УДК 553.982:550.9

ЦИКЛИЧНОСТЬ ИЗМЕНЕНИЙ В НЕФТЯХ СОДЕРЖАНИЯ СЕРЫ И ПАРАФИНОВ В ЗАВИСИМОСТИ ОТ ВОЗРАСТА НЕФТЕВМЕЩАЮЩИХ ПОРОД

И.Г. Ященко

Институт химии нефти СО РАН. г. Томск E-mail: sric@ipc.tsc.ru

Проведен статистический анализ данных о содержании серы и парафинов в 13300 образцах кайнозойских, мезозойских и палеозойских нефтей в зависимости от возраста нефтевмещающих пород. Использованная в исследованиях база данных по химическим свойствам нефтей включает 149 основных нефтегазоносных провинций мира. Представлены результаты изучения взаимосвязи между распределением нефтей с различным содержанием серы и парафина и возрастом пород. Анализ изменений показателей химического состава нефтей показывает цикличность этих изменений и выявляет ее некоторые закономерности. Показано, что цикличность изменений химических свойств связана с цикличностью трансгрессий морей и изменения объемов захоронения органического вещества за геологическую историю Земли.

Введение

В [1, 2] показано, что циклические процессы, давно наблюдаемые в биосфере, гидросфере и атмосфере Земли, в последние годы стали довольно часто фиксироваться в литосфере, что свидетельствует о единстве основополагающих принципов развития Земли и окружающего пространства. Так, в [3–9] рассматривается цикличность нефтегазообразования в геологической истории Земли. В [3, 4] рассматривается цикличность изменения массы рассеянного органического вещества, которую авторы выделяют как самостоятельную осадочную оболочку стратисферы и называют углерод-водородной оболочкой Земли. В наших работах [10-12] показана цикличность в изменении содержания некоторых компонентов нефтей Евразии. Однако исследований взаимосвязи изменений химических свойств нефтей мира с циклическими процессами развития палеоокеанов, нефтеобразования и изменения массы углерод-водородной оболочки в истории Земли до сих пор не проводилось, что и явилось основной целью настоящей статьи. Указанные исследования были проведены с использованием информации из мировой базы данных (БД) по физико-химическим свойствам нефтей [13], созданной в Институте химии нефти СО РАН, которая в настоящее время включает более 13000 записей по всем основным нефтеносным бассейнам на территории всего мира. Известно, что нефть характеризуется большим количеством физико-химических показателей. Так как товарные свойства нефти в первую очередь определяются содержанием серы и парафинов, будем рассматривать далее в качестве основных именно эти показатели химического состава нефти.

Краткая характеристика информации из базы данных

В [3–8] исследования цикличности процессов нефтенакопления, изменения площади морей и изменения массы углерод-водородной оболочки проведены на основе анализа данных, распределенных по 22 стратиграфическим системам и отделам, взятым в интервале геологического времени от палеозоя до кайнозоя включительно. Для обеспечения возможности сопоставления с этими данными в нашей работе исследования изменений содержания в нефтях серы и парафинов были проведены на массивах данных, полученных из БД и сгруппированных по тем же 22 стратиграфическим системам и отделам, количество образцов в которых представлено в графическом виде на рис. 1. Табл. 1 характеризует объемы выборочных совокупностей образцов нефтей во всех рассматриваемых стратиграфических системах и отделах, информация о которых использовалась в дальнейшем анализе, и распределение информации по всем основным нефтегазоносным бассейнам мира.

Формирование углеводородов Земли является следствием единого процесса взаимодействия атмосферы, биосферы, гидросферы и литосферы [3, 4]. На рис. 1 отражены изменение массы углерод-водородной оболочки стратисферы [3, 4], распределение разведанных запасов нефти [6, 7], распределение величин площадей затопления суши [2] и распределение числа образцов из БД по стратиграфическим комплексам.

Из сопоставления кривых на рис. 1 видно, что формирование углерод-водородной оболочки, процессы нефтеобразования и развития палеоокеанов в истории Земли имеют колебательный характер. Первый всплеск обогащения осадочной оболочки органическим веществом приходится на кембрий-силур, с максимумом в ордовике. В этот период отмечаются обширные трансгрессии, расцвет и экспансия водорослей, первое угленакопление [3, 4]. Второй ярко выраженный подъем формирования углерод-водородной оболочки приходится на девон-карбон. По времени он совпадает с расцветом наземной растительности, формированием суперконтинента Пангеи и максимумом нефтенакопления. Следующий цикл обогащения осадочной оболочки органическим веществом - юрамел с богатой и разнообразной теплолюбивой растительностью. Отмечено в [6], что в этот период нефтенакопление имеет максимальное значение. И последнее увеличение захоронения органического вещества наблюдается в неогене с характерным максимумом нефтенакопления.

Геологическая эра		Обозначение	Общий объем выборки	Сера			Парафины				
	Стратиграф. системы и отделы			Среднее значение, мас. %	Количество образцов	Доверит. интервал	Среднее значение, мас. %	Количество образцов	Доверит. интервал	Нефтегазоносные бассейны мира	
Палеозой	Кембрий	E	253	0,460	148	0,071	1,433	111	1,985	Балтийский, Грин-Ривер, Западный Внутренний, Лено- Вилюйский, Лено-Тунгусский, Пенджабский, Сахаро- Ливийский	
	Ордовик	0	87	0,484	24	0,324	4,802	5	1,576	Балтийский, Биг-Хорн, Западный Внутренний, Мичиганский, Пермский, Сахаро-Ливийский, Уиллистонский	
	Силур	S	46	0,288	5	0,139	-	-	-	Западный Внутренний, Пермский, Предаппалачский, Тимано-Печорский	
	Нижний девон	D ₁	54	0,478	6	0,500	5,180	5	2,234	Волго-Уральский, Западно-Сибирский, Сахаро-	
	Средний девон	D ₂	259	0,672	136	0,106	5,930	123	0,660	Бофорта, Волго-Уральский, Западно-Канадский, Западно-Сибирский, Мичиганский, Тимано-Печорский, Шентрально-Предандийский	
	Верхний девон	D ₃	611	1,379	496	0,075	4,726	432	0,257	Волго-Уральский, Днепровско-Припятский, Западно- Канадский, Мичиганский, Предаппалачский, Прикаспийский. Сахаро-Ливийский. Тимано-Печорский	
	Нижний каменноугольный отдел	C ₁	1533	1,869	1056	0,076	4,600	922	0,135	Биг-Хорн, Волго-Уральский, Грин-Ривер, Днепровско- Припятский, Западно-Канадский, Иллинойский, Прикаспийский, Сахаро-Ливийский, Суэцкого залива, Тимано-Печорский, Уиллистонский, Уинд-Ривер	
	Средний каменноугольный отдел	C ₂	689	1,695	387	0,098	4,399	342	0,225	Волго-Уральский, Днепровско-Припятский, Прикаспийский, Тимано-Печорский	
	Верхний каменноугольный отдел	C ³	192	0,903	71	0,224	3,625	16	1,258	Биг-Хорн, Волго-Уральский, Грин-Ривер, Днепровско- Припятский, Западный Внутренний, Иллинойский, Крейзи-Булл-Маунтинс, Парадокс, Паудер-Ривер, Пермский, Северо-Крымский, Уинд-Ривер, Уинта- Пайсенс, Ханна-Ларами, Центрально-Европейский	
	Нижняя пермь	P ₁	411	1,617	171	0,222	3,044	137	0,398	Волго-Уральский, Днепровско-Припятский, Енисейско- Анабарский, Лено-Вилюйский, Пермский, Прикаспийский, Северо-Кавказский, Тимано-Печорский	
	Верхняя пермь	P ₂	231	1,362	57	0,352	4,485	45	1,360	Биг-Хорн, Волго-Уральский, Днепровско-Припятский, Лено-Вилюйский, Перт, Пермский, Прикаспийский, Северо-Кавказский, Тимано-Печорский, Уинд-Ривер, Центрально-Европейский	
Мезозой	Триас	Tr	326	0,632	114	0,195	8,315	117	1,588	Биг-Хорн, Венский, Джунгарский, Днепровско- Припятский, Енисейско-Анабарский, Западно- Английский, Лено-Вилюйский, Ордосский, Паннонский, Персидского залива, Предкарпатско-Балканский, Прикаспийский, Сахаро-Ливийский, Северо-Кавказский, Сицилийский, Тимано-Печорский, Тургайский, Уинд- Ривер	
	Нижняя юра	J	129	0,281	46	0,084	10,298	43	3,484	Амударьинский, Боуэн-Сурат, Западно-Сибирский, Лено-Вилюйский, Персидского залива, Предрифейский, Прикаспийский, Северо-Кавказский, Центрально- Европейский	
	Средняя юра	J ₂	678	0,485	337	0,078	8,812	380	0,906	Амударьинский, Англо-Парижский, Венский, Днепровско-Припятский, Западно-Канадский, Западно- Сибирский, Персидского залива, Предкарпатско- Балканский, Прикаспийский, Северо-Кавказский, Сицилийский, Тургайский, Центрально-Европейский	
	Верхняя юра	J	978	0,597	531	0,066	5,130	439	0,458	Аквитанский, Амударьинский, Афгано-Таджикский, Грин-Ривер, Западно-Сибирский, Каракумский, Карпатский, Лено-Вилюйский, Мексиканского залива, Паудер-Ривер, Персидского залива, Прикаспийский, Рейнский, Реконкаву, Сан-Хуан, Северо-Кавказский, Северо-Кубинский, Северо-Предкарпатский, Сычуаньский, Тургайский, Уиллистонский, Уинта- Пайсенс, Ханна-Ларами, Центрально-Европейский	

Таблица 1. Распределение содержания в нефтях серы и парафинов по стратиграфическим системам и отделам

- 1

Продолжение таблицы 1

			0067		4405	0.054		1000	a	
	пижнии мел		2207	0,744	1185	0,054	4,338	1038	0,416	Аквитанский, Амударьйнский, Аркпическої о склона Аляски, Афгано-Таджикский, Бофорта, Волго- Уральский, Восточно-Гобийский, Восточно- Средиземноморский, Денвер, Джунгарский, Енисейско- Анабарский, Западно-Канадский, Западно-Сибирский, Западно-Черноморский, Каракумский, Кванза- Камерунский, Маракайбский, Мексиканского залива, Норт-Мидл-Парк, Паудер-Ривер, Персидского залива, Прикаспийский, Реконкаву, Сахаро-Ливийский, Северо- Кавказский, Северо-Крымский, Северо-Кубинский, Сунляо, Суэцкого залива, Таримский, Тургайский, Уиллистонский, Уинд-Ривер, Ферганский, Ханна- Ларами, Центрально-Европейский, Южно-Каспийский, Эспириту-Санту
	Верхний мел	K ₂	492	1,314	181	0,318	5,902	102	0,962	Адриатический, Амударьинский, Арктического склона Аляски, Афгано-Таджикский, Биг-Хорн, Верхнеамазонский, Восточно-Гобийский, Грин-Ривер, Енисейско-Анабарский, Западно-Канадский, Западно- Сибирский, Кванза-Камерунский, Мексиканского залива, Паннонский, Персидского залива, Прикаспийский, Сан-Хуан, Сахаро-Ливийский, Северо- Кавказский, Северо-Кубинский, Северо- Предкарпатский, Суцкого залива, Таримский, Уинд- Ривер, Центрально-Европейский, Центральной Депрессии, Южно-Каспийский
	Нижний палеоген	Pg₁	259	2,259	136	0,363	5,840	100	0,774	Амударьинский, Афгано-Таджикский, Гипсленд, Карпатский, Маракаибский, Сахаро-Ливийский, Северо- Кариааский, Фаракаибский, Сахаро-Ливийский, Северо-
	Средний палеоген	Pg ₂	434	0,690	204	0,118	6,273	184	0,611	Кавказский, Ферганский, центрально-теропеиский Афгано-Таджикский, Баринас-Апуре, Венский, Верхней и Средней Магдалены, Гипсленд, Грейт-Валли, Грин- Ривер, Гуаякиль-Прогрессо, Камбейский, Карпатский, Кванза-Камерунский, Маракаибский, Мексиканского залива, Пенджабский, Персидского залива, Сахаро- Ливийский, Северо-Кавказский, Суэцкого залива, Уинта- Пайсенс, Ферганский, Южно-Каспийский, Южно- Тельский
йнозой	Верхний палеоген	Pg₃	511	0,518	234	0,089	6,196	199	0,555	Ассамский, Афгано-Таджикский, Вентура-Санта- Барбара, Верхней и Средней Магдалены, Карпатский, Маракаибский, Мексиканского залива, Нижней Магдалены, Оринокский, Персидского залива, Предкарпатско-Балканский, Преднаньшанский, Рейнский, Ронский, Сахаро-Ливийский, Северо- Кавказский, Таримский, Ферганский, Центрально- Иранский, Южно-Каспийский
Kai	Нижний неоген	Ng	981	0,589	504	0,089	3,009	377	0,387	Адриатический, Акита, Ассамский, Венский, Вентура- Санта-Барбара, Восточно-Калимантанский, Гвинейского залива, Грейт-Валли, Джунгарский, Камбейский, Карпатский, Кванза-Камерунский, Лос-Анджелес, Маракаибский, Мексиканского залива, Ниагата, Оринокский, Охотский, Паннонский, Папуа, Пенджабский, Персидского залива, Предкарпатско- Балканский, Санта-Мария, Саравакский, Северо- Кавказский, Северо-Крымский, Сузцкого залива, Таримский, Ферганский, Хаф-Мун-Салинас-Кайама, Центрально-Суматринский, Южно-Каспийский, Южно- Лусонский, Ямагата
	Верхний неоген	Ng ₂	519	0,287	248	0,044	5,016	244	0,648	Акита, Вентура-Санта-Барбара, Гвинейского залива, Грейт-Валли, Исикари, Лос-Анджелес, Мексиканского залива, Паннонский, Пенджабский, Предкарпатско- Балканский, Санта-Мария, Саравакский, Северо- Кавказский, Фанг, Ферганский, Южно-Каспийский

Во временном ходе суммарной кривой трансгрессий [2] также отмечается 4 цикла: первый – в интервале от венда до силура с максимумом в ордовике; следующий – в интервале времени от верхнего девона до верхнекаменноугольного отдела с максимумом в нижнем каменноугольном отделе; третий пик по величине обнаруживается в период от верхней юры до верхнего мела и последний пик – это неогеновый.

Согласно [2], колебания уровня Мирового океана за последние 570...600 млн лет имели максимумы в средних частях геологических эр развития Земли (палеозой, мезозой, кайнозой). Области спада кривой колебаний уровня Мирового океана на рис. 1 соответствуют расположению континентов в течение фанерозоя [6]: 1) минимум кривой трансгрессии в период раннего-среднего палеозоя, когда континенты в основном находились близ экватора в южном полушарии; 2) минимум кривой трансгрессии в период позднего палеозоя-мезозоя, когда континенты выстроились примерно по меридиану, образуя новую Пангею; 3) минимум кривой трансгрессий в период мезозоя-кайнозоя.

Рис. 1. Связь нефтеобразования с формированием углеродводородной оболочки, уровнем трансгрессий и распределением числа образцов в БД в фанерозое

В распределении числа образцов нефтей выделяются также четыре пика – первый максимум в интервале от венда до силура, второй максимум – в интервале от среднего девона до верхнего каменноугольного отдела, третий максимум – от верхней юры до верхнего мела и четвертый максимум – в неогене (рис. 1).

Как видно из рис. 1, запасы нефти в недрах строго соответствуют колебаниям темпов роста углерод-водородной оболочки и стадиям образования палеоокеанов. Совпадение кривых дает основание утверждать о коррелируемости этих природных процессов, коэффициенты корреляции представлены в табл. 2.

Таблица 2. Значения коэффициентов корреляции между изменениями во времени относительной площади затопления суши, запасов нефти, массы углерод-водородной оболочки и числа образцов нефтей в БД

	Относит. площадь затопления суши по [2]	Запасы нефти [6]	Масса углерод- водородной оболочки по [3, 4]	Количество образцов в БД
Относительная площадь затоп- ления суши по [2]	1	0,02	0,45	0,13
Запасы нефти [6]	0,02	1	0,64	0,71
Масса углерод- водородной оболочки по [3, 4]	0,45	0,64	1	0,74
Количество образцов в БД	0,13	0,71	0,74	1

Коэффициент корреляции между количеством записей из БД и объемов запасов нефтей [6] достаточно велик и равен 0,71, а между количеством записей из БД и массой углерод-водородной оболочки [3, 4] – 0,74. Заметим, что достаточно высокая корреляция численности нефтяных образцов БД и изменений масс разведанных запасов нефти и углерод-водородной оболочки является показателем репрезентативности информации, собранной в базе данных [13]. В данном случае репрезентативность – это представленность характеристик мировых нефтей в выборочной совокупности, которой и является БД. Таким образом, корреляционные зависимости между нефтями, представленными в БД, и изменениями объемов запасов нефтей [6] и захороненного органического вещества [3, 4] с достаточно большой вероятностью представляют в целом свойства мировых нефтям.

Распределение нефтей по возрасту в зависимости от их химических свойств

Для обеспечения возможности сопоставления данных об изменении содержания серы и парафинов мировых нефтей (см. табл. 1) с изменением площади морей и объмов захоронения органического вещества за геологическую историю Земли исследования были проведены на массивах данных, полученных из БД и сгруппированных по соответствующим стратиграфическим системам и отделам. Как видно из табл. 1, сравнительно большой объем использованных для исследования данных позволяет получить достаточно належные выволы статистического анализа закономерностей распределения нефтей по содержанию серы и парафинов в зависимости от возраста, что подтверждается малой шириной доверительных интервалов по сравнению со средними значениями содержания серы и парафинов.

Рис. 2. Изменение содержания серы в нефтях и относительной площади затопления по стратиграфическим комплексам

На рис. 2, где отрезки вертикальных прямых обозначают ширину доверительных интервалов с доверительной вероятностью 0,95, представлено изменение площади платформенных морей и содержания в нефтях серы во времени, из сопоставления которых можно сделать вывод о согласованности их изменений. Этот вывод можно интерпретировать следующим образом: минимумы на графиках временных изменений указанных величин (рис. 2) приблизительно совпадают с геократическими эпохами [5] в геологической истории Земли, характерной особенностью которых является регрессия морей с приподнятых континентов. Известно [5], что геократические эпохи всегда были приурочены к заключительным стадиям геотектонических циклов. Минимумы средних значений содержания серы в девоне, триасе-юре и неогене совпадают с геократическими эпохами, связанными с

регрессиями океана. Следовательно, формирование нефтей в эти периоды происходило в континентальных условиях, которые связаны с заключительными стадиями геотектонических циклов и имели место на рубеже байкальского и каледонского циклов (в период перехода от протерозоя к фанерозою), на рубеже каледонского и герцинского циклов (силур, девон), на рубеже герцинского и альпийского циклов (триас) и также наблюдаются и в современную эпоху, когда заканчивается альпийский цикл геологической истории Земли.

Максимальные значения представленных на рис. 2 величин содержания серы, относящиеся к срединным периодам каледонского, герцинского и альпийского циклов, можно связывать с трансгрессией Мирового океана, способствовавшей интенсификации процессов накопления в осадочной оболочке карбонатного и органического углерода и росту интенсивности нефтеобразования. В эти трансгрессивные эпохи наблюдается максимумы временных изменений содержания серы на рис. 2 в следующие интервалы времени: в каледонском (в интервале времени от кембрия до ордовика), в герцинском (в интервале времени от позднего девона до среднего каменноугольного отдела и перми) и в альпийском (в интервале времени от нижнего мела ло среднего палеогена) шиклах. На основе выше изложенного можно сделать вывод о том, что повышенное содержание серы может служить признаком морского происхождения нефтей. Данные результаты подтверждаются исследованиями изменения содержания серы в нефтях в зависимости от глубины залегания [14] – с уменьшением глубины залегания содержание серы в нефтях увеличивается.

Рис. 3. Изменение содержания серы в нефтях и массы углерод-водородной оболочки по стратиграфическим комплексам

Эти выводы подтверждаются на рис. 3, где максимальные значения содержания серы в нефтях в основном совпадают с максимумами изменения массы углерод-водородной оболочки Земли в каледонском (расцвет и экспансия водорослей), герцинском (расцвет и экспансия наземной растительности) и альпийском циклах (расцвет и экспансия теплолюбивых растений).

На рис. 4 представлено изменение площади платформенных морей и содержания в нефтях парафинов во времени, из сопоставления которых

можно сделать вывод о противоположной согласованности их изменений. В отличие от серы содержание парафинов на рубежах смены геотектонических циклов принимает максимальное значение, что на основе выше изложенного позволяет сделать вывод о том, что повышенное содержание парафинов может служить признаком континентального происхождения нефтей. Эти выводы подтверждаются в нашей работе [14] – с увеличением глубины залегания нефтей содержание парафинов увеличивается.

Рис. 4. Изменение содержания парафинов в нефтях и относительной площади затопления по стратиграфическим комплексам

Рис. 5. Изменение содержания парафинов в нефтях и массы углерод-водородной оболочки по стратиграфическим комплексам

Аналогично тенденциям на рис. 3, на рис. 5 при анализе изменений содержания парафинов в нефтях и массы углерод-водородной оболочки проявляются противоположные тенденции: максимумы содержания парафинов в течение времени силурдевон, триас-юра и палеоген-неоген совпадают с периодами ослабления темпов захоронения органических остатков, т.е. с минимумами изменения массы углерод-водородной оболочки.

Заключение

Таким образом, рассмотренная цикличность в изменениях содержания серы и парафинов в геологическом времени может быть объяснена с позиции теории геотектонической цикличности, согласно которой на рубеже смены геотектонических циклов трансгрессии Мирового океана и увеличение объемов захоронения в породах органического вещества сменяются регрессиями морей, поднятием суши и уменьшением объемов захоронения органического вещества.

В геократических эпохах в результате подъема континентов сокращается скорость накопления органического вещества и изменяются геодинамические условия состояния нефтевмещающих отложений, что вызывает уменьшение интенсивности процесса нефтеобразования и способствует лучшей сохранности высокомолекулярных соединений

СПИСОК ЛИТЕРАТУРЫ

- Кузнецов О.Л., Берри Б.Л., Баренбаум А.А. Природные циклы и экологическое прогнозирование // Циклы природных процессов, опасных явлений и экологическое прогнозирование. Матер. Междунар. конф. в 2-х т. – М.: Изд-во РАЕН, 1991. – Т. 1. – С. 6–26.
- Назарова А.Л., Назаров Н.К. Этапность геологического развития // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2003. – № 11. – С. 13–14.
- Трофимук А.А., Молчанов В.И., Параев В.В. Биогенный кислород атмосферы — эквивалент углеводородной оболочки во взаимодействии внешних геосфер // Вестник ОГГГГН РАН. — 2000. — № 3 (13) (http://www.scgis.ru/).
- Молчанов В.И., Параев В.В. Фанерозойская история взаимодействия геосфер (в развитие творческого наследия академика А.Л. Яншина) // Вестник ОГГГГН РАН. - 2000. — № 4 (14) (http://www.scgis.ru/).
- 5. Ронов А.Б. Стратисфера, или осадочная оболочка Земли (количественное исследование). — М.: Наука, 1993. — 144 с.
- Вышемирский В.С., Конторович А.Э. Циклический характер нефтенакопления в истории Земли // Геология и геофизика. – 1997. – Т. 38. – № 5. – С. 907–918.
- Вышемирский В.С., Конторович А.Э. Эволюция образования углеводородных газов в истории Земли // Геология и геофизика. – 1998. – Т. 39. – № 10. – С. 1392–1401.
- Вышемирский В.С., Конторович А.Э. Циклический характер нефте- и газообразования в истории Земли // Органическая геохимия нефтепроизводящих пород Западной Сибири —

нефти, в том числе и парафинов. Отметим, что, как показано в работе [14], с увеличением глубины залегания нефтей содержание серы понижается, а содержание парафинов увеличивается, что также может служить объяснением того, что за геологическую историю Земли нефти в геократических циклах характеризуются повышенным содержанием парафинов и пониженным содержанием серы.

— Матер. науч. совещ. 12—14 октября, 1999 г. — Новосибирск: Изд-во СО РАН, НИЦ ОИГГМ. — 1999. — С. 6—9.

- 9. Гаврилов В.П. Черное золото планеты. М.: Недра, 1990. 160 с.
- Полищук Ю.М., Ященко И.Г. Содержание смол и асфальтенов в нефтях Евразии в зависимости от возраста пород // Новые идеи в геологии и геохимии нефти и газа: Матер. 5 Междунар. конф. в 2-х т. — М.: Изд-во Моск. ун-та, 2001. — Т. 2. — С. 370—373.
- Полищук Ю.М., Ященко И.Г. Сравнительный анализ нефтей по содержанию смол и асфальтенов в зависимости от возраста // Новые идеи в геологии и геохимии нефти и газа. К созданию общей теории нефтегазоносности недр: Матер. 6 Междунар. конф. в 2-х т. – М.: ГЕОС, 2002. – Т. 2. – С. 96–100.
- Полищук Ю.М., Ященко И.Г. О цикличности изменений химических свойств нефтей в зависимости от их возраста // Нефтегазовому образованию в Сибири 50 лет: Матер. Междунар. конф., посвященной 50-летию кафедры геология и разработка нефтяных месторождений (горючих ископаемых и нефти). — Томск: ТПУ. – 2002. – С. 105–107.
- Ан В.В., Козин Е.С., Полищук Ю.М., Ященко И.Г. База данных по химии нефти и перспективы ее применения в геохимических исследованиях // Геология нефти и газа. 2000. № 2. — С. 49—51.
- Полищук Ю.М., Ященко И.Г. Пространственная изменчивость химического состава нефтей Евразии // Геология нефти и газа. – 2001. – № 5. – С. 40–44.

УДК 550.4.43:666

ГЕТЕРООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ СВОБОДНЫХ И СВЯЗАННЫХ ЛИПИДОВ СОВРЕМЕННОГО ОСАДКА ОЗЕРА КОНТИНЕНТАЛЬНОГО ТИПА

Е.Б. Голушкова*, Т.А. Сагаченко**, В.Н. Буркова**

*Томский политехнический университет. Тел.: (382-2)-56-34-74 **Институт химии нефти СО РАН. г. Томск

Приводятся данные сравнительного анализа химического состава гетероорганических компонентов в свободных и связанных липидах современного осадка континентального типа.

Введение

В современных представлениях о процессах нефтеобразования отводится особая роль осадочным липидам. Считается, что липиды органического вещества (ОВ) являются исходным материалом для образования керогена, деструкция которого в зоне катагенеза приводит к генерации нефтяных соединений [1].

Различают свободную и связанную формы липидов. Предполагают, что в осадках липиды связаны с керогеном, гуминовыми веществами и минеральной матрицей, что осуществляется посредством хи-