ПЛАЗМЕННАЯ ОБРАБОТКА РЕЭКСТРАКТОВ ПЛАТИНОИДОВ ПОСЛЕ ПЕРЕРАБОТКИ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА

Гостева И.В.

Научный руководитель: Каренгин А.Г., к.ф.-м.н., доцент Томский политехнический университет, 634050, Россия, г. Томск, пр. Ленина, 30 E-mail: inesa-gosteva@mail.ru

Истощение минеральных запасов металлов платиновой группы (платиноидов) усиливает интерес к проблеме их выделения из отработавшего ядерного топлива (ОЯТ). Этот интерес появился еще в начале 60-х годов двадцатого века, но вследствие целого ряда причин как технического, так и экономического характера, до настоящего времени ни один из предложенных методов не был использован в промышленном масштабе. Рано или поздно это приведет к росту стоимости платиноидов до такой степени, что ОЯТ действительно может стать замещающим источником их промышленного производства. Развитию технологий, связанных с выделением платиноидов будет способствовать рост мощностей атомной энергетики и, соответственно, накопление ОЯТ.

В связи с этим представляет интерес использование плазмы для энергоэффективной обработки водно-солевых реэкстрактов родия и палладия с целью извлечения из отходов переработки ОЯТ и последующего использования.

Плазменная технология обработки водных растворов солей и гидроксидов металлов обладает многими важными особенностями. Это возможность получения гомогенного распределения компонентов и заданного стехиометрического состава во всем объеме получаемых дисперсных продуктов (порошков), их чистота и возможность активно влиять на морфологию частиц, если это является важным. Однако эта технология требует значительных энергозатрат (2-4 МВт·ч/т).

Существенное снижение энергозатрат может быть достигнуто при плазменной обработке водносолевых реэкстрактов в виде оптимальных по составу диспергированных горючих водносолеорганических композиций (ВСОК).

В работе представлены результаты моделирования процесса обработки в воздушной плазме водно-солевых реэкстрактов в виде диспергированных горючих ВСОК.

В результате расчетов показателей горючести различных по составу модельных водно-солеорганических композиций на основе этанола (ацетона) и реэкстрактов родия и палладия, обладающих высокой взаимной растворимостью, определены составы BCOK, имеющие низшую теплотворную способность (Qнр \geq 8,4 МДж/кг) и адиабатическую температуру горения (Тад \geq 1200 °C) и обеспечивающие не только существенное снижение затрат энергозатрат на плазменную обработку реэкстрактов (до 0,1 МВт·ч/т), но дополнительное получение тепловой энергии для технологических и бытовых нужд (до 2,0 МВт·ч/т).

С использованием лицензионной программы «TERRA» определены равновесные составы газообразных и конденсированных продуктов плазменной обработки водных реэкстрактов родия и палладия в виде горючих композиций в широком диапазоне температур ($300 \div 4000 \text{ K}$) и массовых долей воздушного плазменного теплоносителя ($0,1 \div 0,9$), а также произведена оценка энергозатрат на процесс их плазменной обработки.

С учетом полученных результатов рекомендованы следующие оптимальные режимы обработки водных реэкстрактов родия и палладия в воздушно-плазменном потоке:

- состав BCOK-1: (70% Реэкстракт(Rh): 30 % этанол);
- состав BCOK-2: (70% Реэкстракт(Pd) : 30 % этанол);
- массовое отношение фаз: (74 % Воздух : 26 % ВСОК-1(ВСОК-2);
- рабочая температура: (1500±100) К;
- Эуд = 15 МДж/кг.

Результаты проведенных исследований могут быть использованы при создании плазменной технологии обработки водных реэкстрактов родия и палладия, а также других металлов платиновой группы для их извлечения из отходов переработки ОЯТ и последующего использования.