

Физико-технический институт VIII Международная научно-практическая конференция «Физико-технические проблемы в науке, промышленности и медицине» Секция 4. Физико-химические и изотопные технологии в науке, промышленности и медицине

THE APPLICATION OF STABLE ISOTOPES OF RARE ELEMENTS

Zh.A. Keneshova, Yu.A. Zakharova National Research Tomsk Polytechnic University 634050, Russia, Tomsk, Lenin Avenue, 30 E-mail: <u>keneshovajanara@gmail.com</u>

In the last decades there has been a tendency of expanding the range of applications of the materials, metals and high purity compounds used in all branches of science and engineering. The use of rare elements has special significance for modern technology, metallurgical engineering and chemistry [1]. Scientists have learned to change the isotopic composition of elements for obtaining the specific properties of materials in technological activity. Many elements have a large number (more than twenty) of unstable (radioactive) isotopes (an overwhelming majority of them is created artificially). The number of stable isotopes (they exist independently for a long time) is considerably less and, besides, the even *Z* elements have the greatest variety of isotopes. The objective of the work was to study the application of stable isotopes of more than thirty rare elements.

Nuclear properties of isotopes are used in physics and chemistry: ⁹³Nb, ¹⁸⁰W, ¹⁸²W, ¹⁸³W, ¹⁷⁰Yb are required for research of the structure and characteristics of substances using methods of nuclear magnetic and recoilless nuclear resonance; radioactive isotopes ²⁰¹Tl, ¹¹⁴mIn and ^{113m}In, ^{87m}Sr are prepared from ²⁰³Tl, ¹¹³In, ⁸⁵Rb for medicine; ⁹²Mo, ¹⁵⁴Sm and ¹⁶⁰Gd are used in neutron diffraction investigation; ⁴⁶Ti, ¹⁵¹Eu, ¹⁵⁹Tb are practiced in detectors for different purposes; ⁷⁵Se, used in defectoscopy, is received from ⁷⁴Se. Gd, Eu, Sm, Hf are used for manufacturing control rods; ⁹Be is a nuclear moderator and reflector; ¹¹³In is a neutron defector; ⁷Li is a reactor heat carrier. The most important elements for nuclear engineering are ¹⁵⁷Gd having the highest capture cross section of neutrons, and Zr, ⁹³Nb used in alloy of partition in nuclear fuel elements [2].

The isotopes of rare-earth and scattered elements are used in optics. ¹⁴¹Pr, Se, Sm, Nd, Er, Yb, Dy, Hf are required for making glasses with special properties; Sr, Yb, ¹⁵¹Eu, ¹⁵³Eu are employed in the production of phosphors; ⁸⁹Y, ¹⁵⁹Tb, ¹⁶⁹Tm, Gd are used in laser technology.

Ti, Zr, ⁵¹V, ⁹³Nb, Mo, W, Te, ¹⁸⁵Re, ⁴⁵Sc are alloying additions and constructional materials used in aircraft engineering and rocket production. Such alloys become heat-resistant, anticorrosive and superconducting.

¹³³Cs is a material for an atomic clock. It is an accurate apparatus for chronometry. ⁵¹V is used in thermochemical water decomposition. ¹³⁹La is one of the components of hybrid car accumulators. ¹⁸¹Ta, ⁶⁹Ga, ⁷¹Ga, ¹¹³In, ²⁰³Tl, ²⁰⁵Tl, ¹⁸⁵Re play a role in precision and electric engineering, semiconductor industry. Se and Te are used in photocell in solar energy. The isotopes of Sm, Nd, Dy, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁹Tm are required for producing the electromagnets and magnetic alloys. ¹⁶⁵Ho, ¹⁵⁹Tb, ¹⁴¹Pr, ⁸⁹Y, ¹⁸⁵Re are catalysts in petrochemical and chemical industries.

The number of industry brunches, in which we cannot, but use rare elements is growing with the intensive development of modern science and technology since potential possibilities of rare elements have not been exhausted.

REFERENCES

^{1.} Korovin S.S., Zimina G.V., Reznik A.M. (1996). Rare and scattered elements. Chemistry and technology. Moscow : MISIS Publ. p.376

^{2.} Chekmarev A.M., Tarasova N.P., Smetannikov Yu.V. (2006). Chemisrty, nuclear power engineering and sustainable development. Moscow : Akademkniga Publ. p.288