Для циклических испытаний, как для низкой, так и для высокой частоты сигналов, характерно значительное снижение нормированного коэффициента корреляции. Для низкой частоты сигнала характерно значительное снижение амплитуды при сравнении первого и последнего (перед разрушением) сигналов. Однако в середине испытания наблюдается область быстрого снижения, а затем роста амплитуды. В общем случае можно сделать заключение, что сигналы данной частоты позволяют почувствовать усталостную трещину в образце (прежде всего по амплитуде и коэффициенту корреляции). Для высокой частоты характерно неоднозначное поведение амплитуды зарегистрированных сигналов по испытанию (снижение, дальше большой рост и постоянное значение на последнем участке). Однако следует отметить резкое падение амплитуды непосредственно перед разрушением.

Список литературы

- 1. P.J. Schubel, R.J. Crossley, E.K.G. Boateng, J.R. Hutchinson // Renewable Energy 2013 V.51 P.113-123.
- Бурков М.В., Панин С.В., Бяков А.В., Любутин П.С., Еремин А.В., Применение ультразвукового метода с использованием волн Лэмба для контроля состояния алюминиевых сплавов. Ч. 2. Циклические механические испытания // Известия высших учебных заведений. Физика. 2015 Т. 58 № 6-2 С. 31-35.
- Eremin A, Byakov A, Panin, S Burkov M, Lyubutin P and Sunder R, Application of a Lamb waves based technique for structural health monitoring of GFRP under cyclic loading // IOP Conf. Series: Materials Science and Engineering 124 (2016) 012084

ВЛИЯНИЕ МЕТОДОВ ИЗМЕЛЬЧЕНИЯ СТРУКТУРЫ НА РАСПРЕДЕЛЕНИЕ ПО РАЗМЕРАМ И ЭНЕРГИЮ ВНУТРЕННИХ ГРАНИЦ РАЗДЕЛА СТАЛИ 12ГБА

<u>Л. А. ШУМАКОВА¹</u>, П. В. КУЗНЕЦОВ^{1,2}, Т. В. РАХМАТУЛИНА² ¹ Томский политехнический университет ²Институт физики прочности и материаловедения СО РАН E-mail: <u>dashad@tpu.ru</u>

AN INFLUENCE OF GRAIN REFINEMENT METHOD ON GRAIN SIZE AND INTERNAL INERFACE ENERGY DISTRIBUTIONS OF STEEL 12GBA

D. A. SHUMAKOVA¹, P. V. KUZNETSOV^{1,2}, T. V. RAHMATULINA² ¹Tomsk Polytechnic University ²Institute of Strength Physics and Materials Science E-mail: <u>dashad@tpu.ru</u>

Abstract. Grain-subgrain structure sizes and internal interface energy of steel 12 GBA were estimated in three structural states: coarse grained, after multi-axes isothermal forging and warm rolling using scanning tunnel microscopy. Cumulative distribution function of grain boundary energy showed a shift to low energies after multi-axes forging and warm rolling. An energy shift could be explained by low-angle boundary share increase and impurity redistribution.

Введение

Методы интенсивной пластической деформации (ИПД), широко развиваемые в последние десятилетия, позволяют формировать в материалах нанокристаллическую (НК) и ультрамелкозернистую (УМЗ) структуру [1]. Это обеспечивает повышение механических свойств материалов и сплавов, которое невозможно получить традиционными методами термической обработки.

В частности в низкоуглеродистой стали 12ГБА, создание УМЗ структуры методами ИПД позволяет повысить механические свойства, хладостойкость и коррозионную стойкость [2, 3].

Для понимания механизмов изменения механических свойств стали после ИПД необходимы количественные исследования происходящих структурных изменений. В частности, важными количественными характеристиками являются распределение зеренно-субзеренной структуры (ЗСС) по размерам и энергия их границ.

Целью настоящей работы являлась оценка элементов ЗСС по размерам и энергии границ ЗСС стали 12ГБА в крупнокристаллическом состоянии, после всесторонней изотермической ковки и теплой прокатки.

Материалы и методы

В качестве материала исследования была выбрана сталь 12ГБА. Химический состав стали: С 0.11%; Mn 1.2%; Nb 0.05; Al 0.0026%; Si 0.25%; Cu 0.35%; S 0.005%; P 0.0012.

Исследование структуры стали проводили с помощью сканирующего туннельного микроскопа (СТМ), интерферометра белого света New View и оптического микроскопа Axiovert.

Оценку энергии границ ЗСС проводили путем измерения двугранного угла канавки травления [4]. Двугранный угол у рассчитывали из анализа профилей линий–перпендикуляров к границе зерна. Относительная энергия границы зерна пропорциональна косинусу угла двугранной канавки травления и вычисляется по формуле:

$$\gamma_{rel} = \frac{\gamma_b}{\gamma_s} = \cdot 2\cos\left(\frac{\psi}{2}\right) \tag{1}$$

где: γ_{rel} , γ_b и γ_s – безразмерная относительная энергия границы зерна, энергия границы зерна и поверхностная энергия, соответственно.

Оценку размеров элементов ЗСС проводили на СТМ - изображениях различного масштаба. СТМ - изображения анализировали с помощью модульной программы анализа данных сканирующей зондовой микроскопии (СЗМ) Gwiddion. В первую очередь программа предназначена для анализа полей высот, полученных различными техниками СЗМ, что позволяет измерять размеры и углы элементов поверхностного рельефа.

Результаты и обсуждение

В исходном крупнокристаллическом состоянии структура стали состояла из зерен феррита и перлитных колоний (рисунок 1). Средний размер ферритного зерна, рассчитанный по оптическим изображениям, составил 25 мкм.

Рисунок 1 – Оптическое изображение стали 12ГБА в исходном состоянии

На рисунке 2 представлено (а) СТМ – изображение стали 12ГБА в исходном состоянии и (б) профиль линии АВ. По полученному профилю проводили измерение расстояний между пластинками цементита в перлите, среднее расстояние составило 0,2 мкм. Средняя энергия границ раздела внутри перлитной фазы ~ 0,5.

На рисунке 3 представлено оптическое (а) и СТМ (б) изображение образцов после всесторонней ковки. Видно (рисунок 3а), что феррит-перлитная полосчатость сохраняется. Методом СТМ было показано, что всесторонняя изотермическая ковка приводит к формированию УМЗ структуры со средними размерами фрагментов 0,3 – 0,5 мкм.

Рисунок 3 – а) Оптическое изображение, б) 3D модель СТМ-изображения структуры стали 12ГБА после всесторонней ковки

На рисунке 4 представлено оптическое (а) и СТМ - (б) изображение образцов после теплой прокатки. Видно, что в процессе теплой прокатки произошла транс-

формация феррито-перлитной структуры. Структура образована вытянутыми в направлении прокатки фрагментами (рисунок 4).

Рисунок 4 – а) Оптическое изображение структуры стали 12ГБА после всесторонней ковки, б) 3D модель СТМ-изображения

На рисунке 5 показаны интегральные функции распределения (ИФР) относительной энергии границ ЗСС структуры стали 12ГБА в крупнокристаллическом состоянии, после всесторонней ковки и теплой прокатки.

Интервал энергий внутренних границ раздела в крупнокристаллическом состоянии составляет $\gamma \sim (0,05\div1,2)$. После деформационной обработки кривые смещаются в зону меньших относительных энергий границ зерен. Интервал энергий границ после всесторонней ковки составляет $\gamma \sim (0,06\div0,7)$, после теплой прокатки – $\gamma \sim (0,05\div0,8)$.

Рисунок 5 – Интегральная функция распределения энергии внутренних границ раздела в стали 12ГБА

Возможной причиной смещения ИФР относительной энергии границ ЗСС стали 12ГБА после всесторонней изотермической ковки и теплой прокатки в низкоэнергетическую область является увеличение доли малоугловых границ в распределении [2, 3]. В работе [3] с помощью метода дифракции обратно рассеянных электронов было установлено, что доля малоугловых границ в структуре стали 12ГБА в крупнокристаллическом состоянии составляет 16%, после всесторонней ковки увеличивается до 58%. На рисунке 6 показано распределение границ зерен по углам разориентировки стали 12ГБА в крупнокристаллическом состоянии и после всесторонней изотермической ковки [3].

Кроме того, из анализа литературных данных известно, что ИПД приводит к сегрегации примесей на границах зерен, что понижает их энергию, следовательно, уменьшает подвижность и повышает термическую стабильность структуры [5].

В работе [3] были проведены ударные испытания стали 12ГБА при отрицательных температурах в крупнокристаллическом состоянии и после всесторонней изотермической ковки. Было установлено, что вязко-хрупкий переход, у образцов после всесторонней ковки наблюдается при температурах на 30 - 40°С ниже, чем у образцов в исходном крупнокристаллическом состоянии. Это хорошо согласуется с полученными нами оценками энергии границ зерен (рисунок 5) после всесторонней изотермической ковки. Можно предположить, что с уменьшением относительной энергии внутренних границ раздела снижается вероятность растрескивания по границам зерен, что способствует повышению общего уровня ударной вязкости.

Выводы

Исследования влияния метода измельчения структуры стали 12ГБА на характер распределения элементов ЗСС по размерам позволяет сделать следующие выводы.

1) В результате всесторонней изотермической ковки и теплой прокатки стали 12 ГБА формируется УМЗ структура со средним размером фрагментов 0.2 – 0.5 мкм.

2) После всесторонней изотермической ковки и теплой прокатки наблюдается смещение интервала относительной энергии внутренних границ раздела в область меньших энергий, что объясняется увеличением доли малоугловых границ и перераспределением примесей на границы зерен.

Таким образом, предлагаемый нами метод оценки энергии границ ЗСС после ИПД дает недорогой, относительно простой в методическом отношении метод контроля структурных изменений, которые коррелируют с изменением механических свойств исследуемой стали.

Список литературы

- 1. Валиев Р. З., Александров И. В. Наноструктурные материалы, полученные интенсивной пластической деформацией. М.: Логос, 2000. 272с.
- 2. Деревягина Л. С., Корзников А. В., Сафаров И. М., Заточная Л. В., Гладковский С. В. Влияние всесторонней изотермической ковки на структуру, меха-

нические свойства и механизм разрушения стали 12ГБА //Деформация и разрушение материалов. 2012, №10, с. 25 – 32.

- Корзников А. В., Сергеев С. Н., Сафаров И. М., Галеев Р. М., Гладковский С. В., Бородин Е. М. Влияние всесторонней изотермической ковки на структуру и свойства низкоуглеродистой стали 12ГБА //Письма о материалах. 2012, т. 2, с. 117 – 120.
- 4. Кузнецов П. В., Петракова И. В., Рахматуллина Т.В., Батурин А.А., Корзиков А.В. Применение сканирующей теннельной микроскопии для характеристики зеренно-субзеренной структуры СМК никеля после низкотемпературного отжига//Заводская лаборатория. Диагностика материалов.-2012.- №4.
- 5. Слезов В. В., Рогожкин В. В., Осмаев О. А. Зернограничная сегрегация примеси в поликристаллах при доминирующем массопереносе комплексами //Физика низких температур. 1997, т. 23, №2, с. 218 – 232.

ИССЛЕДОВАНИЕ СВЯЗИ МЕЖДУ ТРЕЩИНОСТОЙКОСТЬЮ БЫСТРОРЕЖУЩЕЙ СТАЛИ И ХРУПКОЙ ПРОЧНОСТИ, ИЗГОТОВЛЕННЫХ ИЗ НЕЕ МЕЛКОРАЗМЕРНЫХ СВЁРЛ

<u>А.А. КОТЕЛЬНИКОВА,</u> А.А КОНДРАТЮК, В.П.НЕСТЕРЕНКО Томский политехнический университет email: nast-kotelnikova@yandex.ru

INVESTIGATION LINKS BETWEEN CRACK RESISTANCE OF RAPID STEEL AND BRITTLE STRENGTH PREPARED FROM THE SAME STEEL SMALL-SIZED DRILLS

<u>A.A. KOTELNIKOVA, A.A KONDRATIUK, V.P.NESTERENKO</u> Томский политехнический университет email: <u>nast-kotelnikova@yandex.ru</u>

Annotation: This article describes the methods of determining the characteristics of crack resistance of high rapid steel and the brittle strength made from her small-sized drills. Set correlation and determined the optimal heat treatment conditions for cutting tools

Введение. С каждым днем происходит модернизация и изменения действующих технологических процессов. К новым конструкциями предъявляют жесткие требования, а именно какой конкретно конструкционный материал необходимо использовать. Важным критерием является несущая способность при снижении металлоемкости и одновременном увеличении производительности технологического процесса. Проблема использования высокопрочных сталей является их высокая чувствительность к хрупкому разрушению, происходящим при длительном или кратковременном приложении нагрузки. Встретить случаи хрупкого разрушения можно во всех областях промышленности, таких как, авиастроение, судостроение, машиностроение, нефтехимическая и газодобывающая промышленность. Трещиностойкость материала зависит от особенностей структуры, температуры испытания, рабочей среды и других факторов. Используя предложенную методику, можно установить степень влияния таких факторов как термообработка на изменение значения K_{lc} и, следовательно, на работоспособность материала в конструкции в заданных условиях. Отсюда требуются глубокие исследования, а также подтверждение