ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ РАЗМЕРОВ РЕАКТОРА КОНВЕРСИИ УГЛЕВОДОРОДОВ НА ЦЕОЛИТАХ

В. В. Романенкова, О. А. Чередниченко

Научный руководитель, доцент М. А. Самборская

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Изучение свойств объекта на математической модели позволяет спрогнозировать оптимальные конструктивные и технологические параметры работы реактора и сократить время необходимое для масштабного перехода [1].

Цель работы — подбор оптимальных конструктивных и режимных параметров реактора облагораживания углеводородов на цеолитах. Механизм и кинетика превращений углеводородов на цеолитсодержащих катализаторах описаны в многочисленных работах [2].

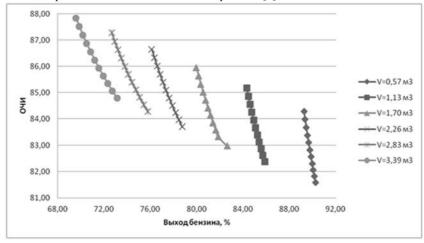


Рисунок 1 – Зависимость октанового числа от выхода бензина при изменении объема реактора

На основе имеющихся данных, была сформирована модельная схема превращений, также проведена оценка термодинамической вероятности протекания этих реакций, построена модель реактора в среде HYSYS Aspen PlusTM. Для предварительного расчета в модели были приняты следующие характеристики реактора:

- гидродинамический режим идеальное вытеснение;
- температура 335°С;
- давление 1,5 МПа;
- расход сырья 3500кг/час.
- катализатор КН 30. Основные характеристики: структурная форма цеолит типа ZSM 5, диаметр гранул 3,0 4,3 мм, массовые доли в порошке цеолита оксида кремния 90,0 97,6%, оксида алюминия 1,4 2,7%, оксида натрия не более 0,1%, оксида железа 0,35 1,25%; массовая доля цеолита не менее 80%.

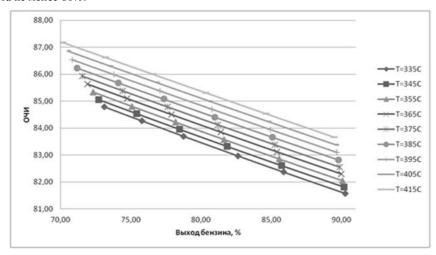


Рисунок 2 – Зависимость октанового числа от выхода бензина при изменении температуры

Также выполнена проверка и установлена адекватность модели экспериментальным данным, достаточная для целей проектирования и масштабирования [3].

Следующим шагом был выбор оптимизируемых параметров, которые позволили сформировать целевую функцию: октановое число и относительный выход бензина. В качестве варьируемых параметров выбраны температура процесса и объем реакционной зоны аппарата. На рисунках 1 и 2, показана связь целевых параметров, для различных значений варьируемых.

Была сформирована целевая функция в безразмерной форме и выполнены расчеты на математической модели в интервалах: температура – T=335 ч 435 °C и объем реактора – $V_p=0,57$ ч 3,39 м³. Вид целевой функции в пространстве оптимизируемых параметров представлен на рисунке 3.

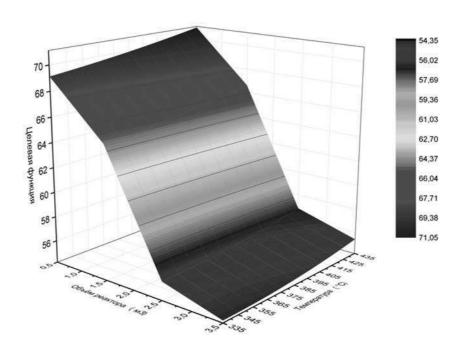


Рисунок 3 – Вид целевой функции

Результаты данной работы позволили сделать следующие выводы:

- 1. определили оптимальный объем реакционной зоны аппарата и температурный режим процесса;
- 2. разработанная модель позволяет выполнять оптимизацию режимов при работе на максимальный выход или максимальное октановое число продукта;
- 3. безразмерный вид целевой функции делает ее удобным инструментов для выполнения экономической оптимизации и оценки энергоэффективности.

Литература

- Hasan Akhtar Zaidi, Kamal Kishore Pant.; Combined experimental and kinetic modeling studies for the conversion of gasoline range hydrocarbons from methanol over modified HZSM – 5 catalyst. Korean J. Chem. Eng. 2010; 27(5): p. 1404 – 1411.
- 2. Primo A., Garcia H.; Chem. Soc. Rev. 2014; 43: p. 7548 7561.
- 3. M.A. Samborskaya, V.V. Mashina, O.A. Cherednichenko, A.V. Makarovskikh. Modeling of Reactor of Straight-run Gasoline Fractions Refining on Zeolite Catalysts // Procedia Chemistry. 2015 Vol. 15. p. 237–244.