МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ВЛИЯНИЯ ПРОМЕРЗАНИЯ ГРУНТА В ЗОНЕ РАЗМЕЩЕНИЯ РЕЗЕРВУАРОВ ДЛЯ ХРАНЕНИЯ ТОПЛИВ ТЭС И КОТЕЛЬНЫХ

Ж.Ф. Ожикенова, Ф.Т. Махсутбек

Ozhikenova92@mail.ru

Научный руководитель: Половников В.Ю., к.т.н., ТПУ, каф ТПТ, Россия, г. Томск

Введение

Институт энергетики Сибирского отделения Российской Академии наук устанавливает веро-ятный уровень годового потребления мазута в количестве 30 миллионов тонн условного топлива, согласно энергетической стратегии России даже в случае самых жестких ограничений добыча нефти в 2030 году будет на уровне 245 миллионов тонн [1].

Несмотря на эти прогнозы, к настоящему времени в стране практически мало публикаций, посвященных разработкам в области методов расчета и проектирования мазутных хозяйств. Действующие по сегодняшний день отраслевые методики не в полной мере отражают все особенности тепловых процессов, происходящих на всех стадиях подготовки мазута к сжиганию. Одним из перспективных подходов к исследованию тепловых потерь резервуаров ТЭС и котельных в усло-виях реальной эксплуатации является использование разнообразных коммерческих или открытых пакетов прикладных программ, позволяющих учитывать различные эффекты и процессы, приводя-щие к интенсификации процессов переноса в рассматриваемых системах.

Целью работы является математическое моделирование теплопереноса резервуаров ТЭС и ко-тельных при промерзании грунта и численный анализ тепловых потерь рассматриваемых объектов в подобных условиях.

Постановка задачи

Рассматривается типичный вертикальный цилиндрический стальной подземный резервуар марки PBC–100. На рисунке 1 показано схематическое изображение области решения рассматривае-мой задачи.

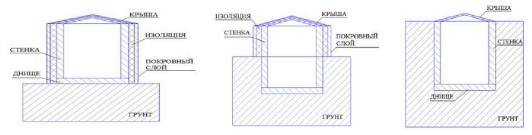


Рисунок 1. Схема поперечного сечения области решения с надземным, полуподземным и подземным резервуаром

Для рассматриваемой области решается двумерная стационарная задача теплопроводности в системе «подземный резервуар – окружающая среда» с учетом промерзания грунта в зоне разме-щения резервуаров ТЭС и котельных.

При постановке задачи приняты следующие основные допущения:

- 1. Теплофизические характеристики материалов являются постоянными и известными величинами.
 - 2. Не рассматривается теплоперенос в объеме резервуара.
 - 3. На границах между слоями выполняются условия идеального теплового контакта.
 - 4. Не учитывается термическое сопротивление металлических стенок резервуара.
- 5. Граница раздела между талым и мерзлым грунтом имеет постоянную температуру, равную 273 К.

Принятые допущения не накладывают принципиальных ограничений на общность постановки задачи и отражают достаточно реальные режимы работы резервуаров для хранения резервных топ-лив ТЭС и котельных.

Математическая модель

Процессы переноса тепла для рассматриваемого объекта будет описываться следующими уравнениями теплопроводности:

$$^{2}T$$
 0, (1)

$$^{2}T_{\perp}^{\dagger}0,$$
 (2)

$$^{2}T_{fg}$$
 0. (3)

$$T_{i-1} \quad T_m \quad \text{const}, \tag{4}$$

$$-_{g}\operatorname{grad}T_{g,4}T_{g,4} \qquad -T_{ex} , \qquad (7)$$

grad
$$T_g = 0, x,$$
 $y.$ (8)

На внутренней поверхности корпуса резервуара поддерживается постоянная температура. В местах соприкосновения слоев выполняются условия идеального теплового контакта. На границах взаимодействия рассматриваемых объектов с окружающей воздушной средой выставляются гранич-ные условия III рода. На достаточно большом расстоянии от резервуара в грунте градиенты темпера-тур равны нулю.

Обозначения: T – температура, K; λ – коэффициент теплопроводности, $B\tau/(M\cdot K)$; α – коэффи-циент теплоотдачи, Вт/м 2 -К; i – слой тепловой изоляции; g – грунт; м – мазут; ex – наружный; 1- внутренняя поверхность изоляции резервуара; 2- граница раздела «корпус резервуара-грунт»; 3 – граница раздела «грунт талый – грунт мерзлый»; 4 – граница раздела «грунт – окружающая среда».

Метод решения и исходные данные

Рассматриваемая задача (1) – (8) решена с применением средств и функций пакета программ мультифизического моделирования COMSOL Multiphysics с использованием модуля General Heat Transfer, базирующегося на решении задач методом конечных элементов [2].

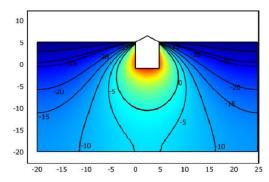
При проведении численного моделирования предполагалось, что температура внутренней по-верхности резервуара $t_{\rm M} = 60~{\rm ^{\circ}C}$. Температура окружающей среды $t_{ex} = -40{\rm ^{\circ}C}$.

В таблице 1 приведены теплофизические характеристики материалов и веществ, использовав-шиеся при проведении исследований.

Материал	Фундамент	Тепловая изоляция	Грунт			
			Глинистый		Песчаный	
			Талый	Мерзлый	Талый	Мерзлый
λ, BT/(M·K)	1,54	0,046	1,1	1,3	2,3	3,7
с, Дж/(кг⋅К)	887	840	1231	959	1486	1005
ρ, κ г /м ³	2200	150	1700	1700	2000	2000

Таблица 1. Теплофизические характеристики

Результаты численного моделирования


Основные результаты численного моделирования тепловых режимов резервуаров для хране-ния топлив ТЭС и котельных при промерзании грунта в зоне их размещения приведены в таблице 2, где Q_1 – тепловые потери рассчитываемого объекта без учета промерзания грунта и Q_2 – с учетом промерзания грунта в зоне их размещения.

Результаты численного анализа, свидетельствуют о том, что наличие оттаивание грунта в зоне размещения резервуара для хранения топлив ТЭС и котельных не приводит к существенному изме-нению теплового режима рассматриваемого объекта.

На рисунках 2 приведены типичные температурные поля в зоне резервуаров для хранения то-плив ТЭС и котельных с учетом промерзания песчаного и глинистого грунта.

Таблица 2. Результаты расчета тепловых потерь резервуаров

	α,	Глинистый грунт			Песчаный грунт		
Вариант	$Bт/м^2K$	Q ₁ , Вт	Q2, Вт	δ, %	Q ₁ , Вт	Q2, Вт	δ, %
Подземный	5	1674,78	1653,66	1,26	2032,78	1986,31	2,30
	10	1964,89	1944,54	1,03	2341,20	2298,87	1,81
	15	2097,16	2075,04	1,06	2481,31	2438,14	1,74
	25	2219,69	2198,03	0,98	2610,27	2568,69	1,59
Полуподземный	5	1978,62	1962,83	0,8	2261,58	2237,19	1,08
	10	2298,00	2282,66	0,23	2596,17	2573,79	0,86
	15	2440,07	2424,01	1,15	2743,09	2721,59	0,78
	25	2574,73	2556,47	0,59	2879,79	2856,26	0,82
Надземный	5	2461,77	2455,46	0,26	2574,17	2571,52	0,1
	10	2832,79	2826,54	0,22	2948,62	2941,88	0,23
	15	2993,21	2987,41	0,19	3110,68	3110,40	0,01
	25	3140,79	3135,03	0,18	3259,91	3258,75	0,04

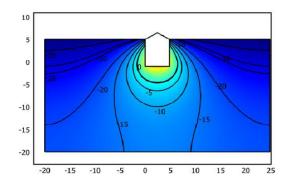


Рисунок 2. Типичные температурные поля резервуаров для хранения топлив

Заключение

Проведен численный анализ тепловых режимов и тепловых потерь резервуаров для хранения топлив ТЭС и котельных в условиях промерзания и оттаивание грунта, определена область мерзлой и талой зоны. Относительное изменение результатов моделирования тепловых потерь резервуаров в условиях промерзания грунта в зоне их размещения составляет 0.98-2.30~% для подземного и 0.04-0.26~% для наземного, 0.23-1.15~% для полуподземного резервуаров.

При решении данной задачи установлено , что учет оттаивания грунта в зоне размещения ре-зервуара для хранения топлив ТЭС и котельных не приводит к существенному изменению теплового режима рассматриваемого объекта.

Список литературы

- 1. Развитие теплоснабжения в России в соответствии с Энергетической стратегией до 2030г. // Новости теплоснабжения. 2010. № 2. С. 6–9.
- 2. Бирюлин Г.В. Теплофизические расчеты в конечно-элементном пакете COMSOL/FEMLAB / Г.В. Бирюлин. Санкт-Петербург : СПбГУИТМО, 2006. 89 с.
- 3. СНиП 2.11.03-93. Строительные нормы и правила. Склады нефти и нефтепродуктов. Противо-пожарные нормы. Москва : Госстрой Росии, ФГУП ЦПП, 2011. 46 с.