ВЛИЯНИЕ МИНЕРАЛЬНЫХ МАГНИЙСОДЕРЖАЩИХ ДОБАВОК НА ОГНЕЗАЩИТНЫЕ СВОЙСТВА СИЛИКАТНОЙ КОМПОЗИЦИОННОЙ КРАСКИ

Е.Ю.ЛЕБЕДЕВА¹, Ю.Е.АЛЕКСЕЕВСКАЯ¹ Томский политехнический университет E-mail: kriolanta@mail.ru

THE MAGNESIUM-CONTAINING ADDITIVES INFLUENCE ON THE FIRE-PROTECTIVE PROPERTIES OF COMPOSITE SILICATE PAINT

E.Y.LEBEDEVA¹, Y.E.ALEKSEEVSKAYA¹

Tomsk Polytechnic University
E-mail: kriolanta@mail.ru

Abstract. The composition of one-packing silicate paint on the basis of liquid glass modified by hydromagnesite in number of 5,5%, including inactive filler in the form of talc and chalk, zinc oxide as a hardener, and an active silica component. Liquid glass compositions with usage hydromagnesite was received. They improved fire-resistive characteristics. Established that these samples have a maximum weight loss and coefficient of expansion that is caused by the hydromagnesite structure.

В настоящее время актуальной проблемой в промышленном и гражданском строительстве является разработка эффективных защитных и защитно-декоративных покрытий. Современные лакокрасочные покрытия должны обладать не только определенными функциональными свойствами, но и быть экологичными и пожаробезопасными. Обеспечение пожарной безопасности является одной из важнейших задач. Применение широко распространенных акриловых и различных вододисперсионных красок не отвечает данным требованиям, так как при пожаре данные покрытия выделяют токсичные вещества. Поэтому особенно актуальными являются разработки красок неорганической природы, в частности, силикатных композиций на основе жидкого стекла [1-3].

Основу силикатных красок составляет калиевое или натриевое жидкое стекло, которое имеет способность к вспучиванию при нагреве, что предопределяет его как потенциально эффективного пленко- и каркасообразующего компонента огнезащитных покрытий. При температурах свыше 200 °С жидкое стекло образует пену, которая является барьером для распространения огня и защитой поверхности материала. В состав краски входит комплекс минеральных пигментов и наполнителей, содержание которых достигает 30-40%, что снижает вспенивающую способность композиции. Введение в состав дополнительных компонентов, несущих функцию антипиренов, позволяет улучшить огнезащитные свойства готовой краски.

Цель данной работы — установить влияние магнийсодержащих добавок в виде брусита (Mg(OH)₂), магнезита (MgCO₃) и гидромагнезита (Mg₅[CO₃]₄(OH)₂·4H₂O) на огнезащитные свойства силикатной композиционной краски.

По результатам ранее проведенных исследований установлен базовый состав однокомпонентной силикатной краски, включающий калиевое жидкое стекло, цинковые белила, аэросил, мел и тальк. Разработанная композиционная силикатная краска является одноупаковочной, что упрощает ее использование и не требует

дополнительного смешивания компонентов, как в случае двухупаковочной краски (порошок и жидкое стекло). В качестве отвердителя краска содержит цинковые белила и дополнительно введенный аэросил, который обеспечивает протекание реакций силикатизации. При разработке огнезащитных покрытий силикат магния (тальк - $Mg_3Si_4O_{10}(OH)_2$) заменили на выбранные магнийсодержащие компоненты. Составы исследуемых композиций приведены в таблице 1.

Таблица 1 - Компонентный состав жидкостекольных композиций

Обозначен	Количество	Содержание			Содержание антипирена,			
ие	жидкого	наполнителей, мас.%			мас.%			
состава	стекла,	ZnO	CaCO ₃	SiO_2	Тальк	Брусит	Маг-	Гидро-
	мас.%						незит	магнезит
СК	70,00	6,00	18,45	0,05	5,50	_	_	_
СК-Б	70,00	6,00	18,45	0,05	_	5,50	_	_
СК-М	70,00	6,00	18,45	0,05		_	5,50	_
СК-ГМ	70,00	6,00	18,45	0,05	_	_	_	5,50

Процесс получения силикатной краски проводили в гомогенизаторе, в который загружали «сухую» часть компонентов и перемешивали до однородного состояния. «Сухая» часть включает аэросил, цинковые белила (ГОСТ 202-84), мел (ГОСТ 12085-88), тальк (ГОСТ 21234-75). Затем в смесь добавляли калиевое жидкое стекло с модульным отношением 2,6–3,3 (ГОСТ 13078-81), разбавленное перед испытанием до плотности 1,35-1,4 г/см³ и жидкостекольную композицию перемешивали в течение 10-15 мин. Рабочий раствор силикатной краски пропускали через сито для удаления не промешавшихся конгломератов. После гомогенизации краска помещалась в закрытую тару.

Технологические свойства разработанных составов определяли по ГОСТ 18958-73. В таблице 2 представлены данные по некоторым технологическим характеристикам полученных красок: укрывистость, степень меления и водородный показатель. Согласно которым было установлено, что все составы отвечают требованиям ГОСТа.

Таблица 2 - Технологические свойства жидкостекольной композиции

Обозначение	Укрывистость, г/м ²	Степень меления,	рН композиции	
состава		баллы		
СК	226,00	0	9,40	
СК-Б	234,10	0	11,17	
СК-М	282,30	0	11,20	
СК-ГМ	330,08	0	11,90	

Сравнительный анализ вспенивающей способности исследуемых композиций проводили по значению коэффициента вспенивания и потерям массы образца при нагреве. Определение коэффициента вспенивания проводили на прессовках из порошка, полученного высушиванием и измельчением плёнки жидкостекольной композиции. Значения коэффициентов вспенивания рассчитывали по соотношению объёма образца до и после вспенивания (табл. 3). Зависимости потери массы от времени выдержки образцов при температурах 750 и 950 °С представлены на рис. 1.

Tuoiniga 5 Tiapaki epitetiika benembareigen enecestiisetti komitosiigiii								
	Значения коэффициентов вспенивания при температурах, %							
	750 °C			950 °C				
	10 мин	30 мин	60 мин	10 мин	30 мин	60 мин		
СК-Б	0	1,85	2,78	1,85	6,2	11,1		
CK-M	0	2,27	2,27	4,5	18,1	24		
СК-ГМ	15 1	37.8	50.7	1146	125.8	151.1		

Таблица 3 - Характеристика вспенивающей способности композиции

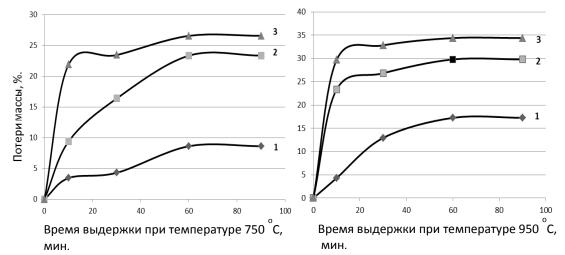


Рисунок — 1. Зависимость потерь массы композиции от времени выдрежки при 750 $^{\rm o}$ C и 950 $^{\rm o}$ C с компонентом: 1 — с бруситом; 2 - с магнезитом; 3 — с гидромагнезитом

Экспериментальным путем установлено, что максимальные потери массы и максимальный коэффициент вспенивания имеют образцы с магнийсодержащим компонентом в виде гидромагнезита в количестве 5,5 мас.%. Данный факт объясняется особенностями структуры гидромагнезита. По укрывистости и степени меления все исследуемые составы соответствуют требованиям. Таким образом, покрытия, полученные на основе жидкостекольной композиции, включающей жидкое стекло, цинковые белила, аэросил, мел и гидромагнезит в качестве антипирена, являются термостойкими вспучивающивающимися и могут быть рекомендованы в качестве огнезащитных красок.

Список литературы

- 1. Loganina, V.I. Polymer silicate paints for interior decorating // Contemporary Engineering Sciences. 2015. № 8, Issue 1-4. P. 171-177.
- 2. Shinkareva, E.V., Lazareva, T.G., Bychko, G.V. Flow properties of silicate paints for decorating glass articles Glass and Ceramics. 2004. №. 61. Issue 3-4. P. 96-98.
- 3. Альменбаев М.М., Карменов К.К., Ельчугин А.В., Серков Б.Б. Пожарная опасность деревянных строительных конструкций с лакокрасочными материалами // Пожары и чрезвычайные ситуации: предотвращение, ликвидация. −2013. − № 2. − С. 17-22.