Выводы. Длительность механической активации оказывает влияние на пористость спеченной стали, а также форму и размер пор. Увеличение времени механического воздействия в планетарной мельнице на порошковые композиции с 1 минуты до 10 минут приводит к росту пористости спечённых сталей в пять раз и росту размера пор примерно в 2 раза.

Список литературы

- 1. Малкин А.И., Киселев М.Р., Клюев В.А. и др. Влияние механоактивации на теплоемкость порошкообразного вольфрама // Письма в ЖТФ. -2012.- Т. 38.- № 11.- С. 26-30.
- 2. Полубояров В. А. Лапин А.Е., Коротаева З.А. и др. Влияние механической активации металлических порошков на их реакционную способность и свойства плазменных покрытий // Химия в интересах устойчивого развития. 2002. № 10. С. 219-225.

ВЛИЯНИЕ ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА СВОЙСТВА И СТРУКТУРУ АЛЮМИНИЕВОГО СПЛАВА Д16

<u>А.А ДРОНОВ</u>, О.Ю. ВАУЛИНА Томский политехнический университет E-mail: kolgay@tpu.ru

EFFECT OF HEAT TREATMENT ON THE PROPERTIES AND STRUCTURE OF ALUMINUM ALLOY D16

A.A DRONOV, O.Y. VAULINA
Tomsk Polytechnic University
E-mail: kolgay@tpu.ru

Введение. В настоящее время, промышленные производства нуждаются в качественных цветных сплавах, соответствующие параметрам ГОСТ. Исследование металла на его соответствие перед дальнейшей обработкой является важным аспектом. Работа выполнялась в рамках предприятия ООО «Технотрон». На завод поступил материал, из которого необходимо было изготовить деталь — обечайку. Цель работы: определить марку материала, провести необходимую обработку для получения требуемых свойств для детали.

Методики исследования. Поверхность образцом готовили стандартными методами – шлифовка, полировка, травление (HNO_3 + вода, соотношение 1 к 4). Металлографические исследование проводили на металлографическом микроскопе «ЛабоМет-И». Химическийсостав сплава определяли двумя методами - микрорент-геноспектральный анализ на растровом электронном микроскопе VEGA Tescan и с помощью экспресс-анализатора металла Niton XL3t GOLDD. Измерение микротвердости проводили по ГОСТ 9450-76 с использованием микротвердомера ПМТ-3 (нагрузка - 100 г). Твердость по Бринеллю - использовался пресс, диаметр шарика 5 мм, испытательная нагрузка 2452 H (250 кгс) и коэффициент K = 10.

Результаты и обсуждение. На предприятие поступил материал, предположительно, алюминиевый сплав, из которого требовалось изготовить деталь «обечайку». Для начала необходимо было определить марку материала. Для определе-

ния химического состава материала использовали экспресс рентгенофлуоресцентный анализ образца. Анализатор выдал данные, представленные в таблице 1.

Таблица 1 - Химический состав по данным анализатора металлов Niton XL3t

Элемент	Al	Cu	Mn	Fe	прочие
Содержание, %	93,27	4,69	0,35	0,46	1,23

Сравнивая данные таблицы 1с химическим составов разных алюминиевых сплавов, пришли к выводу, что данный сплав является деформированным алюминиевым сплавом Д16. Для подтверждения данного предположения был проведен дополнительный химический анализ с помощью сканирующего электронного микроскопа VEGA Tescan (рисунок 1).

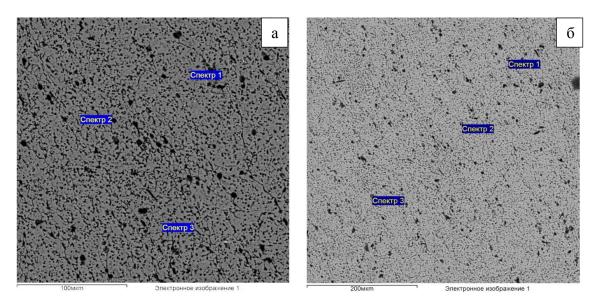


Рисунок 1 - Изображение структуры исходного образца

Основными элементами во всех спектрах (рисунок 1) является алюминий (около 95атом.%), магний (около 1%), медь (около 1%). В спектрах на рисунке 26 также присутствует марганец (0,15-1,2%). На рисунке 1а спектры 1, 2, 3 и спектр 2 на рисунке 16 можно определить, как интерметаллидную фазу CuMgAl (S-фаза). На рисунке 116 спектр 1 — как интерметаллидную фазу Cu₂AlFe (N-фаза). На рисунке 16 спектр 3 — как интерметалидную фазу CuAl (θ -фаза). Результаты сведены в таблицу 2.

Таблица 2 – Сводные результаты электронно- микроскопического исследования об-

разца Al-Cu-Mg (рисунок 1)

Спектр	Элемент (атом. %)						
	Mg	Al	Si	Fe	Mn	Cu	Итого
Спектр 1а	0.93	96.83	-	-	-	0.99	99,69
Спектр 2а	0.61	97.58	-	-	-	0.75	99,76
Спектр За	0.52	97.32	-	-	-	0.74	99,87
Спектр 1б	0,52	33.64	0,58	2,59	1,20	0.99	99,27
Спектр 2б	0.53	96.65	-	-	0,15	0.59	99,52
Спектр 3б	-	97.84	-	-	0,20	0.62	100
Максимальное	0.52	97,84	0,58	2,59	1,20	0.99	-
Минимальное	0.93	33,64	0,58	2,59	0,15	0.62	-

Данные, полученные с помощью санирующей микроскопии, подтвердили, что данный материал является Д16.

Металлографические исследования травленой полированной поверхности исходного образца представлены на рисунке 2.

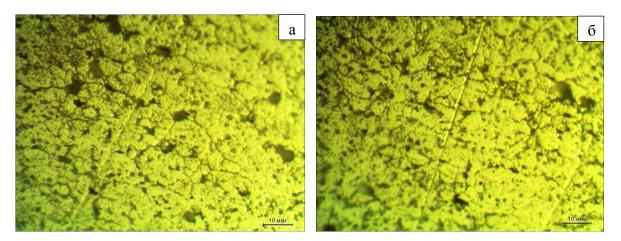


Рисунок 2 - Структура сплава Д16 в исходном состоянии

Структура дюралюминия в исходном состоянии состоит из твердого раствора альфа легирующих элементов в Al и различных включений интерметаллических соединений $CuAl_2$ (θ -фаза), CuMgAl (S-фаза), Cu_2AlFe (N-фаза), Mg_2Si и других.

Для получения необходимой для детали «обечайки» свойств образец подвергли упрочняющей термической обработке.

Алюминиевые сплавы не претерпевают полиморфных превращений, и термическую обработку для них выбирают в зависимости растворимости легирующих элементов.

Растворимость легирующих элементов в алюминии при понижении температуры снижается, что позволяет упрочнять такие сплавы с помощью закалки и старения (естественного и искусственного).

Для дуралюмина Д16 температура под закалку выбирается таким образом, чтобы интерметаллидные фазы растворились в алюминии максимально. Далее следует выдержка при этой температуре и быстрое охлаждение.

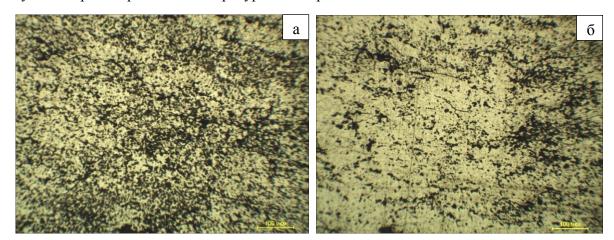


Рисунок 3 - Структура сплава Д16 после термической обработки (закалка + естественное старение)

Из диаграммы состояния для сплава Д16 (содержание меди в интервале 3,8 - 4,9%) можно назначить температуру закалки около 500° С, где для сплавов с содержанием меди до 5,5%, избыточная фаза $CuAl_2$ растворится полностью и при быстром охлаждении фиксируется только пересыщенный α -твердый раствор, содержащий столько меди, сколько ее находится в сплаве [1].

Обычно для алюминиевых сплавов в качестве среды охлаждения применяют подогретую воду (до 50 - 100°C), для избегания растрескивания поверхности и коробления детали.

После закалки решили проводить старение. Данная обработка заключается в выдерживании при комнатной температуре четверо суток (естественное старение).

Микроструктура сплава Д16 после термической обработки, заключавшейся в закалке и старении, представлена на рисунке 3.

После такой закалки основное количество интерметаллидных соединений $CuAl_2$ и Mg_2Si растворяется в алюминии, но соединения железа не растворяются. Поэтому в закаленном состоянии структура состоит из твердого раствора и нерастворимых включений сложного соединения железа Cu2AlFe (N-фаза) (рисунок 3).

Микротвердость образцов измеряли с нагрузкой $P=100\ r$. Значения микротвердости по переводным таблицам перевели в значения твердости по Бринеллю, результаты сведены в таблицу 3.

Таблица 3 – Данные твердости по Виккерсу, Бринелль

Термическая обработка	Микротвердость	Переведенная	Измеренная	
	по Виккерсу,	твердость по	твердость по	
	кг/мм2	Бринеллю	Бринеллю	
Исходный	67	51	47	
Закалка	110	105	106	
Старение	140	135	136	

Из таблицы 3 видно, что твердость возросла после закалки почти в 2 раза по сравнению с исходным образцом. После естественного старения твердость увеличилась еще на 30 единиц.

Также в работе была измерена твердость по Бринеллю. Результат измерения твердости приведен в таблице 3. С помощью микротвердости, благодаря малым нагрузкам, измеряется твердость только тонкого поверхностного слоя. По методу Бринелля твердость измеряется уже объема материала, а не только его поверхности.

Твердость по Бринеллю (таблица 3) так же, как и в случае с микротвердостью, увеличилась после термической обработки.

Сравнивая значения микротвердости (таблица 3) и твердости, измеренной по методу Бринелля, видно, что они практически одинаковые (отличия в пределах ошибки). Из сказанного можно сделать вывод, что закалка прошла сквозная, и закалился весь объем материала.

Сравнивая с табличными значениями твердости, то исследованный сплав показал значения соответствующие твердости алюминиевого сплава Д16Т (ГОСТ 4784-74) [2]).

Выводы

- 1. Определена марка материала алюминиевый сплав Д16.
- 2. Исследован исходный материал «сырой» материал состоит из твердого раствора альфа легирующих элементов в Al и различных включений интерметаллических соединений CuAl2 (θ -фаза), CuMgAl (S-фаза), Cu2AlFe (N-фаза), Mg2Si и других. Микротвердость и твердость 67 кг/мм² и 47 HB соответственно.
- 3. Подобран режим упрочняющей термической обработки. Проведена закалка при температуре 490°C, охлаждение в подогретой воде.
- 4. Исследован упрочненный материал в закаленном состоянии структура сплава состоит из твердого раствора и нерастворимых включений сложного соединения железа Cu2AlFe (N-фаза). Микротвердость и твердость после закалки и старения увеличилась в 2 и в 2,9 раз соответственно.

Список литературы:

- 1. Арзамасов Б.Н, Макарова В.И., Мухин Г.Г. и др.; Материаловедение. Под общ.ред. Б.Н. Арзамасова,Г.Г. Мухина 8-е изд., стереотип. М.: Изд-во МГТУ им.Н.Э. Баумана, 2008.-648 с.:
- 2. Платонов Г. П. Полевой ремонт самолетов. Г. П. Платонов, Г. И. Карлов; под ред. Г. К. Волкова. Москва., Воениздат., 1990. 159, с.: ил.