- Петров В.С., Бондаренко Г.Г., Васильевский В.В., Казанцева Н.Е. Комплекс измерительных модулей магнитохимического, масс-спектрометрического, фотоэлектрического и термогравиметрического высоковакуумного анализа материалов спинтроники // Радиационная физика твердого тела: Труды XIV Междунар. совещ. – Севастополь, 5–10 июля 2004 г. – М.: НИИ ПМТ МГИЭМ (ТУ) 2004. – С. 555–560.
- Белова С.Б., Колачев Б.А., Вилков В.И. О диффузии элементов внедрения в титане // Цветная металлургия. – 2000. – № 4. – С. 213–227.
- Магазин И.О. Моделирование процесса диффузии водорода сквозь металлический мембраны: автореф. дис. ... канд. физ.мат. наук. – Владимир, 2006. – 11 с.
- Мудров А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. – Томск: Раско, 1991. – 272 с.

- Евтеева Н.А. Моделирование диффузии водорода в титане численными методами // Современные техника и технологии: Труды XIII Междунар. научно-практ. конф. студентов, аспирантов и молодых ученых. – Томск, 2007. – Т. 2. – С. 73–74.
- Кренинг М., Баумбах Х., Тюрин Ю.И. и др. Неравновесные системы металл-водород. Титан, нержавеющая сталь. – Томск: Изд-во Томского ун-та, 2002. – 350 с.
- Бурцев В.Т. Десорбция газа из жидкого металла в вакууме. М.: Металлургия, 1987. – 232 с.
- Mavrikakis M., Schwank W., Gland L. The effect of exposure time and pressure on the temperature-programmed desorption spectra of system with bulk states // Surface Science. – 1996. – № 100 (27). – P. 385–392.

Поступила 02.03.2010 г.

УДК 541.15;358.91;538.975

ТРАНСФОРМАЦИЯ АЭРОЗОЛЬНЫХ ЧАСТИЦ В АТМОСФЕРЕ

Т.В. Губарева

Братский государственный университет E-mail: kafgmu@brstu.ru

Представлены экспериментальные данные о радиационно-стимулированных реакциях в системе «щелочно-галоидный микрокристалл – атмосферный воздух». Полученные после обработки продукты совпадают с продуктами химической трансформации щелочно-галоидных аэрозольных частиц в атмосфере. Предложен радиационно-химический механизм преобразования атмосферных щелочно-галоидных аэрозольных частиц.

Ключевые слова:

Физика атмосферы, аэрозольные частицы, щелочно-галоидные кристаллы, радиоактивность атмосферы, гетерогенные реакции, рентгеновское излучение.

Key words:

Atmospheric chemistry and physics, alkali halides crystals, aerosol particles, atmospheric radioactivity, heterogeneous reactions, X-ray radiation.

Введение

Аэрозоли играют важную роль в химии и радиационном балансе атмосферы. Они обеспечивают поверхность для гетерогенных реакций, влияют на глобальный климат непосредственно, поглощая и рассеивая солнечное и земное излучение, и косвенно, действуя на образование облаков [1–3].

Наибольшие количества атомарного хлора и брома образуются в нижней атмосфере в ряде гетерогенных химических процессов с участием морского аэрозоля. Изучение состава собранных на фильтры отдельных частиц аэрозоля из прибрежных районов показывает, что содержание хлора в них понижено, а нитратов — повышено. В районах с сильным загрязнением воздуха частицы морской соли практически полностью теряют хлор. Вероятной причиной этого является процесс вытеснения хлористого водорода азотной и серной кислотами [1, 3–5].

Вытеснение в газовую фазу атомов хлора и брома из кристаллов NaCl и NaBr радикалами NO₃ было продемонстрировано в лабораторных экспериментах [6]. Главным стоком атомов хлора в атмосфере служит реакция с озоном. Поэтому исследование химической трансформации солевого аэрозоля имеет большое значение для исследований циклов галогенов в атмосфере. Многочисленными исследованиями солевого аэрозоля, выполненными в различных регионах, установлено, что в атмосфере происходит дегалогенизация и нитрификация аэрозольных шелочно-галоидных частиц [1]. Химическую активность щелочно-галоидных кристаллов, входящих в состав атмосферных аэрозолей, часто связывают с загрязнением атмосферного воздуха оксидами азота антропогенного происхождения [1]. Однако исследования атмосферного цикла галогенов в связи с дегалогенизацией щелочногалоидных аэрозольных частиц показывают, что в настоящее время механизмы атмосферной трансформации этих частиц исследованы еще недостаточно полно [7].

Известно, что большинство щелочно-галоидных кристаллов могут долго храниться в контакте с атмосферным воздухом без изменения свойств. При определенных условиях кристаллы и окружающий воздух начинают взаимодействовать. Известны данные многочисленных исследований химической активности макроскопических щелочногалоидных кристаллов в составе гетерогенной системы «щелочно-галоидный кристалл – атмосферный воздух». Активность проявляется при изменении химического состава воздуха, при термическом воздействии, при воздействии лазерного и ионизирующих излучений. Образование нитратов щелочных металлов зарегистрировано при взаимодействии с оксидами азота [8], при выращивании кристаллов из расплавов в контакте с атмосферным воздухом [9], при использовании в мощных лазерах, где газовая среда содержит много атомных и радикальных групп [10], при воздействии ионизирующих излучений [11, 12], при воздействии холодной воздушной плазмы [13]. Атмосферные аэрозольные частицы могут переносить атмосферную радиоактивность [14, 15]. Но действие ионизирующих излучений на свойства атмосферных аэрозольных частиц - носителей радиоактивности в настоящее время не исследуется.

Целью настоящей работы является лабораторное исследование свойств щелочно-галоидных кристаллов при воздействии ионизирующего излучения. Данные знания позволят расширить понимание механизмов трансформации щелочно-галоидных аэрозольных частиц за счет учета действия ионизирующего излучения на гетерогенные реакции в процессе переноса радиоактивных веществ в атмосфере вторичными радиоактивными аэрозольными частицами.

Методика эксперимента

Выбор объектов исследования и выращивание нитевидных кристаллов. Радиационные изменения поверхности ионных кристаллов изучались с использованием микрокристаллов щелочно-галоидных соединений различных типов и разного химического состава (KCl, KBr, NaCl, KI, RbBr). Для исследования поверхности микроскопическими методами использовали щелочно-галоидные кристаллы в нитевидной форме. Для рентгеноструктурных исследований использовали плоские порошковые образцы. Для приготовления порошков использовали соли щелочно-галоидных соединений марки «о.с.ч.», которые растирались в агатовой ступке. Метод механического измельчения позволяет получить микрокристаллы соответствующих солей со средним диаметром около 10 мкм. Приготовленные размолотые соли запрессовывались в кюветы из кварцевого стекла. Образец для исследования и стадии его приготовления показаны на рис. 1.

Подготовленные образцы помещались в реактор (рис. 2), который входит в состав экспериментальной установки (рис. 2). Использование установки позволяло проводить гетерогенные реакции с использованием образцов различного типа и различного химического состава в контролируемой газовой среде и в широком интервале доз рентгеновского излучения. Для проведения рентгеноструктурных исследований образцы помещали в реактор, заполненный атмосферным воздухом при атмосферном давлении, относительная влажность составляла около 50 %. Эксперименты по облучению проводились при температуре 20 °C.

Рис. 1. Образец щелочно-галоидных микрокристаллов для рентгеноструктурных исследований: 1) порошок соли; 2) кювета; 3) кружок из стекла

Источниками излучения в экспериментах служила рентгеновская трубка БСВ-2 с медным антикатодом и трубка БХВ-7 с хромовым антикатодом. Питание трубок осуществлялось от рентгеновского аппарата УРС-60. Для проведения экспериментов использовались различные режимы работы рентгеновских трубок. Для трубки БСВ-2 использован режим: U=45 кВ, I=20 мА; для трубки БХВ-7: U=30 кВ, I=10 мА. Величина мощности экспозиционной дозы при работе в заданных режимах и при неизменном расположении образцов относительно окна трубки составляла 2 и 500 Рс⁻¹ для трубок БСВ-2 и БХВ-7 соответственно. Дозиметрические измерения были выполнены дозиметром ИДМД-1. Измеренная для условий экспериментов мощность излучения составляла 830 Pc⁻¹см⁻² (для трубки БХВ-7) и 3 Pc⁻¹см⁻² (для трубки БСВ-2).

Для контроля над составом фаз на разных стадиях радиационно-химических гетерогенных реакций в системе «щелочно-галоидный микрокристалл — атмосферный воздух» применялся метод рентгеновской дифрактометрии плоских порошковых образцов. Для анализа фазового состава продуктов реакций использовался рентгеновский дифрактометр ДРОН-2.0, предназначенный для решения задач рентгенодифракционного и рентгеноструктурного анализа материалов при измерении интенсивностей и углов дифракции рентгеновского излучения, рассеянного кристаллическим объектом. Дифрактометр ДРОН-2.0 позволяет проводить анализ фазового состава поликристаллических объектов. Запись дифракционного спектра осуществлялась на диаграммную ленту. Фазовый состав образцов после радиационно-химичской обработки определялся методом сравнения дифрактограмм, полученных от исходных образцов, с дифрактограммами образцов после обработки. Каждая кристаллическая фаза дает индивидуальную дифракционную картину, которая определяется положением линий и их интенсивностью. Рентгенофазовый анализ, выполненный на дифрактометре ДРОН-2.0 с использованием излучения Cu-K_а (Ni фильтр), показал, что дифрактограммы образцов после обработки содержат дополнительные рефлексы.

Результаты и обсуждение

Анализ облученных кристаллов показал, что рентгеновское излучение вызывает изменения их структуры. Дифрактограммы образцов кристаллов после облучения дозами до 1·10⁸ Рсм⁻² наряду с практически неизменными рефлексами исходного вещества содержат новые рефлексы, рис. 3.

Наибольшее количество продукта облучения наблюдается в образце KI, где новое вещество идентифицируется как KIO₃ по четырем дополнительным рефлексам с межплоскостными расстояниями d, равными 4,5; 3,17; 2,23; 1,82 Å. Здесь же присутствует еще один рефлекс с d=2,85 Å, что отвечает наиболее сильному рефлексу K_2CO_3 (рис. 3, a).

На дифрактограммах других образцов иногда присутствует лишь по одному примесному рефлексу. Поэтому уверенная идентификация примеси возможна лишь по совокупности данных разных методов исследования.

Дифрактограммы облученных NaCl содержат примесные рефлексы с индексами 104 и межплоскостными расстояниями 3,05 Å, которые отвечают самым сильным линиям соответствующих нитратов NaNO₃ (рис. 3, δ).

На дифрактограмме КВг новых рефлексов после облучения образца не обнаружено. Но усиление рефлекса исходного КВг с межплоскостными расстояниями 3,30 и 3,78 Å может служить указанием на присутствие (как и в случае кристаллов KCl) рефлекса KNO₃ (усиление рефлекса с индексами 111 для КВг) и KNO₂ (усиление рефлекса 200 для КВг), как показано на рис. 3, *в*. В результате облучения КСl появляются примесные рефлексы с индексами 100 для KNO₃ и 012 для KNO₂, межплоскостные расстояния для которых равны 3,78 и 3,30 Å, соответственно (рис. 3, *г*). Рентгеноструктурные исследования показали, что результатом облучения является синтез новых фаз. Идентификация новых соединений для кристаллов разного исходного состава после облучения их излучением рентгеновской трубки БХВ-7, мощность экспозиционной дозы $8 \cdot 10^2$ Pc⁻¹cm⁻², приведена в таблице. Как показывают результаты рентгеноструктурных исследований, уверенная идентификация образовавшейся фазы возможна для рентгенизированного образца KI (четыре рефлекса для определения KIO₃). Для остальных образцов проявляются только самые интенсивные рефлексы, соответствующие примесям нитратов и нитритов.

Таблица.	Идентификация твердых продуктов радиацион-
	но-стимулированных гетерогенных реакций, об-
	разующихся в системе «щелочно-галоидный ми-
	крокристалл – атмосферный воздух» при 20 °С
	(данные рентгеноструктурного анализа)

		-	
Исходное ве- щество	Экспозиционная доза, 10 ⁷ , Рсм ⁻²	Межплоскостные расстояния d, Å	Новая фаза
N I	3,3	4,5; 3,17; 2,23; 1,82	KIO₃
NI NI		2,85	K ₂ CO ₃
KCI	7,2	3,78	KNO₃
KCI		3,30	KNO ₂
RbBr	7,5	3,04	RbNO ₃
NaCl	9,0	3,05	NaNO₃
V Dr	10,0	3,78	KNO₃
NDI		3,30	KNO ₂

Полученные данные показывают, что в случае реализации радиационно-химических гетерогенных реакций галогены кристаллической решетки исходного кристалла замещаются на нитрат-ионы. В результате радиолиза воздуха и кристалла, последующих химических взаимодействий, в адсорбционном слое происходит образование и кристаллизация нитратов соответствующих щелочных металлов на границе раздела системы «щелочно-галоидный микрокристалл - атмосферный воздух», а галогены в газообразном состоянии при этом вытесняются в окружающую газовую фазу (атмосферный воздух). Подобные процессы дегалогенизации и нитрификации зарегистрированы и во время проведения многочисленных полевых экспериментов в связи с исследованиями атмосферного аэрозоля [1].

В настоящей работе разработана и использована экспериментальная методика, чтобы показать, может ли атмосферная радиоактивность, переносимая в атмосфере аэрозольными частицами, стимулировать гетерогенные реакции солевых щелочно-галоидных частиц, объяснять наблюдаемые уровни хлора и преобразование щелочно-галоидных частиц в нитраты и показать, как такие реакции затрагивают структуру и химический состав аэрозольных частиц.

Разработанные к настоящему времени химические механизмы могут быть расширены с учетом

Рис. 3. Штриховые рентгенограммы щелочно-галоидных кристаллов до (I) и после радиационно-химической обработки (II)

взаимодействия аэрозольных солевых частиц с атмосферной радиоактивностью. Радиационно-химические гетерогенные реакции, ключевые стадии которых ведут к формированию газообразных соединений галогенов, нитратов щелочных металлов, существенно изменяют химический состав, структуру микрокристаллов. Эти специфические для атмосферной химии радиационно-химические гетерогенные реакции «щелочно-галоидный микрокристалл — атмосферный воздух» не затрагивают загрязнение атмосферного воздуха какими-либо химически активными компонентами. Они учитывают лишь атмосферную радиоактивность, которая переносится аэрозольными частицами. Химическое взаимодействие щелочно-галоидных аэрозольных частиц, предполагающее химическое взаимодействие с азотной кислотой и окислами азота, исследовано многими авторами [1, 4–6, 14]. Химический механизм может быть реализован в атмосферных условиях при загрязнении атмосферного воздуха соединениями азота, источником которых являются антропогенные источники. Однако данные полевых измерений свидетельствуют о том, что дегалогенизация и нитрификация щелочно-галоидных аэрозольных частиц происходит и в незагрязненной атмосфере [7].

Поэтому для более глубокого исследования атмосферного аэрозоля уместно рассмотреть взаимодействие микрокристаллов щелочно-галоидных солей с атмосферным воздухом под воздействием ионизирующего излучения. Данный подход основан на следующих положениях. Атмосфера содержит естественную и антропогенную радиоактивность, основными переносчиками которой являются аэрозольные частицы. Известно, что около 95 % радиоактивных веществ, содержащихся в атмосфере, переносится нерадиоактивными аэрозольными частицами [14, 15]. Однако действие ионизирующего излучения на стимулирование гетерогенных реакций при изучении радиоактивного вторичного аэрозоля в атмосферной физике и химии в настоящее время еще не учитывается.

Выполненные в настоящей работе исследования щелочно-галоидных микрокристаллов показывают, что в результате реализации радиационнохимических гетерогенных реакций, стимулированных ионизирующим излучением в системе «щелочно-галоидный микрокристалл — атмосферный воздух» образуются продукты реакций, которые идентичны продуктам, обнаруживаемым в ходе полевых измерений во многих регионах атмосферы [1–5, 7].

В связи с разработкой механизмов поступления газообразного хлора и хлорированных соединений в атмосферный воздух проводятся многочисленные исследования. К настоящему времени опубликовано большое количество данных, связанных с естественной химией этого элемента и его соединений [2, 3, 5, 7, 16]. В этих данных имеются сообщения о том, что газообразный хлор и его соединения непосредственно обнаружены в незагрязненной морской атмосфере [16]. В настоящее время в атмосферной химии возникают затруднения при интерпретации данных полевых измерений в незагрязненных регионах атмосферы. При этом возможность реализации радиационно-химических гетерогенных реакций для объяснения процесса трансформации аэрозольных частиц в атмосфере в атмосферной химии не рассматривается. Данные исследования являются основанием для проведе-

СПИСОК ЛИТЕРАТУРЫ

- Seinfeld J.H., Pandis S.N. Atmospheric Chemistry And Physics: From Air Pollution To Global Climate Change. – N.Y.: Wiley, 1998. – 1325 p.
- Гинзбург А.С., Губанова Д.П., Минашкин В.М.. Влияние естественных и антропогенных аэрозолей на глобальный и региональный климат // Российский химический журнал. – 2008. – Т. 52. – № 5. – С. 112–119.
- Ларин И.К. Российские исследования в области атмосферной химии в 2003–2006 гг. // Известия РАН. Физика атмосферы и океана. – 2007. – Т. 40. – № 5. – С. 712–720.
- Зеленов В.В., Апарина Е.В., Гершензон М.Ю., Ильин С.Д., Гершензон Ю.М. Кинетические механизмы захвата атмосферных газов поверхностями морских солей. III. Реакционный захват радикалов N₀₃ увлажнёнными солями NaX (X=Cl, Br) в стационарных условиях // Химическая физика. – 2003. – Т. 22. – № 6. – С. 59–71.
- Зеленов В.В., Апарина Е.В., Каштанов С.А., Шестаков Д.В., Гершензон Ю.М. Кинетические механизмы захвата атмосферных газов поверхностями морских солей. VII. Захват CINO₃ по-

ния полевых измерений солевого аэрозоля с учетом вклада атмосферной радиоактивности.

Заключение

- Создана экспериментальная установка для проведения радиационно-химических гетерогенных реакций для облучения рентгеновским излучением системы «щелочно-галоидные микрокристаллы – атмосферный воздух» с учетом влияния факторов, имеющих большое значение для реальной атмосферы (доза облучения, температура, давление, составов атмосферного воздуха).
- Показано, что продукты радиационно-стимулированных превращений в системе «щелочногалоидный микрокристалл – атмосферный воздух» аналогичны продуктам трансформации атмосферных аэрозольных солевых частиц, зарегистрированных в натурных атмосферных измерениях.
- 3. В результате радиационно-стимулированных реакций происходит кристаллизация новых соединений на поверхности исходного кристалла. В результате реакций галогены кристаллической решетки исходного кристалла замещаются на нитрат-ионы. При этом образуются нитраты соответствующих щелочных металлов, а галогены вытесняются в окружающую среду. Процессы замещения галогенов на нитрат-ионы в щелочно-галоидных аэрозольных частицах зарегистрированы и во время проведения многочисленных полевых экспериментов в связи с исследованиями атмосферного аэрозоля. В настоящее время в атмосферной химии они объясняются лишь химическими гетерогенными реакциями частиц с оксидами азота.
- Обоснована возможность практического применения результатов работы для проведения полевых измерений и расширения лабораторных исследований атмосферного солевого аэрозоля с учетом вклада атмосферной радиоактивности.

верхностью сухой соли NaCl // Химическая физика. – 2006. – Т. 25. – № 1. – С. 35–49.

- Robbins R. C., Cadle R.D., Eckhardt D.L. The conversion of sodium chloride to hydrogen chloride in the atmosphere // J. Meteorol. – 1959. – V. 16. – P. 53–55.
- Keene W.C., et al. Composite global emissions of reactive chlorine from anthropogenic and natural sources: Reactive Chlorine Emissions Inventory // J. Geophys. Res. – 1999. – V. 104. – D7. – P. 8429–8440.
- Кеффер Р.Г. Исследование физико-химических процессов, протекающих в системе «хлориды щелочных металлов – NO₂–O₂»: дис. ... канд. хим. наук. – Пермь, 1969. – 180 с.
- Закис Ю.Р. О взаимодействии щелочно-галоидных солей с воздухом // Известия АН Латв. ССР. Сер. физ. и техн. наук. – 1965. – № 1. – С. 19–25.
- Shim Dong, Witting C. Alkali Halides: their reaction with active oxygen // Appl. Optics. – 1976. – V. 15. – P. 1896–1897.
- Губарева Т.В. Исследование радиационных изменений поверхности ионных нитевидных кристаллов: дис. ... канд. физ.-мат. наук. – Рига, 1979. – 160 с.

- Александров А.Б. и др. Введение в радиационную физикохимию поверхности щелочно-галоидных кристаллов. – Рига: Зинатне, 1989. – 244 с.
- Gubareva T.V., Korobetsky I.A., Shudrikov E.S. Complex laboratory studies of the marine aerosols: Proc. of SPIE of VII Intern. Symp. // Atmospheric and Oceanic Optics. – 2000. – V. 4341. – P. 544–549.
- Юнге Х. Химический состав и радиоактивность атмосферы. М.: Мир, 1965. – 424 с.
- Стыро Б.И. Самоочищение атмосферы от радиоактивных загрязнений. – Л.: Гидрометеоиздат, 1968. – 288 с.
- Osthoff H.D., et al. High levels of nitryl chloride in the polluted subtropical marine boundary layer // Nature geoscience. – 2008. – V. 1. – P. 324–328.

Поступила 09.04.2010 г.

УДК 535.34;541.15

СПЕКТРЫ ПОГЛОЩЕНИЯ ЩЕЛОЧНО-ГАЛОИДНЫХ ЧАСТИЦ МОРСКОГО АЭРОЗОЛЯ

Т.В. Губарева

Братский государственный университет E-mail: kafgmu@brstu.ru

Представлены экспериментальные результаты действия ионизирующего излучения на гетерогенные реакции в системе «щелочно-галоидный микрокристалл – атмосферный воздух». Показано, что химические преобразования щелочно-галоидных частиц сопровождается изменением их оптических свойств в связи с появлением дополнительных полос поглощения в ультрафиолетовой, видимой и инфракрасной области спектра.

Ключевые слова:

Аэрозольные частицы, атмосферная химия и физика, щелочно-галоидные микрокристаллы, гетерогенные реакции, оптические свойства, ионизирующее излучение.

Key words:

Aerosol particles, atmospheric chemistry and physics, alkali halides microcrystal, atmospheric radioactivity, heterogeneous reactions, optical properties, X-ray radiation.

Введение

Морской аэрозоль рассматривается в геохимических, экологических, климатологических и других исследованиях. В состав морского аэрозоля входят атмосферные частицы, источником которых является морская вода. Океан, занимая 2/3 поверхности Земли, является мощным, постоянно действующим источником, поставляющим в атмосферу аэрозольное вещество. При изучении влияния морского аэрозоля на климат рассматривают закономерности обмена веществом океана с атмосферой, определяют концентрации и химический состав аэрозольных частиц и их оптические характеристики. Измерения в атмосфере свидетельствуют о том, что на долю NaCl приходится около 20 % общей аэрозольной массы [1].

Оптические свойства морских и океанических аэрозолей определяются физико-химическими характеристиками генерируемых над морской поверхностью частиц, относительно высокой влажностью приводного слоя атмосферы и характером движения воздушных масс. Выполнено много экспериментальных исследований оптических свойств нижних слоев и всей атмосферной толщи для прибрежных районов. Обнаружены определенные зависимости этих характеристик от влажности и ветрового режима, причем выявилось, что определяющим фактором формирования оптических свойств нижних слоев атмосферы в прибрежных районах является относительная влажность воздуха [2]. Для решения задач климатического мониторинга наиболее важны оптические характеристики аэрозолей в видимой и ближней ИК-области спектра [3]. Исследование спектрального хода аэрозольных оптических толщин атмосферы в видимой области спектра показало значительное разнообразие типов спектрального хода. Спектральный ход оптических аэрозольных толщин в видимой области спектра в основном определяется дисперсностью частиц, тогда как более важный в климатологическом плане параметр — спектральная функция поглощения радиации аэрозолями — зависит от химического состава диспергированного вещества, наличия в нем поглощающих компонентов.

Цикл галоидных соединений в тропосфере к настоящему времени не достаточно изучен. Известно, что газообразные соединения, содержащие галогены (хлор, бром и йод), образуются из аэрозольных частиц галоидов щелочных металлов, которые являются относительно инертными. Однако в условиях атмосферы возможно преобразование частиц с образованием радикалов, содержащих галогены. Эти реактивные радикалы могут влиять на цикл озона, на разрушение и формирование аэрозольных частиц, а также на время жизни важных малых газовых составляющих атмосферы.

Установлено изменение соотношения [Na]/[Cl] в воздухе по сравнению с этим соотношением в океанской воде. Это изменение связывают с трансформацией части аэрозольных частиц NaCl в ни-