и непакетированного), образец зеленого китайского чая «Бань Шэнь» (непакетированного), образец зеленого чая «Принцесса Ява» (пакетированный). В ходе эксперимента проведены следующие операции: нагревание, фильтрование, осаждение ацетатом свинца, отстаивание, промывание и высушивание, а так же качественные реакции: с хлоридом железа (III) на присутствие танина, с концентрированной азотной кислотой и мурексидную реакцию для обнаружения кофениа [4–5].

Приступая к работе, мы выдвинули гипотезу о том, что кофеина и танина в зеленом чае содержится больше, чем в черном чае. Выдвинутая нами гипотеза подтвердилась. В результате проведения исследования можно сделать выводы:

Список литературы

- 1. Дехтяр Б.С. Живительная сила чая.— М.: Крон-Пресс, 1996.— 240с.
- 2. Похлебкин В.В. Чай: Его типы, свойства, употребление.— М.: Центр полиграф, 2001.
- 3. Гиляров М.С., Баев А.А. Биологический энциклопедический словарь.— М.: Сов. Энцикло-

- 1. Наибольшей биологической ценностью и антиоксидантными свойствами из исследуемых нами образцов, обладает зеленый чай непакетированный, произведенный на чайных плантациях Китая.
- 2. Из образцов черного чая наибольшее содержание кофеина и танина обнаружено в пакетированном чае «Принцесса Канди»;

Практическая значимость нашей работы видится в использовании результатов исследования на уроках химии и биологии с целью расширения и углубления знаний учащихся о способах определения качественного состава биологически активных веществ их воздействии на организм, для составления в качестве рекомендаций памятки по использованию различных сортов чая.

- педия, 1989.-831с.
- 4. Ольгин О.М. Опыты без взрывов. Издательство второе, переработанное.— М.: Химия, 1986.—192с.
- 5. ГОСТ 19885-74 Чай. Методы определения содержания танина и кофеина.

ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ МОЛОЧНОЙ КИСЛОТЫ РЕФРАКТОМЕТРИЧЕСКИМ МЕТОДОМ

Г.В. Сумин¹, Г.И. Хрипунов¹ Научный руководитель – аспирант, инженер В.Н. Глотова²

¹Муниципальное бюджетное образовательное учреждение лицей при ТПУ 634028, Россия, г. Томск, ул. А. Иванова 4, themrbrast@gmail.com

²Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30

В наши дни разработки в области биоразлагаемых полимеров крайне актуальны, т. к. полимеры на основе нефтяных продуктов изрядно загрязняют окружающую среду в связи с длительностью срока разложения изделий из них.

Биоразлагаемые полимеры – высокомолекулярные соединения, содержащие в своем составе вещества из возобновляемого сырья (целлюлоза, крахмал, молочная кислота, природная смола, т.д.), способные к разложению и компостированию в течение определенного периода времени [1]. Например, время разложения биодеградируемого полимера Biopol (фирма ICI, Великобритания), составляет от 6 до 36 недель. Данные полимеры уникальный заменитель сырья для производства различных упаковок, одноразовой

посуды и различных пленок, но на этом область их применения не ограничена [2]. Ввиду своей биосовместимости, эти полимеры широко применяются в медицине для производства хирургических нитей и штифтов, матриксов, а также в системах пролонгированной доставки лекарств. Существует несколько видов сырья для производства биоразлагаемых полимеров - основным из них является молочная кислота (МК), получаемая из крахмала, сахара, пшеничных зерен, очистков картофеля, целлюлозы. Достаточно востребованным на рынке биоразлагаемым полимером медицинского назначения является полилактид- продукт полимеризации лактида (димера МК) [1]. Поскольку сырьем для получения лактида служат водные растворы МК различной концентрации, то возникает необходимость входного контроля концентрации МК. Для этого используют различные методы (титрование, высокоэффективную жидкостную хроматографию, газовую хроматографию/масс-спектрометрии (ГХМС) и т.д. Эти методы требуют специальной аппаратуры, реактивов и занимают много времени на анализ сырья.

Поэтому представляло интерес исследовать возможность применения метода рефрактометрии [3] для определения концентрации товарной молочной кислоты. С этой целью были приготовлены растворы с различной концентрацией МК от 5–80% (с шагом в 5%). Далее для каждого исследуемого образца определяли показатель преломления раствора на рефрактометре AR 12. В результате работы были получены данные, приведенные в таблице 1, на основе которых был также построен график зависимости показателя преломления от концентрации МК.

Выводы:

1. Показано, что можно использовать метод рефрактометрии для определения концентрации

Список литературы

1. Вильданов Ф.Ш. Биоразлагемые полимеры современное состояние и перспективы использования / Башкирский химический журнал, 2012.—№4.— С.135—139.

Таблица 1. Экспериментальные данные для раствора МК

Концен- трация МК, (%)	Показатель прелом- ления	Концен- трация МК, (%)	Показатель прелом- ления
0	1,3333	45	1,389
5	1,3404	50	1,391
10	1,3435	55	1,3951
15	1,3501	60	1,3974
20	1,3534	65	1,4001
25	1,361	70	1,408
30	1,373	75	1,411
35	1,3789	80	1,424
40	1,383		

молочной кислоты в товарном продукте, причем наблюдается прямолинейная зависимость показателя преломления от концентрации МК в растворе в интервале 5-80%.

- 2. При увеличении концентрации МК более 80% наблюдается отклонения от этой зависимости вследствие образования димеров, тримеров, тетрамеров МК.
- 2. Биоразлагаемые полимерные материалы [Эл. pecypc]. URL:http://ref.unipack.ru/13/.
- 3. Иоффе Б.В. Рефрактометрические методы химии.— Л.: Химия, 1983.— 351с.

УДИВИТЕЛЬНЫЙ ГРАФИТ

М.В. Суслова

Научный руководитель – учитель химии Т.А. Дубок

Муниципальное автономное общеобразовательное учреждение «Итатская средняя общеобразовательная школа» Томского района 634542, Россия, Томская обл., Томский район, с. Томское, ул. Маяковского 2, tomschool@mail.ru

Мы пишем простым карандашом, стержень которого выполнен из графита. Возникла проблема исследования: «Какие опыты можно провести с графитом, чтобы изучить его свойства?»

Объект исследования: стержень простого карандаша и порошковый графит. Предмет исследования: строение, свойства графита. Цель исследования: подобрать и провести серию опытов с графитом для изучения его свойств. Гипотеза исследования связана с предположением о том, что в условиях школьной лаборатории можно провести опыты, позволяющие изучить состав и свойства графита. А также, используя необходимые вещества, можно создать само-

дельный карандаш.

Задачи исследования:

- 1. Выяснить, что такое стержень простого карандаша.
- 2. Провести эксперименты с графитом с целью выявления его свойств.
 - 3. Узнать историю появления карандаша.
- 4. Провести анкетирование ребят и учителей об использовании карандашей.
- 5. Изготовить самодельный карандаш из порошкового графита.

Методы исследования:

1. Метод анализа синтеза литературы по