Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий исполнения государственной функции по надзору за выполнением требований пожарной безопасности" Приказ МЧС России от 28.06.2012 N 375 (Зарегистрировано в Минюсте России 13.07.2012 N 24901).

- 2. Чулков Н. А., Деренок А.Н.. Надежность технических систем и техногенный риск: Учебное пособие. Томск: Изд-во ТПУ, 2012. 150 с.
- 3.Идентификация опасных и вредных производственных факторов//«Центр Аттестации и Экспертизы» г. Санкт-Петербург, 2014. Источник: http://www.centrattek.ru/novosti/2014-03-19/170 (дата обращения: 26.04.2014г.).
- 4. Белов М.В., Лускин А.З., Чулков Н. А. Организация работы по охране труда на предприятиях: Учебно-методическое пособиедля организации работы по охране труда / Под общей редакцией Н.А. Чулкова. Томск: Изд-во НТЛ, 2001.- 392 с.

О МЕТОДАХ РАСЧЕТА СКОРОСТИ РАСПРОСТРАНЕНИЯ ЛЕСНЫХ ПОЖАРОВ

Родченкова А.С.

Томский политехнический университет, г. Томск Научный руководитель: Перминов В. А., д. ф-м.н., профессор кафедры экологии и безопасности жизнедеятельности

С давних лет лесные пожары приносили огромный экологический и экономический ущерб людям и окружающей среде. Лесные пожары уничтожают большое количество древесины, а как известно возобновление этих ресурсов занимает много времени. Так же страдает флора и фауна, в опасности ближайшие постройки и жизни людей. Поэтому необходимо увеличивать пожароустойчивость лесов, а при возникновении пожара, как можно быстрее реагировать на него и устранять, не давая захватить огромные площади.

Для своевременного реагирования на лесные пожары необходимы математические модели распространения, как низовых, так и верховых лесных пожаров. Сейчас существует множество таких моделей, но они требуют много информации для моделирования (погодные условия, характеристика местности, горючих материалов и так далее).

Цель работы является разработка методики расчета скорости распространения низовых и верховых лесных пожаров, которая будет

требовать, как можно меньше информации для моделирования процесса горения леса, и определить зависимость между скоростью ветра и скоростью распространения пожара.

Существует множество американских методик для расчёта скорости распространения, например, авторов Скотт Элизабет, Д. Рейнхардт «Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior» [1]. В данной работе использовалась «Методика расчета параметров лесных пожаров, как динамических процессов на поверхности земли с использованием данных космического мониторинга» под авторством В. С. Коморовского, Г. А. Доррер [2]. Данная методика основана на расчете скорости распространения лесных пожаров по формуле:

$$v_0 = \frac{\alpha\sqrt{k}}{2P(w)}(1)$$

где $v_0(t)$ — скорость распространения фронта пламени в м/с, α — показатель динамики пожара, w — скорость ветра [м/с].

В данной методике приведена таблица с значениями интегралов квадрата экспоненциальной индикатрисы, которая зависит от скорости ветра.

Таблица 1
Значения интегралов квадрата экспоненциальной индикатрисы в зависимости от скорости ветра

W	0	0,1	0,2	0,5	1	2	3
$\alpha(w)$	0	0,078	0,155	0,378	0,725	1,33	1,815
P(w)	3,142	2,705	2,361	1,1695	1,178	0,818	0,686
Q(w)	3,142	2,911	2,708	2,234	1,758	1,455	1,535

Постоянный коэффициент k, по формуле:

$$k = \frac{\Delta S}{(t - t_0)^2} (2)$$

где ΔS — изменение площади пожара в м², t — текущее время и t_0 — время возникновения пожара в сутках.

Погрешность коэффициента k в модели:

$$\delta k = \frac{\delta S}{\delta t^2}(3)$$

Погрешность показателя α :

$$\delta\alpha = \frac{\delta S}{kt^2 \ln(t)}(4)$$

От показателя α зависит изменение скорости фронта пожара: при $\alpha=2, v_0=const;$ при $\alpha<2, v_0$ уменьшается; $\alpha>2, v_0$ увеличивается. Таблица 2

Значения интегралов квадрата экспоненциальной индикатрисы в зависимости от скорости ветра

W	0	0,1	0,2	0,5	1	2	3
$\alpha(w)$	0	0,078	0,155	0,378	0,725	1,33	1,815
P(w)	3,142	2,705	2,361	1,1695	1,178	0,818	0,686
Q(w)	3,142	2,911	2,708	2,234	1,758	1,455	1,535

Также в методике рассчитывается скорость увеличения периметра пожара, по формуле:

$$\frac{dL(t)}{dt} = 2v_0(t)Q(w)(5)$$

По данной методике проведем численный расчет скорости распространения пожара. Предположим, что нам известно: $\delta S = 50$ га; $\Delta t = 7$ сут.; $\alpha = 2$, это значит, что скорость фронта пожара постоянна; $\Delta S = 800$ га; $w = 1\frac{M}{2}$.

$$k = \frac{800}{49} = 16.3 \text{ ra/cyr.}^2$$
$$\delta k = \frac{50}{49} = 1.02 \text{ ra/cyr.}^2$$
$$\delta \alpha = \frac{50}{16.3 * 49 * ln7} = 0.03$$

Из табл. 1 берем значения P(w) и Q(w) при скорости ветра равной 1 m/c.

$$P(w) = 1.178$$

$$Q(w) = 1.758$$

$$v_0 = \frac{2\sqrt{16.3 * 10^4}}{1.178} = 342.7 \frac{M}{\text{cyt}}.$$

$$\frac{dL(t)}{dt} = 2 * 342.7 * 1.758 = 1204.9 \frac{M}{c}.$$

По данным расчетам была выявлена зависимость скорости распространения пожара от скорости ветра

Таблица 3 Зависимость скорости распространения пожара от скорости ветра

W	0	0,1	0,2	0,5	1	2	3
v_0	128,4	149,2	171,0	345,2	342,7	493,5	588,5
dL(t)							
/dt	807,4	868,9	926,1	1542,4	1205,0	1436,2	1806,7

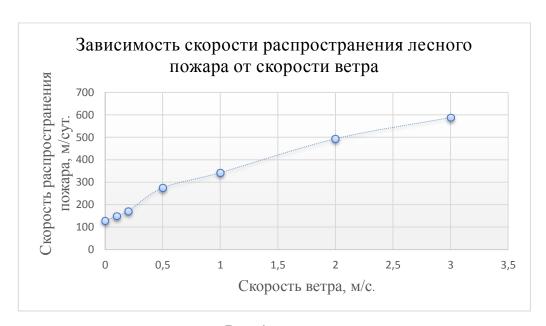


Рис. 1

Вывод

Разработанная работе В методика расчета скорости распространения лесных пожаров может быть использована для определенный определения размеров пожара через промежуток времени. Кроме того, поможет спрогнозировать методика чрезвычайную ситуацию, и вовремя отреагировать на нее. У данной методике есть значительные минусы. В ней учитывается только скорость ветра, но скорость распространения лесного пожара за висит от влагосодержания, запаса и вида горючего вещества.

Проблема лесных пожаров сложная и многогранная. Для ее решения требуется привлечение специалистов из самых разных областей (например, экологов, пожарных, экономистов, специалистов по охране здоровья человека). Для предотвращения пожаров необходимо проводить пропаганды и агитации, контролировать соблюдений правил пожарной безопасности в лесной зоне.

При численных расчетах была выявлена прямая зависимость между скоростью распространения лесных пожаров и скоростью ветра. Это говорит о том, что сила ветра пагубно влияет на распространение пожаров.

Список информационных источников

- 1.Скотт Элизабет, Д. Рейнхардт Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior [Электронный ресурс] // URL: http://www.treesearch.fs.fed.us/pubs/4623
- 2.В. С. Коморовский, Г. А. Доррер Методика расчета параметров лесных пожаров как динамических процессов на поверхности земли с использованием данных космического мониторинга // Материалы Всероссийской научно-практической конференции : сб. ст. Красноярск, 2010.
- 3.А. М. Гришин, А. А. Голованов, В. Г. Смирнов О методике экспериментального определения параметров в зоне лесного пожара // Физика горения и взрыва, 1995, т 31, № 3.
- 4.Коморовский В.С. Оценка возможности прогнозирования распространения лесных пожаров по данным ИСДМ-РОСЛЕСХОЗ, [Электронный ресурс] // URL: http://econf.rae.ru/article/4679

О МЕТОДАХ РАСЧЕТА ТЕПЛОВОГО ИЗЛУЧЕНИЯ ОТ ОГНЕННЫХ ШАРОВ.

Румянцев А.В.

Томский политехнический университет, г. Томск Научный руководитель: Перминов В.А., д. ф.-м.н., профессор кафедры Экологии и безопасности жизнедеятельности

Введение

Традиционно считается взрывоопасными технологические процессы (угледобыча, нефтепереработка, химическая технология), в которых предпринимается серьезные усиления для предотвращения взрывов и ослабления их негативных последствий на окружающую среду, населенные пункты, здания и сооружения, персонал [1].

Крупная авария на промышленном предприятии происходит при изготовлениях, хранениях, транспортировке легколетучих и сжиженных газообразных топлив, при промывке резервуаров для хранения жидкого топлива; при разрыве сосудов высокого давления,