отп-1 - Опорная-9 220 кВ- 1	ACO-500	945	0

Параметры нормального режима приведены в Приложении 3. табл. 3.1.Для наглядности была построена графика режима, приведена в Приложении 4.

2.2.2 Расчет и анализ ремонтного режима

В качестве ремонтного режима был рассмотрен режим с отключением ВЛ 220 кВ Новокузнецкая – Опорная-9.

Результаты расчета ремонтного режима приведены в Приложении 5 и графике в Приложении 6.

По результатам расчета видно, что напряжение в узлах сети 110 кВ снизилось до недопустимого уровня, поэтому требуется произвести

регулирование напряжения имеющимися средствами, либо предложить мероприятия по регулированию напряжения, если имеющихся средств регулирования недостаточно, например, установку компенсирующих устройств для повышения напряжения.

2.3 Сведения о компенсирующих устройствах, используемых для повышения напряжения в электрических сетях 110 кВ

Вначале следует ЧТО распространенным способом отметить, регулирования напряжения в электрических сетях при отсутствии средств генерации является регулирование напряжения трансформаторами и автотрансформаторами [7, 98]. c. Если ответвлений устройства регулирования напряжения под нагрузкой не хватает для получения напряжения, то следует обратить подбор внимание компенсирующих устройств.

Сущность регулирования напряжения компенсирующими устройствами можно продемонстрировать с помощью формулы (2.1):

$$U_{2} = U_{1} - {}_{\Delta}U = U_{1} - \frac{R \cdot P_{2} + (Q_{2} \pm Q_{k}) \cdot X}{U_{2}}$$
(2.1)

За счет воздействия на потоки реактивной мощности изменяются потери напряжения в элементах, а, следовательно, и напряжение на приемном конце электропередачи.

Известны различные типы компенсирующих устройств, используемые в качестве средств поперечной компенсации, т.е. подключаемые параллельно нагрузке. Они могут быть предназначены только для генерации реактивной мощности, только для потребления избыточной реактивной мощности либо как для выдачи, так и для потребления.

Рассмотрим кратко компенсирующие устройства, которые можно будет применить для решения задачи повышения напряжения в сети 110 кВ рассматриваемого района.

Такими устройствами, компенсирующими реактивную мощность, являются синхронные компенсаторы, статические тиристорные компенсаторы, батареи статических конденсаторов.

2.3.1 Синхронные компенсаторы в режиме перевозбуждения

Синхронные компенсаторы (СК) представляют собой синхронные двигатели, работающие без механической нагрузки на валу. Путем регулирования тока возбуждения в обмотке возбуждения в них можно изменять режим реактивной мощности.

Пренебрегая активным сопротивлением СК, можно записать:

$$I_{\rm CK} = \frac{E - U_{\rm CK}}{\sqrt{3} \cdot X_{\rm CK}},\tag{2.2}$$

где E – ЭДС СК; $U_{\rm CK}$ – напряжение на выводах обмотки статора СК; $X_{\rm CK}$ – сопротивление СК в установившемся режиме.

Мощность СК:

$$S_{CK} = Q_{CK} = \sqrt{3} \cdot I_{CK} \cdot U_{CK} = \frac{E - U_{CK}}{X_{CK}} \cdot U_{CK}.$$
 (2.3)

Отсюда следует, что при $E > U_{\rm CK}$, реактивная мощность $Q_{\rm CK} > 0$, следовательно, СК будет выдавать реактивную мощность в сеть, это и есть режим перевозбуждения.

К преимуществам СК можно отнести: возможность как выдачи, так и потребления реактивной мощности; плавное регулирование напряжения; независимость выдаваемой реактивной мощности от напряжения сети.

К недостаткам относят наличие вращающихся частей, большие затраты на их вращение, составляющие 1,5-3% при номинальной нагрузке и 5-8% при сниженной нагрузке в сети, достаточно крупные капитальные затраты, особенно при малых мощностях СК. [23, с. 308]

2.3.2 Батареи статических конденсаторов

Батареи статических конденсаторов (БСК) подключаются параллельно нагрузке для компенсации дефицита реактивной мощности. Ток в БСК имеет емкостный характер и направлен перпендикулярно к вектору напряжения на

нагрузке, а ток нагрузки, имея активно-индуктивный характер, как правило, отстает от напряжения, то ток в линии будет равен разности тока нагрузки и тока БСК. Это равносильно тому, что на шинах нагрузки БСК генерирует реактивную индуктивную мощность.

БСК состоит из групп силовых конденсаторов, собранных в стальные несущие блоки, закрепленные на полимерных изоляторах (рис. 2.5). БСК выполняется на трех стойках с размещенными на них конденсаторами, токоограничивающими реакторами и трансформаторами тока. Между стойками БСК предусмотрены 6-метровые проезды для автокрана, предназначенные для монтажа блоков конденсаторов.

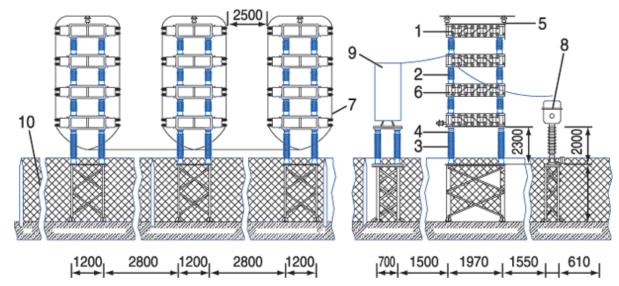


Рисунок 2.5 – Батарея статических конденсаторов 100 МВАр, 110 кВ: 1.Высоковольтный конденсатор; 2, 3, 4, 5. Опорные изоляторы; 6. Суппорт конденсаторов; 7. Медный проводник; 8. Трансформатор тока; 9.

Токоограничивающий реактор; 10. Сетчатое ограждение

БСК поставляется в исполнении У1 для температур от –55 до +45 градусов Цельсия. Для более низких температур БСК монтируется в утепленном быстровозводимом здании. Стальные конструкции выполняются из сварных профилей, защищенных от коррозии гальваническим цинкованием. Конструкции собраны в блоки по 6–8 конденсаторов, монтируются на месте и имеют в комплекте крепеж, наконечники и медные шины для соединения конденсаторов, а также гибкие медные переходы. В

БСК применяются силовые конденсаторы 560 кВАр, 11,7 кВ для напряжений 35 кВ, 542 кВАр / 7,94 кВ для напряжений 110–220 кВ с двумя фарфоровыми изоляторами и встроенными предохранителями.

Трансформаторы тока ТФЗМ (по одному на фазу) подключены первичной обмоткой в разрыв двух параллельных групп и в случае разбалансировки выдают сигнал на устройства релейной защиты для отключения головного выключателя. Токоограничивающие реакторы (по одному на фазу) ограничивают ток при включении БСК. Соединения выполнены гибкой медной шиной для предотвращения повреждения изоляторов при температурном расширении/сжатии либо при воздействии электродинамических сил.

По сравнению с синхронными компенсаторами БСК имеют определенные преимущества: низкие затраты на обслуживание; потери мощности (0,5-1,0) %, меньшие, чем у СК (2,5-7,0) %; высокая скорость переключения, если имеется тиристорное управление; возможность пофазного регулирования, что делает возможным широкую компенсацию несимметричных колебаний реактивной мощности.

Существенный недостаток БСК связан с зависимостью выдаваемой реактивной мощности от напряжения сети. [23, с. 309]

2.3.3 Статический тиристорный компенсатор

Сущность управления реактивной мощностью с помощью статического тиристорного компенсатора (СТК) заключается во встречно-параллельном включении тиристоров в цепь батареи конденсаторов (БК) (рис. 2.6) или в цепь реактора.

Рисунок 2.6 – СТК с тиристорным управлением в цепи БК При полностью открытых тиристорах ток в цепи БК – максимальный.

К достоинствам СТК относят возможность осуществить как плавное, так и ступенчатое регулирование. Они обладают высоким быстродействием и небольшими потерями активной мощности — 0,2 — 1%. СТК — многофункциональны, так как помимо регулирования напряжения, они повышают устойчивость работы генераторов, снижают перенапряжения и несимметрию токов и напряжений. Поэтому в настоящее время они находят все большее применение в электрических сетях. [, с. 314]

2.4 Расчет и анализ ремонтного режима после установки компенсирующих устройств

На основании результатов расчета УР был сделан вывод о том, что параметры режима удовлетворяют нормированным значениям, чего нельзя сказать о параметрах ремонтного режима, поэтому в ремонтном режиме требуется установка и ввод в работу компенсирующих устройств.

По сравнению с БСК синхронные компенсаторы и СТК являются более гибкими в плане регулирования напряжения, но и более дорогостоящими, поэтому остановим выбор на БСК.

Установим две БСК напряжением 110 кВ, мощностью 100 Мвар каждая на шинах 110 кВ ПС КМК-1. БСК выпускаются электротехническим заводом «СлавЭнерго» и имеют маркировку БСК-110-100 УХЛ1. В табл. № 2.2 приведены технические характеристики БСК.

Таблица № 2.2 - Технические характеристики БСК-110-100 УХЛ1

Наименование параметра для БСК-110-100 УХЛ 1	Значение параметра
Номинальное напряжение, кВ	110
Максимально допустимое напряжение, кВ	133
Номинальная мощность, Мвар	104
Номинальный ток батареи, А	545,9
Тип конденсаторов	Однофазные 542 кВАр / 7,94 кВ / 50 Гц со встроенными предохранителями
Количество блоков в батарее, шт.	12
Количество блоков в фазе, шт.	4
Количество последовательно соединённых конденсаторов в фазе, шт.	8
Количество параллельных рядов в фазе, шт.	4
Количество конденсаторов в батарее, шт.	96
Масса батареи, кг, не более	50 000
Габариты, ДхВхГ, мм	13000x5500x6000

После установки БСК был произведен расчет ремонтного режима. Результаты расчета приведены в Приложении 7. Проанализировав результаты расчета ремонтного режима, можно сделать вывод об успешности ввода в работу БСК, так как параметры режима находятся в пределах нормированного диапазона.

Ш У	злы ж	≣ Be	тви ж	Графика 🗴													
8	4	•	* 🕏	A													
	0 s	Тип	Номер	Название	U_ном	N	Район	P_H	Q_H	Р_г	Q_r	V_3д	Q_min	Q_max	В_ш	V	Delta
		База	1	ПС Новокузнецкая-500	500					875,3	408,1	501,0	-1 000,0	1 000,0	1 440,0	501,00	
		Нагр	2	ПС Кузбасская-500	500											501,10	0,00
		Нагр	3	ПС Барнаульская-500	500											520,14	-0,21
		Нагр	4	ГЭС Саяна-Шушенская	500												
		Нагр	5	ПС Новокзнецкая-220	220											223,16	-6,01
		Нагр	6	ГРЭС Беловская-220	220											223,21	-6,01
		Нагр	7	ПС Соколовская-220	220											223,59	-6,02
		Нагр	8	ПС Кузбасская-220	220											223,30	-6,01
		Нагр	10	HKA3-220	220			387,2	102,5							219,53	-8,22
0		Нагр	11	KMK-1-220	220			40,0	21,8							216,28	-11,10
1		Нагр	12	KMK-1-220	220			40,0	21,8							216,32	-11,04
2		Нагр	13	KMK-1-110	110			42,8	25,2						-9 400,0	114,88	-22,98
3		Нагр	14	ПС Северный Маган	110											114,91	-22,98
4		Нагр	15	ПС Опорная-3-110	110			110,5	32,8							114,47	-23,21
5		Нагр	16	ПС Опорная-6-110	110			139,6	68,0							113,97	-23,36
5		Нагр	17	ПС Северный Маган	110			50,5	23,3							109,46	-26,43
7		Нагр	18	ПС Ширпотреб-110	110			69,7	26,7							114,59	-23,18
3		Нагр	19	Центральная ТЭЦ 1	110											114,74	-23,04
9		Нагр	20	Центральная ТЭЦ 1	10											10,50	-22,10
D		Ген	21	ТЭЦ ЦКК Генератор	10					19,0	5,7	10,5	-19,0	29,0		10,50	-22,09
1		Нагр	100	АТДЦТН-500000/500	500											485,34	-5,90
2		Нагр	101	АТДЦТН-500000/500	500											485,34	-5,90

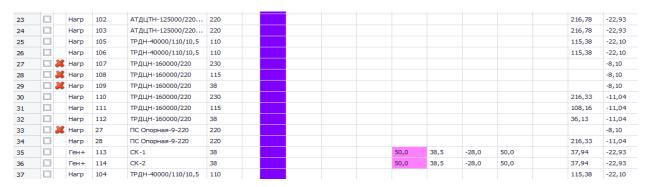


Рисунок 2.11 – Модель узлов в программном комплексе RastrWin3 ремонтного режима после установки БСК.

Рисунок 2.1 – Модель ветвей в программном комплексе RastrWin3 ремонтного режима после установки БСК.

Заключение

В выпускной квалификационной работе произведен сбор исходных данных по теме работы, на основании принципиальной схемы энергорайона, схемы замещения и исходных данных были смоделированы нормальный установившийся и ремонтный режим.

При анализе результатов установившегося режима недопустимых отклонений напряжения в узлах выявлено не было.

При расчете ремонтного режима при отключении ВЛ 220 кВ Новокузнецкая — Опорная-9. По результатам расчета ремонтного режима выявлены узлы электрической сети 110 кВ с недопустимым уровнем напряжения, вследствие чего было принято решение об установке компенсирующего устройства для регулирования напряжения.

В качестве оптимального устройства для регулирования напряжения выбрана батарея статических конденсаторов марки БСК-110-100 УХЛ1 в количестве двух штук.

Расчёт ремонтного режима после установки батареи статических конденсаторов показал, что их применение на ПС КМК-1 110 кВ эффективно.

В дипломной работе произведен экономический расчет, который заключался в определение капиталовложений при проведении технического мероприятия, трудоемкости выполнения работ и расчете материальных затрат НТИ.

Рассмотрен раздел производственной и экологической безопасности, в котором указаны требования и правила, предъявляемые к рабочему месту инженера-проектировщика.

					ФЮРА.13.03.0	2.004	П3	
Изи	Лист	№ докум.	Подп.	Дата				
Разр	раб.	Гашков А.Г				Лит.	Лист	Листов
· 1		Бацева Н.Л					65	2 % 2
					ЗАКЛЮЧЕНИЕ		ТПУ И	нЭО
Н. к	онтр.	Бацева Н.Л				Γp. 3-5A12		
							1 p. 3 c	

Список литературы

- 1. Общие данные Кузбасской ЭС URL: http://www.fsk-ees.ru (дата обращения март 2016).
- 2. Неуймин В.Г. Пособия по работе с программой RastrWin. Москва: Издательство ЭНАС, 2004. —316 с.: ил;
- 3. Программный комплекс«RastrWin3»,Неуймин Владимир Геннадьевич, Машалов Евгений Владимирович, Александров Александр Сергеевич, Багрянцев Алексей Александрович. 2012. с. 243
- 4. ГОСТ 721-77 (СТ СЭВ 779-77) Системы электроснабжения, сети, источники, преобразователи и приемник электрической энергии номинальные напряжения свыше 1000 В. Утвержден и введен в действие Постановлением Государственного комитета стандартов Совета Министров СССР от 27.05.77 № 1376
- 5. ГОСТ 14209-97 Руководство по нагрузке силовых масляных трансформаторов.
- 6. ГОСТ 32144-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения
- 7. Лычев П.В., Федин В.Т. Электрические системы и сети. Решение практических задач. Учебное пособие. М: Дизайн Про, 1997. 191 с
- 8. Общие требования к системам противоаварийной и режимной автоматики, релейной защиты и автоматики, телеметрической информации, технологической связи в ЕЭС России. Приложение 1 к приказу ОАО РАО «ЕЭС России» от 11.02.2008 № 57

					ФЮРА.13.03.0	2.004	П3				
Изи	Лист	№ докум.	Подп.	Дата							
Разр	раб.	Гашков А.Г				Лит.	Лист	Листов			
Рукс	OB.	Бацева Н.Л					66	2 8 2			
					СПИСОК ЛИТЕРАТУРЫ	ТПУ ИнЭО Гр. 3-5A12					
Н. к	контр.	Бацева Н.Л									
						17.301112					

- 9. Д. Л. Файбисовича. Справочник по проектированию электрических сетей ,под ред. 4-е изд., перераб. и доп. М. ЭНАС, 2012. 376 с. : ил.
- 10. В.А. Веников, В.И. Идельчик, М.С. Лисеев. Регулирование напряжения в электроэнергетических системах. М.: Энергоатомиздат, 1985. 216 с.
- С.С. Ананничева, А.А. Алексеев, А.Л. Мызин. Качество электроэнергии.
 Регулирование напряжения и частоты в энергосистемах. Екатеринбург УРФУ 2012 г 93 с.
- 12. Батареи статических кондецаторов 6-220 кВ URL: http://www.news.elteh.ru/arh/2007/43/34.php (дата обращения март 2016).
- 13. Гаврикова Н.А., Тухватулина Л.Р., Видяев И.Г. Финансовы менеджмент, ресурсоэффективность и ресурсосбережение. Издательство Томского политехнического университета 2014 г.
- 14. ГОСТ 12.1.009-86 Электробезопасность. Определения и термины. Утвержден и введен в действие Постановлением Государственного комитета стандартов Совета Министров СССР от 28 мая 1976 года № 1349
- 15. СанПиН 2.2.4.548-96. Гигиенические требования к микроклимату производственных помещений. Санитарные правила и нормы. Минздрав России. Москва 1997 год.
- 16. ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны Поправка введена к ГОСТ 12.1.005-88 от 01.04.2004
- 17. CH 2.2.4.2.1.8.562-96 Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки
- 18. ГОСТ 12.1.003-83. Шум. Общие требования безопасности.
- 19. СНиП 23 05 –95*. Нормы проектирования. Естественное и искусственное освещение. М.: Минстрой России, 2011

- 20. ГОСТ 27954-88 Видеомониторы персональных электронных вычислительных машин. Типы, основные параметры, общие технические требования
- 21. СанПиН 2.2.2.2.4.1340-03 Санитарно-эпидемиологические правила и нормативы.
- 22. ГОСТ 12.1.018-93. Пожаровзрывобезопасность статического электричества.
- 23. В. А. Веников, А. А. Глазунов, Л. А. Жуков и др.: Под редакцией В. А. Веникова, В. А. Строева. Электрические системы. Электрические сети: Учебник для электроэнергетических специализированных вузов. 2-ое изд., пеработанное и дополненное. М.: Высш. шк., 1998. 511 с.: ил.

,Приложение 1

Принципиальная схема ЭС

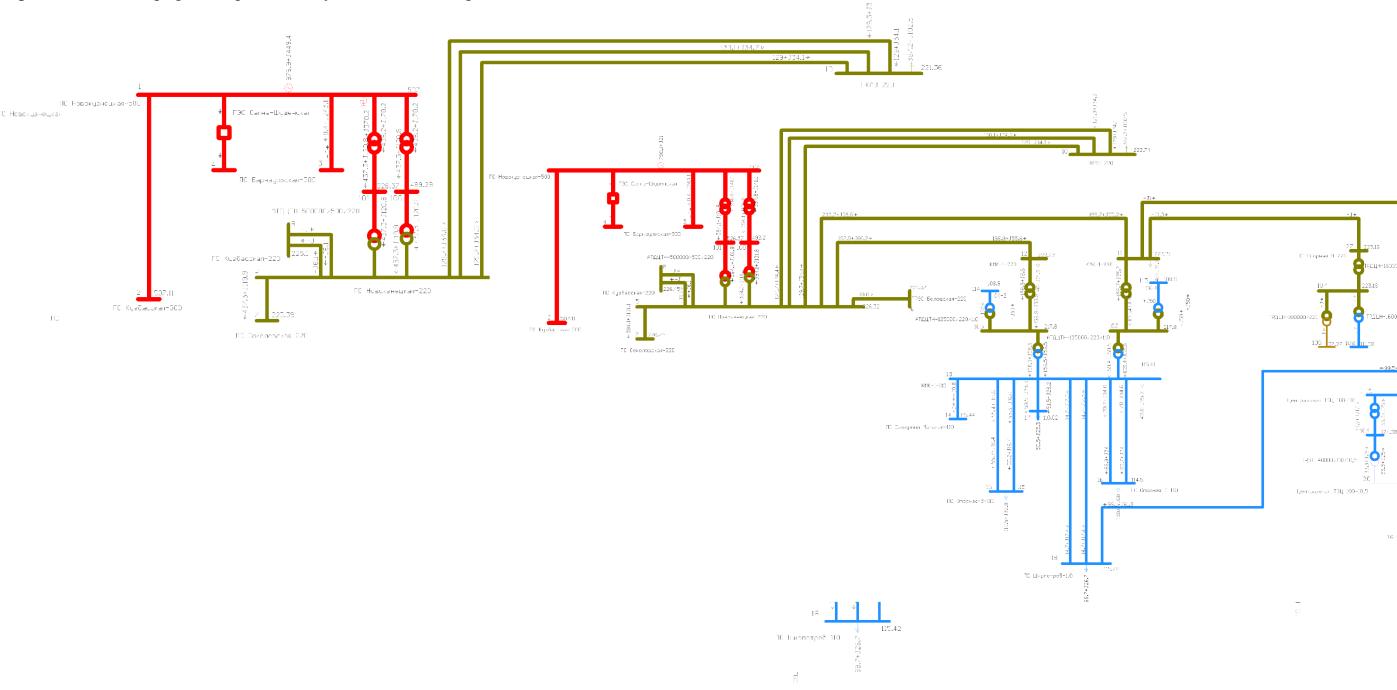
Приложение 2

Схема замещения рассматриваемого района

Приложение 3

Таблица 3.1- Расчетные данные установившегося режима

№	Тип	Название	U_ном	Р_н	Q_н	Р_г	Q_ г	V_зд	Q_min	Q_max	В_ш	V	Delta
1	База	ПС Новокузнецкая-500	500			872,7	500,0	507,0	-1000,0	1000,0	1440	507	
2	Нагр	ПС Кузбасская-500	500									507,11	0,00
3	Нагр	ПС Барнаульская-500	500									526,37	-0,21
4	Нагр	ГЭС Саяно-Шушенская	500										
5	Нагр	ПС Новокзнецкая-220	220									223,61	-5,89
6	Нагр	ГРЭС Беловская-220	220									223,66	-5,90
7	Нагр	ПС Соколовская-220	220									224,04	-5,91
8	Нагр	ПС Кузбасская-220	220									223,75	-5,90
10	Нагр	НКАЗ-220	220	219,98	102,5							219,98	-8,10
11	Нагр	KMK-1-220	220	40,0	21,8							218,69	-8,09
12	Нагр	KMK-1-220	220	40,0	21,8							218,22	-8,28
13	Нагр	KMK-1-110	110	42,8	25,2							109,53	-20,53
14	Нагр	ПС Северный Маганак- 110	110									109,56	-20,54
15	Нагр	ПС Опорная-3-110	110	110,5	32,8							109,10	-20,79
16	Нагр	ПС Опорная-6-110	110	139,6	68,0							108,57	-20,96
17	Нагр	ПС Северный Маганак- 110	110	50,5	23,3							103,78	-24,35


Продолжение Таблицы 3.1- Расчетные данные установившегося режима

No	Тип	Название	U_ном	Р_н	Q_н	Р_г	Q_ г	V_зд	Q_min	Q_max	В_ш	V	Delta
18	Нагр	ПС Ширпотреб-110	110	69,7	26,7							109,43	-20,78
19	Нагр	Центральная ТЭЦ 100- 110	110									109,96	-20,68
20	Нагр	Центральная ТЭЦ 100-	10									10,28	-19,73
		10,5											
21	Ген+	ТЭЦ ЦКК Генератор	10			19,0	29,0	10,5	-19,0	29,0		10,29	-19,72
		эквивалент											
27	Нагр	ПС Опорная-9-220	220									218,70	-8,09
28	Нагр	ПС Опорная-9-220	220									218,69	-8,09
100	Нагр	АТДЦТН-	500									486,40	-5,79
		500000/500/220											
101	Нагр	АТДЦТН-	500									486,40	-5,79
		500000/500/220											
102	Нагр	АТДЦТН-	220									206,73	-20,48
		125000/220/110											
103	Нагр	АТДЦТН-	220									206,73	-20,48
		125000/220/110											
104	Нагр	ТРДН-40000/110/10,5	110									113,01	-19,73
105	Нагр	ТРДН-40000/110/10,5	110									113,01	-19,73

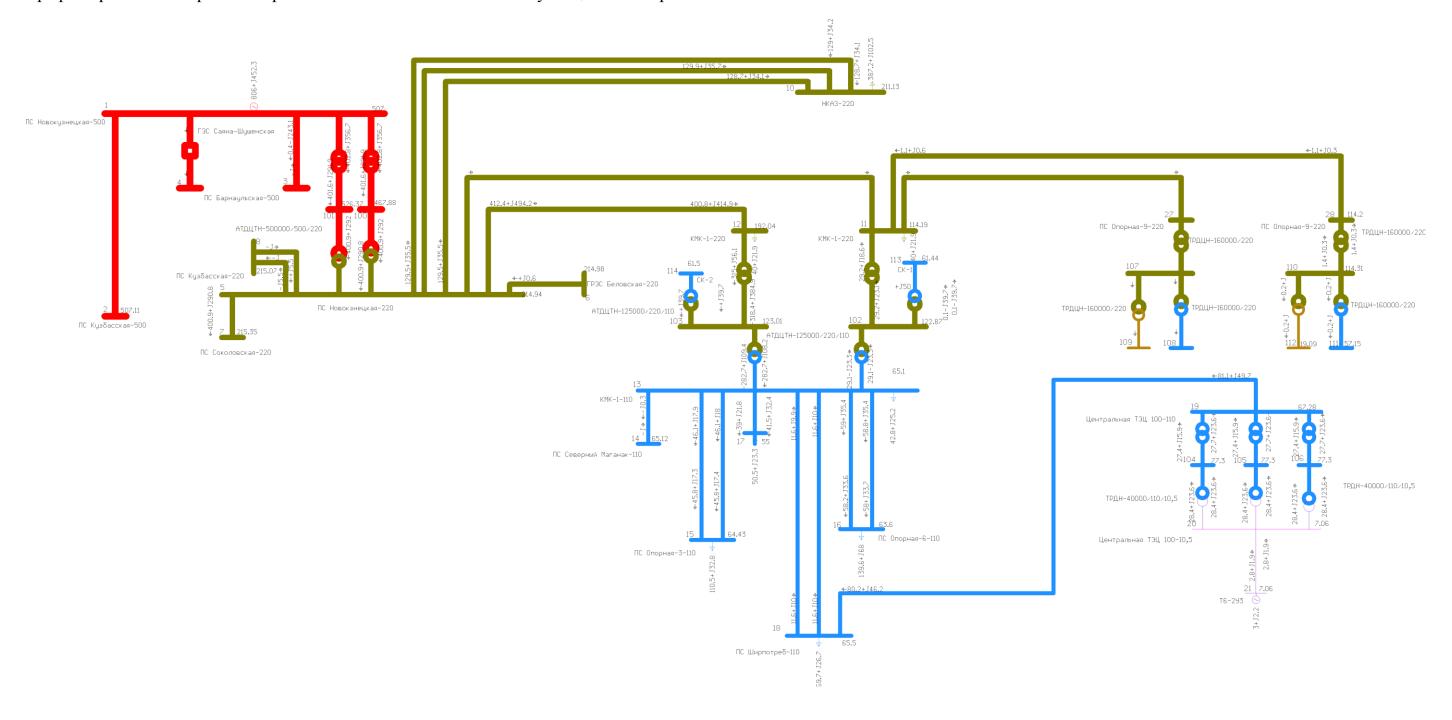
Продолжение Таблицы 3.1- Расчетные данные установившегося режима

№	Тип	Название	U_ном	Р_н	Q_н	Р_г	Q_ г	V_зд	Q_min	Q_max	В_ш	V	Delta
106	Нагр	ТРДН-40000/110/10,5	110									113,01	-19,73
107	Нагр	ТРДЦН-160000/220	230									218,70	-8,09
108	Нагр	ТРДЦН-160000/220	115									109,35	-8,09
109	Нагр	ТРДЦН-160000/220	38									36,52	-8,09
110	Нагр	ТРДЦН-160000/220	230									218,69	-8,09
111	Нагр	ТРДЦН-160000/220	115									109,35	-8,09
112	Нагр	ТРДЦН-160000/220	38									36,52	-8,09
113	Ген+	CK-1	38				50,0	38,5	-28,0	50,0		36,18	-20,48
114	Ген+	CK-2	38				50,0	38,5	-28,0	50,0		36,18	-20,48

Приложение 4- Графика нормального установившегося режима

Приложение 5

Таблица 5.1 - Расчетные данные ремонтного режима без регулирования при отключении ВЛ 220 кВ Новокузнецкая – Опорная-9


Тип	Номер	Название	U_ном	Р_н	Q_н	Р_г	Q_ г	V_зд	Q_min	Q_max	В_ш	V	Delta
База	1	ПС Новокузнецкая-500	500			884,9	856,7	507	-1000	1000	1440	501	
Нагр	2	ПС Кузбасская-500	500									501,1	0
Нагр	3	ПС Барнаульская-500	500									520,14	-0,21
Нагр	4	ГЭС Саяно-Шушенская	500										
Нагр	5	ПС Новокзнецкая-220	220									219,03	-6,19
Нагр	6	ГРЭС Беловская-220	220									219,08	-6,2
Нагр	7	ПС Соколовская-220	220									219,45	-6,21
Нагр	8	ПС Кузбасская-220	220									219,17	-6,2
Нагр	10	HKA3-220	220	387,2	102,5							215,31	-8,59
Нагр	11	KMK-1-220	220	40	21,8							206,17	-57,55
Нагр	12	KMK-1-220	220	40	21,8							206,26	-11,4
Нагр	13	KMK-1-110	110	42,8	25,2							102,05	-56,06
Нагр	14	ПС Северный Маганак-110	110									102,08	-56,07
Нагр	15	ПС Опорная-3-110	110	110,5	32,8							101,59	-56,6
Нагр	16	ПС Опорная-6-110	110	139,6	68							101,02	-56,97

Продолжение таблицы 5.1 - Расчетные данные ремонтного режима без регулирования при отключении ВЛ 220 кВ Новокузнецкая – Опорная-9

Тип	Номер	Название	U_ном	Р_н	Q_н	Р_г	Q_ г	V_зд	Q_min	Q_max	В_ш	V	Delta
Нагр	17	ПС Северный Маганак-110	110	50,5	23,3							95,76	-64,59
Нагр	18	ПС Ширпотреб-110	110	69,7	26,7							101,94	-56,59
Нагр	19	Центральная ТЭЦ 100-110	110									102,5	-56,36
Нагр	20	Центральная ТЭЦ 100-10,5	10									9,62	-54,39
Ген+	21	ТЭЦ ЦКК Генератор экв	10			19	29	10,5	-19	29		9,63	-54,37
Нагр	27	ПС Опорная-9-220	220										-8,1
Нагр	28	ПС Опорная-9-220	220									206,27	-57,4
Нагр	100	АТДЦТН-500000/500/220	500									476,52	-6,08
Нагр	101	АТДЦТН-500000/500/220	500									476,52	-6,08
Нагр	102	АТДЦТН-125000/220/110	220									192,62	-56,06
Нагр	103	АТДЦТН-125000/220/110	220									192,62	-55,85
Нагр	104	ТРДН-40000/110/10,5	110									105,74	-54,39
Нагр	105	ТРДН-40000/110/10,5	110									105,74	-54,39
Нагр	106	ТРДН-40000/110/10,5	110									105,74	-54,39
Нагр	107	ТРДЦН-160000/220	230										-8,1
Нагр	108	ТРДЦН-160000/220	115										-8,1
Нагр	109	ТРДЦН-160000/220	38										-8,1

Продолжение таблицы 5.1 - Расчетные данные ремонтного режима без регулирования при отключении ВЛ 220 кВ Новокузнецкая – Опорная-9

Тип	Номер	Название	U_ном	Р_н	Q_ н	Р_г	Q_ г	V_зд	Q_min	Q_max	В_ш	V	Delta
Нагр	110	ТРДЦН-160000/220	230									206,27	-55
Нагр	111	ТРДЦН-160000/220	115									103,13	-55
Нагр	112	ТРДЦН-160000/220	38									34,45	-55
Ген+	113	СК-1	38				50	38,5	-28	50		33,71	-56,06
Ген+	114	СК-2	38				50	38,5	-28	50		33,71	-55,85

Приложение 7- Расчетные данные по узлам ремонтного режима при отключении ВЛ 220 кВ Новокузнецкая – Опорная-9 и установки БСК.

№	Тип	Название	U_ном	Р_н	Q_н	Р_г	Q_ г	V_3д	Q_min	Q_max	В_ш	V	Delta
1	База	ПС Новокузнецкая-500	500			876,9	449,4	507,0	-1000,0	1000,0	1440	507	
2	Нагр	ПС Кузбасская-500	500									507,11	0,00
3	Нагр	ПС Барнаульская-500	500									526,37	-0,21
4	Нагр	ГЭС Саяно-Шушенская	500										
5	Нагр	ПС Новокзнецкая-220	220									225,99	-5,89
6	Нагр	ГРЭС Беловская-220	220									226,04	-5,89
7	Нагр	ПС Соколовская-220	220									226,42	-5,91
8	Нагр	ПС Кузбасская-220	220									226,12	-5,90
10	Нагр	HKA3-220	220	219,98	102,5							222,41	-8,07
11	Нагр	КМК-1-220	220	40,0	21,8							219,03	-40,04
12	Нагр	KMK-1-220	220	40,0	21,8							219,07	-10,84
13	Нагр	KMK-1-110	110	42,8	25,2						-9400	116,01	-37,65
14	Нагр	ПС Северный Маганак- 110	110									116,04	-37,65

Продолжение приложения 7 - Расчетные данные по узлам ремонтного режима при отключении ВЛ 220 кВ Новокузнецкая — Опорная-9 и установки БСК

№	Тип	Название	U_ном	Р_н	Q_н	Р_г	Q_г	V_зд	Q_min	Q_max	В_ш	V	Delta
15	Нагр	ПС Опорная-3-110	110	110,5	32,8							115,6	
16	Нагр	ПС Опорная-6-110	110	139,6	68,0							115,11	-20,96
17	Нагр	ПС Северный Маганак- 110	110	50,5	23,3							110,65	-24,35
18	Нагр	ПС Ширпотреб-110	110	69,7	26,7							115,64	-20,78
19	Нагр	Центральная ТЭЦ 100- 110	110									115,65	-20,68
20	Нагр	Центральная ТЭЦ 100- 10,5	10									10,5	-19,73
21	Ген+	ГЭЦ ЦКК Генератор экв.	10			19,0	29,0	10,5	-19,0	29,0		10,5	-19,72
27	Нагр	ПС Опорная-9-220	220										-8,09
28	Нагр	ПС Опорная-9-220	220									216,33	-8,09
100	Нагр	АТДЦТН- 500000/500/220	500									485,34	-5,79

Продолжение таблицы 7.1 - Расчетные данные по узлам ремонтного режима при отключении ВЛ 220 кВ Новокузнецкая – Опорная-9 и установки БСК

№	Тип	Название	U_ном	Р_н	Q_н	Р_г	Q_ г	V_зд	Q_min	Q_max	В_ш	V	Delta
101	Нагр	АТДЦТН- 500000/500/220	500									485,34	-5,79
102	Нагр	АТДЦТН- 125000/220/110	220									216,78	-20,48
103	Нагр	АТДЦТН- 125000/220/110	220									216,78	-20,48
104	Нагр	ТРДН-40000/110/10,5	110									115,38	-19,73
105	Нагр	ТРДН-40000/110/10,5	110									115,38	-19,73
106	Нагр	ТРДН-40000/110/10,5	110									115,38	-19,73
107	Нагр	ТРДЦН-160000/220	230										-8,09
108	Нагр	ТРДЦН-160000/220	115										-8,09
109	Нагр	ТРДЦН-160000/220	38										-8,09
110	Нагр	ТРДЦН-160000/220	230									216,33	-8,09
111	Нагр	ТРДЦН-160000/220	115									108,16	-8,09
112	Нагр	ТРДЦН-160000/220	38									36,13	-8,09
113	Ген+	CK-1	38				50,0	38,5	-28,0	50,0		37,94	-20,48
114	Ген+	CK-2	38				50,0	38,5	-28,0	50,0		37,94	-20,48